肝脏是机体的新陈代谢中心,同时也是体内的主要解毒和免疫防御器官。饲养环境中的致病性和非致病性抗原会刺激仔猪肝脏巨噬细胞产生、释放大量炎性介质,进而造成肝脏结构和功能损伤,最终导致生长抑制[1]。因此,通过营养手段来调控炎性介质的大量产生,对缓解肝脏损伤具有重要意义,也是缓解炎症的有效手段。
亚麻籽油中含有大量α-亚麻酸(C18 ∶ 3n-3),而α-亚麻酸是二十碳五烯酸(EPA)(C20 ∶ 5n-3)和二十二碳六烯酸(DHA)(C22 ∶ 6n-3)的前体。大量研究表明,n-3多不饱和脂肪酸(PUFA)(如EPA和DHA)在急性化学肝损伤[1]、胆汁淤积性肝损伤[2]、糖尿病肝损伤[3]、脂肪肝[4]等一系列肝脏损伤模型中发挥着重要的保护作用。n-3 PUFA的保护作用可能与其抑制炎性介质的过量产生有关[1, 2, 3, 4]。但是,关于亚麻籽油发挥护肝作用的分子机理尚不清楚。
Toll样受体4(TLR4)和核苷酸结合寡聚化结构域(NOD)是调节天然免疫和获得性免疫反应的重要蛋白家族。其中TLR4信号通路关键基因包括TLR4、髓样分化因子88(MyD88)、白细胞介素-1受体相关激酶1(IRAK1)、肿瘤坏死因子受体相关因子6(TRAF6),NOD信号通路关键基因包括NOD1、NOD2、受体互作蛋白2(RIPK2)。研究发现,TLR4和NOD被激活后,可激活各自下游的信号分子,最终激活核因子-κB(NF-κB),从而诱导炎性介质的表达,最终导致肝脏损伤[5]。因此,我们可以推测亚麻籽油可能通过TLR4和NOD信号通路,来调节炎性介质的产生,从而对肝脏损伤起调控作用。本研究通过给断奶仔猪注射脂多糖(LPS)诱导炎症,研究亚麻籽油对肝脏TLR4和NOD信号通路关键基因以及炎性介质表达水平的影响,旨在为探索亚麻籽油是否通过调控TLR4和NOD信号通路进而缓解肝脏炎性损伤提供初步依据。
1 材料与方法 1.1 试验动物与设计选择24头平均体重为(6.98±0.05) kg的 “杜×长×大”断奶仔猪,按体重相近原则,随机分为4个组,分别为对照组(5.0%玉米油)、LPS组(5.0%玉米油+LPS)、2.5%亚麻籽油组(2.5%玉米油+2.5%亚麻籽油+LPS)、5.0%亚麻籽油组(5.0%亚麻籽油+LPS),每组6个重复,每个重复1头猪,试验期21 d。玉米油由山东西王食品有限公司提供,亚麻籽油由甘肃陇郁香粮油工业有限责任公司提供。玉米油和亚麻籽油脂肪酸组成见表1。试验第21天,LPS组、2.5%亚麻籽油组和5.0%亚麻籽油组仔猪分别腹膜注射100 μg/kg体重的LPS(大肠杆菌血清型O55 ∶ B5,Sigma公司),对照组仔猪注射等量生理盐水。LPS注射剂量和作用时间参考前期研究结果[6, 7, 8]。前期研究表明,仔猪腹膜注射100 μg/kg体重的LPS,4 h后会产生炎症反应,且导致肝脏损伤。饲粮参照NRC(2012)营养需要量配制,基础饲粮组成及营养水平见表2。
|
|
表 1 玉米油和亚麻籽油脂肪酸组成 Table 1Fatty acid composition of the corn oil and flaxseed oil |
|
|
表 2 基础饲粮组成及营养水平(风干基础) Table 2 Composition and nutrient levels of the basal diet (air-dry basis) |
仔猪注射LPS或生理盐水4 h后,屠宰,取肝脏,立即投入液氮冻存,随后转移至-80 ℃冰箱保存,用于提取组织总RNA。
1.3 mRNA表达分析 1.3.1 主要仪器与试剂7500实时荧光定量聚合酶链式反应(real-time PCR)仪(Applied Biosystems),梯度升降温功能 PCR仪(TaKaRa),Nanodrop 2000超微量分光光 度计(Thermo),Tanon-4100凝胶成像系统(上海天能)。RNAiso Plus(总RNA提取试剂)、Prime-Script® RT reagent kit with gDNA eraser(cDNA合成试剂盒)和SYBR® Premix Ex TaqTM(Tli RNaseH Plus)(real-time PCR试剂盒)均购自宝生物工程(大连)有限公司。
1.3.2 测定方法组织总RNA提取、cDNA合成、real-time PCR参照陈少魁等[9]的方法。Real-time PCR数据计算采用Livak等[10]的2-ΔΔCt法,以甘油醛-3-磷酸脱氢酶(GAPDH)为内参基因。
1.3.3 引物设计与合成根据GenBank中已发表的猪TLR4、MyD88、IRAK1、TRAF6、NOD1、NOD2、RIPK2、NF-κB、肿瘤坏死因子-α(TNF-α)、环氧酶2(COX2)、热休克蛋白70(HSP70)、GAPDH的基因序列,利用Primer premier 6.0软件设计real-time PCR引物(表3)。引物由宝生物工程(大连)有限公司合成。
|
|
表 3 基因的引物序列 Table 3 Primer sequences of genes |
用SPSS 17.0软件进行单因素方差分析和LSD多重比较,试验结果以平均值±标准误表示。P<0.10表示具有显著性趋势,0.05≤P<0.05表示差异显著。
2 结果与分析 2.1 亚麻籽油对LPS刺激仔猪肝脏COX2、HSP70、TNF-α mRNA相对表达量的影响由表4可知,与对照组相比,LPS刺激显著提高了仔猪肝脏COX2、HSP70、TNF-α的mRNA相对表达量(P<0.05);与LPS组相比,饲粮添加2.5%亚麻籽油可显著降低COX2、TNF-α的mRNA相对表达量(P<0.05),饲粮添加5.0%亚麻籽油可显著降低TNF-α的mRNA相对表达量(P<0.05)。
|
|
表 4 亚麻籽油对LPS刺激仔猪肝脏COX2、HSP70和TNF-α mRNA相对表达量的影响 Table 4 Effects of flaxseed oil on the mRNA relative expression levels of COX2,HSP70 and TNF-α in liver of piglets after LPS challenge |
|
|
表 5亚麻籽油对LPS刺激仔猪肝脏TLR4和NOD信号通路关键基因mRNA相对表达量的影响 Table 5 Effects of flaxseed oil on the mRNA relative expression levels of the key genes in TLR4 and NOD signaling pathway in liver of piglets after LPS challenge |
由表5可知,与对照组相比,LPS刺激显著提高了仔猪肝脏TLR4、MyD88、IRAK1、NOD1、NOD2、RIPK2、NF-κB的mRNA相对表达量(P<0.05);与LPS组相比,2.5%亚麻籽油可显著降低NOD1、NOD2的mRNA相对表达量(P<0.05),有降低RIPK2 mRNA相对表达量的趋势(0.05≤P<0.10),5.0%亚麻籽油可显著降低NOD2 mRNA相对表达量(P<0.05)。
3 讨 论目前诱导炎症的经典方法是腹膜或静脉注射一定剂量的LPS[11],LPS也被广泛应用于仔猪肝脏损伤研究。前期研究证实,LPS刺激可引起肝脏组织学损伤和功能紊乱[6, 7, 8]。肝脏中枯否细胞在LPS刺激后可分泌一系列炎性介质(如TNF-α),这些炎性介质在肝脏损伤中起重要作用[1]。有关亚麻籽油对猪肝脏损伤调控作用的研究较少。研究报道认为,亚麻籽油在老鼠肝脏损伤研究中的添加量为5%~10%[3, 4]、在猪肠道损伤研究中的添加量为2%[12]。 另外,结合养猪生产实践(油脂添加量通常不超过5%),本试验选择在饲粮中添加2.5%和5.0%的亚麻籽油来研究亚麻油是否可以缓解LPS诱导的仔猪肝脏炎症反应。
TNF-α和COX2是典型的炎性介质,在正常情况下不表达或表达量较低[2, 6, 7]。研究表明,这些炎性介质在炎症状态下表达量会急剧提高,是机体炎症反应的标志,LPS刺激会使这些炎性介质的表达量显著提高[2, 6, 7]。HSP通常被认为是一种对细胞具有保护作用的细胞内分子[13],细胞内高水平HSP70可以降低炎症反应,促进肝再生[14]。研究表明,细胞内HSP70可直接与NF-κB相互作用,从而防止NF-κB的活化[15]。本试验结果表明,LPS刺激显著提高了仔猪肝脏TNF-α、COX2、HSP70的mRNA相对表达量,原因可能是LPS通过提高肝脏TNF-α的表达量,经负反馈途径进一步引起抗炎介质(如HSP70)的表达[16]。研究证实,LPS刺激导致肝脏HSP70和炎性介质COX2、TNF-α mRNA表达量显著上升[2, 6, 7],同时也使肝脏HSP70、COX2、TNF-α蛋白表达量显著上升[16]。LPS刺激不同生长阶段猪,均会使其肝脏HSP70过量表达[17],添加PUFA则能缓解这一现象。亚麻籽油能显著降低狗白细胞中HSP70 mRNA的表达量[18]。Narayanan等[19]也发现DHA能显著降低前列腺癌细胞HSP70蛋白的表达量。Chen等[8]研究表明,富含EPA和DHA等n-3 PUFA的鱼油缓解了LPS刺激导致的肝脏COX2 mRNA和TNF-α mRNA表达量的增加,同时也降低了蛋白的表达量。研究也发现,在大鼠酒精脂肪肝模型中鱼油可以降低肝脏HSP70、COX2、TNF-α的mRNA和蛋白表达量[20]。Chen等[2]研究表明DHA能通过抑制炎性介质的表达,缓解肝脏的损伤。Han等[4]发现,亚麻籽油能显著降低由高脂肪饲粮诱导的脂肪肝大鼠肝脏TNF-α的mRNA表达量的增加。Jangale等[3]也发现,日粮添加亚麻籽油或鱼油能显著降低糖尿病大鼠肝脏NF-κB、TNF-α、白细胞介素-6(IL-6)的mRNA表达量的增加。本试验结果表明,2.5%亚麻籽油可显著降低COX2、TNF-α的mRNA表达量,5.0%亚麻籽油可显著降低TNF-α的mRNA表达量。因此,亚麻籽油可能通过减少肝脏炎性介质的产生,进而保护肝脏。
为了探究亚麻籽油调节炎症的机制,本试验检测了TLR4和NOD信号通路关键基因的mRNA表达量。TLR4是Toll样受体家族(TLRs)中的重要成员,主要识别LPS[21]。当LPS刺激时,LPS与TLR4结合,将信号传递到胞内。在胞内,TLR4通过TIR(Toll/IL-1)区域与MyD88羧基端结合,活化MyD88。活化的MyD88能依次激活下游的IRAK1、TRAF6,最终激活NF-κB。激活的NF-κB转入核内,诱导炎性介质的表达[21]。NOD1和NOD2是NOD家族中最具代表性的成员,主要识别肽聚糖(PGN)。NOD1和NOD2都能结合共同的下游分子RIPK2,并进一步激活NF-κB,诱导炎性介质的转录[5, 22, 23]。当动物机体遭受应激或感染时,炎性介质大量产生,导致肝脏出现损伤。因此,我们推测亚麻籽油可能通过调控TLR4和NOD信号通路,来调节炎性介质的产生,从而发挥对肝脏的保护作用。
本试验发现,LPS刺激导致TLR4(TLR4、MyD88、IRAK1、NF-κB)和NOD(NOD1、NOD2、RIPK2)信号通路关键基因mRNA表达量显著上升。2.5%亚麻籽油可显著降低NOD1、NOD2的mRNA表达量,有降低RIPK2 mRNA表达量的趋势,5.0%亚麻籽油可显著降低NOD2的mRNA表达量。目前,有关亚麻籽油对肝脏TLR4和NOD信号通路关键基因表达影响的研究未见报道。前期研究表明,鱼油(富含EPA和DHA)可以降低LPS刺激导致的肝脏NOD1、NOD2、RIPK2的mRNA表达量的增加[8]。同时,鱼油也可显著降低LPS刺激引起的肠道、肌肉、下丘脑-垂体-肾上腺轴NOD信号通路关键基因的上调表达[24, 25, 26]。本试验结果暗示,LPS刺激诱导仔猪肝脏TLR4和NOD信号通路关键基因表达,导致炎性介质的释放,从而导致肝脏损伤,而亚麻籽油可通过调控NOD信号通路降低LPS刺激导致的仔猪肝脏炎性介质上调表达,从而发挥护肝作用。
4 结 论LPS刺激诱导仔猪肝脏TLR4和NOD信号通路关键基因表达,导致炎性介质(COX2和TNF-α)的过量释放。2.5%和5.0%亚麻籽油可通过抑制NOD信号通路,缓解LPS刺激导致的仔猪肝脏炎性介质过量表达。
| [1] | SCHMÖCKER C,WEYLANDT K H,KAHLKE L,et al.Omega-3 fatty acids alleviate chemically induced acute hepatitis by suppression of cytokines[J]. Hepatology,2007,45(4):864-869. ( 3)
|
| [2] | CHEN W Y,LIN S Y,PAN H C,et al.Beneficial effect of docosahexaenoic acid on cholestatic liver injury in rats[J]. The Journal of Nutritional Biochemistry,2012,23(3):252-264. ( 5)
|
| [3] | JANGALE N M,DEVARSHI P P,DUBAL A A,et al.Dietary flaxseed oil and fish oil modulates expression of antioxidant and inflammatory genes with alleviation of protein glycation status and inflammation in liver of streptozotocin-nicotinamide induced diabetic rats[J]. Food Chemistry,2013,141(1):187-195. ( 3)
|
| [4] | HAN H,MA H F,RONG S,et al.Flaxseed oil containing flaxseed oil ester of plant sterol attenuates high-fat diet-induced hepatic steatosis in apolipoprotein-E knockout mice[J]. Journal of Functional Foods,2015,13:169-182. ( 3)
|
| [5] | FUKATA M,VAMADEVAN A S,ABREU M T.Toll-like receptors (TLRs) and Nod-like receptors (NLRs) in inflammatory disorders[J]. Seminars in Immunology,2009,21(4):242-253. ( 2)
|
| [6] | 皮定安.天冬酰胺对脂多糖诱导的仔猪肝脏损伤和肌肉蛋白质降解的调控作用[D]. 硕士学位论文.武汉:武汉轻工大学,2014. ( 5)
|
| [7] | 冷炜博.天冬氨酸对脂多糖诱导的仔猪肝脏损伤和肌肉蛋白质降解的调控作用[D]. 硕士学位论文.武汉:武汉轻工大学,2014. ( 5)
|
| [8] | CHEN F,LIU Y L,ZHU H L,et al.Fish oil attenuates liver injury caused by LPS in weaned pigs associated with inhibition of TLR4 and nucleotide-binding oligomerization domain protein signaling pathways[J]. Innate Immunity,2013,19(5):504-515. ( 4)
|
| [9] | 陈少魁,刘玉兰,李权,等.脂多糖刺激对仔猪下丘脑-垂体-肾上腺轴Toll样受体4信号通路关键基因表达的影响[J]. 动物营养学报,2014,26(11):3356-3361. ( 1)
|
| [10] | LIVAK K J,SCHMITTGEN T D.Analysis of relative gene expression data using real-time quantitative PCR and 2-ΔΔCt method[J]. Methods,2001,25(4):402-408. ( 1)
|
| [11] | JOHNSON R W.Inhibition of growth by pro-inflammatory cytokines:an integrated view[J]. The Journal of Animal Science,1997,75(5):1244-1255. ( 1)
|
| [12] | CHYTILOVÁ M,NEMCOVÁ R,GANCARCÍKOVÁS,et al.Flax-seed oil and Lactobacillus plantarum supplementation modulate TLR and NF-κB gene expression in enterotoxigenic Escherichia coli challenged gnotobiotic pigs[J]. Acta Veterinaria Hungarica,2014,62(4):463-472. ( 1)
|
| [13] | SHI Q,DONG Z,WEI H.The involvement of heat shock proteins in murine liver regeneration[J]. Cellular & Molecular Immunology,2007,4(1):53-57. ( 1)
|
| [14] | OKA Y,AKAGI Y,KINUGASA T,et al.Heat-shock pre-treatment reduces liver injury and aids liver recovery after partial hepatectomy in mice[J]. Anticancer Research,2013,33(7):2887-2894. ( 1)
|
| [15] | KUBOKI S,SCHUSTER R,BLANCHARD J,et al.Role of heat shock protein 70 in hepatic ischemia-reperfusion injury in mice[J]. American Journal of Physiology Gastrointestinal and Liver Physiology,2007,292(4):G1141-G1149. ( 1)
|
| [16] | WU H T,LIU Y L,PI D A,et al.Asparagine attenuates hepatic injury caused by lipopolysaccharide in weaned piglets associated with modulation of Toll-like receptor 4 and nucleotide-binding oligomerisation domain protein signalling and their negative regulators[J]. British Journal of Nutrition,2015,114(2):189-201. ( 2)
|
| [17] | MCCOMB M A,SPURLOCK M E.Expression of stress proteins in porcine tissues:developmental changes and effect of immunological challenge[J]. The Journal of Animal Science,1997,75(1):195-201. ( 1)
|
| [18] | PURUSHOTHAMAN D,BROWN W Y,VANSELOW B A,et al.Flaxseed oil supplementation alters the expression of inflammatory-related genes in dogs[J]. Genetics And Molecular Research,2014,13(3):5322-5332. ( 1)
|
| [19] | NARAYANAN N K,NARAYANAN B A,BOSLAND M,et al.Docosahexaenoic acid in combination with celecoxib modulates HSP70 and p53 proteins in prostate cancer cells [J]. International Journal of Cancer,2006,119(7):1586-1598. ( 1)
|
| [20] | NANJI A A,GRINIUVIENE B,YACOUB L K.Heat-shock gene expression in alcoholic liver disease in the rat is related to the severity of liver injury and lipid peroxidation[J]. Experimental Biology and Medicine,1995,210(1):12-19. ( 1)
|
| [21] | AKIRA S,UEMATSU S,TAKEUCHI O.Pathogen recognition and innate immunity[J]. Cell,2006,124(4):783-801. ( 2)
|
| [22] | TAKEUCHI O,AKIRA S.Pattern recognition receptors and inflammation[J]. Cell,2010,140(6):805-820. ( 1)
|
| [23] | ECKMANN L.Sensor molecules in intestinal innate immunity against bacterial infections[J]. Current Opinion in Gastroenterology,2006,22(2):95-101. ( 1)
|
| [24] | LIU Y L,CHEN F,ODLE J,et al.Fish oil increases muscle protein mass and modulates Akt/FOXO,TLR4 and NOD signaling in weaning piglets after LPS challenge[J]. The Journal of Nutrition,2013,143(8):1331-1339. ( 1)
|
| [25] | LIU Y L,CHEN F,ODLE J,et al.Fish Oil enhances intestinal integrity and inhibits TLR4 and NOD2 signaling pathways in weaned pigs after LPS challenge[J]. The Journal of Nutrition,2012,142(11):2017-2024. ( 1)
|
| [26] | LIU Y L,CHEN F,LI Q,et al.Fish oil alleviates activation of the hypothalamic-pituitary-adrenal axis associated with inhibition of TLR4 and NOD signaling pathways in weaned piglets after a lipopolysaccharide challenge[J]. The Journal of Nutrition,2013,143(11):1799-1807. ( 1)
|


3)