2. 中国科学院亚热带农业生态研究所, 亚热带农业生态过程重点实验室, 长沙 410125
2. Institute of Subtropical Agriculture, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Chinese Academy of Sciences, Changsha 410125, China
瘤胃酸中毒是奶牛生产中常见疾病之一,研究证实其与内毒素密切相关。正常情况下,奶牛瘤胃内和血液中普遍存在内毒素,只是含量较低,对机体不会造成负面影响。不仅如此,内毒素也存在于养殖场空气、粪便和饲料中,有研究表明奶牛养殖场空气中内毒素含量高达4 243 EU/m3[1-2]。内毒素是生物免疫系统最强的诱导因子,能够诱导许多细胞因子、趋化因子和其他炎性介质[3]。给奶牛饲喂高精料饲粮使瘤胃积聚大量挥发性脂肪酸(volatile fatty acid,VFA),造成亚急性瘤胃酸中毒(subacute rumen acidosis,SARA),同时奶牛瘤胃液pH下降,从而导致革兰氏阴性细菌(Gram-negative bacteria,GNB)快速、大量地崩解,释放内毒素[4-5]。内毒素是许多哺乳动物细胞(巨噬细胞、单核细胞和内皮细胞等)的促炎反应的强效激活剂,引起全身性免疫反应,并促进SARA的发生[6]。内毒素对奶牛的危害很大,进入体内的内毒素可以导致奶牛发生一系列炎症反应。目前,内毒素在奶牛体内的迁移位点还不清楚,有待研究,相关研究将有望通过阻断内毒素的迁移来减少炎症的发生。
1 奶牛内毒素的产生及影响机制 1.1 奶牛内毒素的产生目前我国大部分奶牛场选用玉米青贮和苜蓿作为奶牛粗料,为了满足奶牛营养需要和高产奶量,普遍给奶牛饲喂高精料饲粮。高精低粗的饲粮结构可引发瘤胃代谢异常[7-8]。大量精料被奶牛采食进入瘤胃后,丰富的碳水化合物发酵,进一步产生大量VFA和有机酸,引起奶牛瘤胃液pH降低。当pH下降至5.2~5.6并持续3~5 h/d,即发生SARA。同时VFA在酸性环境下的吸收率降低,若pH继续下降并低于5.2时,奶牛产生更为严重的急性瘤胃酸中毒(ARA)[9-10]。而在发生瘤胃酸中毒后,瘤胃内会产生大量的异常代谢产物,这些产物中就包括内毒素、乳酸、组胺、色胺和乙醇等[11-12]。瘤胃内内毒素的释放可以解释为是由高精料饲粮导致瘤胃液pH降低,引发革兰氏阴性菌死亡造成的[13-14]。试验表明,无论是瘤胃液体外培养还是给奶牛直接饲喂饲粮,高精料饲粮始终导致瘤胃液中内毒素含量处在高水平,饲粮精粗比与内毒素含量呈线性升高趋势[4-5, 11, 15-18]。所以,奶牛产生内毒素的原因是饲喂含大量碳水化合物的饲粮后,瘤胃微生物发酵产生大量VFA导致pH下降,结果引发SARA释放大量内毒素。
1.2 内毒素对奶牛的影响机制内毒素的生物学作用并不由本身引起,而是通过血液循环进入机体后,诱导淋巴细胞、巨噬细胞等多种组织细胞,使其释放大量炎症介质[白细胞介素(IL)、肿瘤坏死因子(TNF)、凝血因子等)作用于机体,产生一系列反应。研究表明,在奶牛酸中毒后,产生的异常代谢产物内毒素首先进入血液,通过循环系统进入肝脏,肝脏的Kupfer细胞可以清除部分的内毒素[19-20]。然而当内毒素大量进入血液时,肝脏对其不能完全清除,进一步诱发奶牛发生免疫反应[21]。其在体内的具体机制是内毒素先与内毒素结合蛋白(LBP)结合在一起,形成内毒素-LBP复合物。然后,内毒素-LBP复合物转移至细胞表面的CD14受体,CD14介导单核细胞、巨噬细胞等识别内毒素,结合形成内毒素-LBP-CD14复合体[20, 22]。三者的复合体与之相应的受体Toll样受体4(TLR4)结合,然后激活核转录因子κB(NF-κB),介导大量促炎性细胞因子的基因表达,使炎性细胞因子(IL-l、IL-6和TNF-α等)被释放,致使机体产生一系列的病理性反应[23-25]。
2 内毒素对奶牛采食量、血液指标和乳成分的影响 2.1 干物质采食量(DMI)研究发现,内毒素造成的炎症反应既可使奶牛DMI降低,还进一步导致奶牛体重下降。Krajcarski-Hunt等[26]研究表明,健康奶牛对全混合日粮(TMR)的采食量比患SARA的奶牛高25%。Porter等[27]和Oetzel[28]研究证实,进入血液的内毒素引发机体免疫反应,刺激单核/巨噬细胞系统,释放TNF-α、花生四烯酸代谢产物、组胺等炎性细胞因子,阻碍机体对营养物质的消化吸收,引起奶牛消化功能紊乱,不仅导致奶牛采食量下降,而且迫使机体大量利用体脂和糖原,二者结合使奶牛发生能量负平衡。能量负平衡可引发奶牛的消瘦病,奶牛的体重也会不断下降[29]。
2.2 血液中蛋白质和氨基酸奶牛饲喂高精料饲粮发生SARA时,瘤胃液中内毒素含量升高,产生的内毒素可转运至血液中。因此,SARA可使外周血液中的内毒素含量显著升高[4-5, 15]。奶牛血液中内毒素含量随饲粮中精料所占的百分比而升高[30]。
在血液蛋白质方面,许多研究表明,瘤胃酸中毒可引起血液中急性期蛋白如C-反应蛋白(CRP)、结合珠蛋白(Hp)、LBP、血清淀粉样蛋白A(SAA)的含量上升[15-16, 31]。值得一提的是,内毒素诱发机体产生急性期反应后,血液钙能够稳定急性期反应所表达的急性期蛋白结构,最突出的是稳定SAA的结构。同时血液钙促进SAA积聚在组织器官上,消除血液中一部分内毒素[17, 32-33]。Zebeli等[13]研究表明,乳脂的产量与CRP含量呈负相关;而瘤胃液中内毒素含量与CRP含量呈正相关[17]。有研究者认为,这与CRP直接参与脂质和脂蛋白的代谢有关,而且有剂量效应[34]。
在血液氨基酸方面,内毒素的释放使血液中的天冬酰氨(Asn)、谷氨酸(Glu)、色氨酸(Trp)、蛋氨酸(Met)、异亮氨酸(Ile)、丝氨酸(Ser)、赖氨酸(Lys)、亮氨酸(Leu)、苯丙氨酸(Phe)、甘氨酸(Gly)、苏氨酸(Thr)和缬氨酸(Val)的含量下降,而半胱氨酸(Cys)、谷氨酰胺(Gln)、天冬氨酸(Asp)和组氨酸(His)的含量基本不变[35-36]。Gln是第一限制性氨基酸,对烧伤小鼠的研究表明,当小鼠产生免疫应激后会减少能量的摄入,导致分解机体自身组织,Gln含量因此降低[37],但在奶牛方面还没有报道。动物产生免疫反应后血液中的氨基酸要先用于合成急性期蛋白,由于急性期蛋白含有较多的Trp、Phe、Lys、Ser和Cys[38],从而导致这几种氨基酸含量下降,而Ile、Leu和Val含量的下降可能是由于它们影响能量的产生与抗体的生成[39]。由于Thr是免疫球蛋白的组成成分,所以可能导致了Thr含量的下降[40]。综上,内毒素诱发奶牛产生免疫应激,导致奶牛血液中急性期蛋白含量上升和部分氨基酸含量下降。由于奶牛发生SARA后内毒素对血液中氨基酸含量的变化规律研究很少,对于内毒素影响氨基酸的机制属于空白领域,有待进一步研究。
2.3 乳脂和乳蛋白内毒素进入机体后引起的免疫反应可导致营养素进行重新分配,使营养素更多用于免疫反应,从而减少进入乳腺的营养素,因此干扰了乳腺中乳成分的合成[41]。Zebeli等[13]研究发现,内毒素含量的升高导致乳脂率和乳脂产量均下降。Waldron等[42]证实内毒素诱导产生的促炎因子引发嗜中性粒细胞和巨噬细胞的溶酶体破裂,导致体细胞蛋白酶的释放,造成了乳中的酪蛋白被降解。原利荣[43]研究表明,不同含量的内毒素均极显著降低奶牛乳腺组织中乳脂合成相关基因[乙酰辅酶A羧化酶-α(ACACA)、脂肪酸合成酶(FASN)和长链酯酰辅酶A合成酶3(ACSL3)]的表达量。当内毒素含量达到10 ng/mL后,乳腺组织中酪蛋白合成量极显著降低,并且内毒素极显著降低了奶牛乳腺组织中乳蛋白基因[αS1-酪蛋白(CSN1S1)、β-酪蛋白(CSN2)]的表达量。一方面,乳脂的降低是由于内毒素能刺激肝脏产生促炎因子如IL-1、IL-6和TNF-α,这些促炎因子反过来激活肝功能受体,通过TLR4和细胞外信号调节激酶激酶1/2(MEK1/2)-细胞外信号调节激酶1/2(ERK1/2)路径刺激脂肪细胞加速脂质的水解,降低乳脂的合成[24, 44]。另一方面,内毒素影响蛋白质合成通路哺乳动物雷帕霉素靶点(mTOR)和Janus激酶2/转录激活因子5(JAK2/STAT5)通路,干扰了乳蛋白合成所需的氨基酸,降低了乳蛋白率[45]。奶牛发生SARA后,内毒素促进脂解作用和影响蛋白质通路的机制目前虽未解释清楚,但研究结果表明内毒素增加了机体的脂类代谢,以抵抗内毒素对奶牛引起的炎症反应,其结果导致乳脂率和乳蛋白率均降低。
3 奶牛内毒素的防控技术 3.1 乳酸处理饲料由于高精料饲粮引起的SARA导致革兰氏阴性菌的崩解而释放大量内毒素,所以主要手段是调控奶牛瘤胃液pH,减少SARA的发生。有研究表明,乳酸处理法既安全又便宜,乳酸能够改变淀粉的结构使其在瘤胃不易消化,用乳酸浸湿过的玉米饲喂奶牛后,缩短了瘤胃液pH低于5.8的时间,有效防止了SARA的产生[46-47]。此处理方法是在精料中加入同体积的水,再用0.5%~1.0%的乳酸浸泡一段时间,也可以在温度为55 ℃时热处理48 h,之后配成TMR饲喂奶牛。该方法使谷物在瘤胃中的发酵速率减缓,增加过瘤胃淀粉的含量,因此可降低瘤胃液VFA含量,维持瘤胃液pH在较高水平。革兰氏阴性菌在瘤胃液高水平的pH下保持相对稳定,最终瘤胃产生的内毒素减少。此外,高水平的pH促进了瘤胃壁对LPS的屏障作用。该研究也指出长期用乳酸浸泡的谷物饲喂奶牛无不利影响。而且用乳酸处理过的饲料,精料含量即使达到干物质的45%也不会诱发SARA,与之相反,奶牛乳脂率、产奶量、利用年限等都将得到提升。
3.2 饲粮含有充足的物理有效中性洗涤纤维(peNDF)Mertens[48]将peNDF定义为:饲粮中能够促进瘤胃液相和固相分层并影响反刍动物咀嚼的中性洗涤纤维(NDF)。史仁煌等[49]研究证实,peNDF影响反刍动物咀嚼和瘤胃缓冲,是稳定瘤胃液pH的重要因素。Caccamo等[50]和郭勇庆等[51]研究指出,降低饲粮粗料比例或减少粗料长度可以减少peNDF,低peNDF可使唾液分泌量和瘤胃中和能力下降,减少反刍时间,最终使瘤胃液pH下降,增加了SARA发生的概率。为保证饲粮peNDF的需求,按照NRC(2001)[52]奶牛饲粮中至少应含25%NDF,其中饲草所含NDF占75%。Mertens[48]指出泌乳奶牛饲粮peNDF应大于15%。Hall等[53]试验表明,以干物质为基础,当淀粉 ∶ 可溶性纤维 ∶ 糖类为40 ∶ 20 ∶ 1时,饲喂效果最好。所以,奶牛应采用TMR饲喂,以保证饲粮中的peNDF水平,充足的peNDF有利于瘤胃液pH的稳定,进而减少了SARA的发生,最终影响内毒素的释放。
3.3 其他相关研究进展Van Vugt等[54]研究表明,莫能菌素通过影响乳酸和VFA含量改变瘤胃液pH,控制瘤胃发酵,并且在动物体内残留量少,安全性比较高。精料中添加30 mg/kg莫能菌素可降低SARA的发生。但韩金涛[55]研究指出,莫能菌素在降低乳酸产生菌活性的同时降低了乙酸与丁酸的比例,因此减少了乳腺合成脂肪酸的前体物质,所以莫能菌素也会影响乳脂率。McLaughlin等[56]和Speight等[57]研究指出,添加阿卡波糖可降低VFA含量,有效降低瘤胃中的乳酸含量,提高瘤胃液pH。Blanch等[58]研究表明,奶牛饲粮中添加0.75 g/d的阿卡波糖能有效地减少瘤胃液pH<5.6的持续时间。王立志[59]试验表明,每千克干物质饲粮补饲4 g酵母培养物和0.3 g酵母硒能显著增加奶牛产奶量和乳蛋白率,同时降低血液中内毒素含量。Gln是一种高效抗氧化剂,其代谢产物谷胱甘肽发挥抗氧化作用。谷胱甘肽能阻止炎性介质进入机体细胞,同时减少内毒素,提高机体免疫力[60]。幼鼠腹腔注射Gln试验表明,Gln可阻碍内毒素-LBP与CD14形成复合物,使NF-κB不被激活,进而阻止TLR与内毒素结合,抑制炎症介质的合成与释放,使肠黏膜免受损伤[61],但在减少奶牛内毒素方面还未见报道。以上研究虽然在控制内毒素方面做出了努力,但目前没有一种很实用且有效的方法去规避内毒素的释放,有待于进一步探究。
4 小 结综上所述,内毒素导致奶牛采食量、体重下降,产奶量和乳蛋白率、乳脂率降低。内毒素与奶牛SARA息息相关,虽然关于奶牛酸中毒与SARA产生内毒素的文献报道为数不多,但该病却普遍存在并对奶牛业带来巨大损失。从防控奶牛体内内毒素的方法可知,虽然用乳酸处理饲料试验结果很有效,但还缺乏大量的试验数据去支撑。因此,有必要研究内毒素的致病机理和信号通路,从源头上规避内毒素的产生,为解决内毒素引起的一系列病理生理等炎症反应提供依据。
[1] |
DUNGAN R S, LEYTEM A B, BJORNEBER D L. Concentrations of airborne endotoxin and microorganisms at a 10,000-cow open-freestall dairy[J]. Journal of Animal Science, 2011 , 89 (10) : 3300 –3309.
DOI: 10.2527/jas.2011-4002 (![]() |
[2] |
MILLNER P D. Bioaerosols associated with animal production operations[J]. Bioresource Technology, 2009 , 100 (22) : 5379 –5385.
DOI: 10.1016/j.biortech.2009.03.026 (![]() |
[3] |
DAVYDOVA V N, VOLOD'KO A V, SOKOLOVA E V, et al. The supramolecular structure of LPS-chitosan complexes of varied composition in relation to their biological activity[J]. Carbohydrate Polymers, 2015 , 123 : 115 –121.
DOI: 10.1016/j.carbpol.2015.01.028 (![]() |
[4] |
LI S, KHAFIPOUR E, KRAUSE D O, et al. Effects of subacute ruminal acidosis challenges on fermentation and endotoxins in the rumen and hindgut of dairy cows[J]. Journal of Dairy Science, 2012 , 95 (1) : 294 –303.
DOI: 10.3168/jds.2011-4447 (![]() |
[5] |
LI S, KROEKER A, KHAFIPOUR E, et al. Effects of subacute ruminal acidosis challenges on lipopolysaccharide endotoxin (LPS) in the rumen,cecum,and feces of dairy cows[J]. Journal of Animal Science, 2010 , 88 (Suppl.2) : 433 –434.
(![]() |
[6] |
KHAFIPOUR E, LI S C, PLAIZIERJ C, et al. Rumen microbiome composition determined using two nutritional models of subacute ruminal acidosis[J]. Applied Environmental Microbiology, 2009 , 75 (22) : 7115 –7124.
DOI: 10.1128/AEM.00739-09 (![]() |
[7] |
PLAIZIER J C, KHAFIPOUR E, LI S, et al. Subacute ruminal acidosis(SARA),endotoxins and health consequences[J]. Animal Feed Science and Technology, 2012 , 172 (1/2) : 9 –21.
(![]() |
[8] |
DONG G Z, LIU S M, WU Y X, et al. Diet-induced bacterial immunogens in the gastrointestinal tract of dairy cows:impacts on immunity and metabolism[J]. Acta Veterinaria Scandinavica, 2011 , 53 (1) : 48 .
DOI: 10.1186/1751-0147-53-48 (![]() |
[9] |
RUSTOMO B, ALZAHAL O, ODONGO N E, et al. Effects of rumen acid load from feed and forage particle size on ruminal pH and dry matter intake in the lactating dairy cow[J]. Journal of Dairy Science, 2006 , 89 (12) : 4758 –4768.
DOI: 10.3168/jds.S0022-0302(06)72525-5 (![]() |
[10] |
GOZHO G N, PLAIZIER J C, KRAUSE D O, et al. Subacute ruminal acidosis induces ruminal lipopolysaccharide endotoxin release and triggers an inflammatory response[J]. Journal of Dairy Science, 2005 , 88 (4) : 1399 –1403.
DOI: 10.3168/jds.S0022-0302(05)72807-1 (![]() |
[11] |
KHAFIPOUR E, KRAUSE D O, PLAIZIER J C. Alfalfa pellet-induced subacute ruminal acidosis in dairy cows increases bacterial endotoxin in the rumen without causing inflammation[J]. Journal of Dairy Science, 2009 , 92 (4) : 1712 –1724.
DOI: 10.3168/jds.2008-1656 (![]() |
[12] |
NAGARAJA T G, TITGEMEYER E C. Ruminal acidosis in beef cattle:the current microbiological and nutritional outlook[J]. Journal of Dairy Science, 2007 , 90 : E17 –E38.
DOI: 10.3168/jds.2006-478 (![]() |
[13] |
ZEBELI Q, AMETAJ B N. Relationships between rumen lipopolysaccharide and mediators of inflammatory response with milk fat production and efficiency in dairy cows[J]. Journal of Dairy Science, 2009 , 92 (8) : 3800 –3809.
DOI: 10.3168/jds.2009-2178 (![]() |
[14] |
ZEBELI Q, DUNN S M, AMETAJ B N, et al. Perturbations of plasma metabolites correlated with the rise of rumen endotoxin in dairy cows fed diets rich in easily degradable carbohydrates[J]. Journal of Dairy Science, 2011 , 94 (5) : 2374 –2382.
DOI: 10.3168/jds.2010-3860 (![]() |
[15] |
KHAFIPOUR E, KRAUSE D O, PLAIZIERJ C. A grain-based subacute ruminal acidosis challenge causes translocation of lipopolysaccharide and triggers inflammation[J]. Journal of Dairy Science, 2009 , 92 (3) : 1060 –1070.
DOI: 10.3168/jds.2008-1389 (![]() |
[16] |
GOZHO G N, KRAUSE D O, PLAIZIER J C. Rumen lipopolysaccharide concentration and inflammatory response during grain-induced subacute ruminal acidosis in dairy cows[J]. Journal of Dairy Science, 2007 , 90 (2) : 856 –866.
DOI: 10.3168/jds.S0022-0302(07)71569-2 (![]() |
[17] |
EMMANUEL D G V, DUNN S M, AMETAJ B N. Feeding high proportions of barley grain stimulates an inflammatory response in dairy cows[J]. Journal of Dairy Science, 2008 , 91 (2) : 606 –614.
DOI: 10.3168/jds.2007-0256 (![]() |
[18] |
ZHOU J, DONG G Z, AO C J, et al. Feeding a high-concentrate corn straw diet increased the release of endotoxin in the rumen and pro-inflammatory cytokines in the mammary gland of dairy cows[J]. BMC Veterinary Research, 2014 , 10 : 172 .
DOI: 10.1186/s12917-014-0172-0 (![]() |
[19] |
SATOH M, ANDO S, SHINODA T, et al. Clearance of bacterial lipopolysaccharides and lipid A by the liver and the role of arginino-succinate synthase[J]. Innate Immunity, 2008 , 14 (1) : 51 –60.
DOI: 10.1177/1753425907087267 (![]() |
[20] |
TOMLINSON J E, BLICKSLAGER A T. Interactions between lipopolysaccharide and the intestinal epithelium[J]. Journal of the American Veterinary Medical Association, 2004 , 224 (9) : 1446 –1452.
DOI: 10.2460/javma.2004.224.1446 (![]() |
[21] |
ANDERSEN P H, HESSELHOLT M, JARLØV N. Endotoxin and arachidonic acid metabolites in portal,hepatic and arterial blood of cattle with acute ruminal acidosis[J]. Acta Veterinaria Scandinavica, 1994 , 35 (3) : 223 –234.
(![]() |
[22] |
WRIGHT S D, RAMOS R A, TOBIAS P S, et al. CD14,a receptor for complexes of Lipopolysaccharide (LPS) and LPS binding protein[J]. Science, 1990 , 249 (4975) : 1431 –1433.
DOI: 10.1126/science.1698311 (![]() |
[23] |
GUHA M, MACKMAN N. LPS induction of gene expression in human monocytes[J]. Cellular Signalling, 2001 , 13 (2) : 85 –94.
DOI: 10.1016/S0898-6568(00)00149-2 (![]() |
[24] |
SWEET M J, HUME D A. Endotoxin signal transduction in macrophages[J]. Journal of Leukocyte Biology, 1996 , 60 (1) : 8 –26.
(![]() |
[25] |
李从青, 姚洁, 刘长明, 等. 内毒素对妊娠期糖尿病患者外周血单核细胞TLR4 mRNA及NF-κB mRNA表达的影响[J].
李从青, 姚洁, 刘长明, 等. 内毒素对妊娠期糖尿病患者外周血单核细胞TLR4 mRNA及NF-κB mRNA表达的影响[J]. 安徽医科大学学报, 2011 , 46 (3) :254 –257.
(![]() |
[26] |
KRAJCARSKI-HUNT H, PLAIZIR J C, WALTON J P, et al. Short communication:effect of subacute ruminal acidosis on in situ fiber digestion in lactating dairy cows[J]. Journal of Dairy Science, 2002 , 85 (3) : 570 –573.
DOI: 10.3168/jds.S0022-0302(02)74110-6 (![]() |
[27] |
PORTER M H, ARNOLD M, LANGHANS W. TNF-α tolerance blocks LPS-induced hypophagia but LPS tolerance fails to prevent TNF-α-induced hypophagia[J]. American Journal of Physiology:Regulatory,Integrative and Comparative Physiology, 1998 , 274 (3) : R741 –R745.
(![]() |
[28] |
OETZEL G R.Clinical aspects of ruminal acidosis in dairy cattle[C]//Proceedings of the 33rd annual convention of the american association of bovine practitioner.Rapid City:[s.n.],2000:46-53.
(![]() |
[29] |
AMETAJ B N, EMMANUEL D G V, ZEBELI Q, et al. Feeding high proportions of barley grain in a total mixed ration perturbs diurnal patterns of plasma metabolites in lactating dairy cows[J]. Journal of Dairy Science, 2009 , 92 (3) : 1084 –1091.
DOI: 10.3168/jds.2008-1465 (![]() |
[30] |
张瑞阳, 王东升, 朱伟云, 等. 奶牛静脉血内毒素浓度及其与产奶量的相关性[J].
张瑞阳, 王东升, 朱伟云, 等. 奶牛静脉血内毒素浓度及其与产奶量的相关性[J]. 动物营养学报, 2012 , 24 (5) :822 –827.
(![]() |
[31] |
BALDWIN Ⅵ R L. Use of isolated ruminal epithelial cells in the study of rumen metabolism[J]. The Journal Nutrition, 1998 , 128 (2) : 293S –296S.
(![]() |
[32] |
PLAIZIER J C, KRAUSE D O, GOZHO G N, et al. Subacute ruminal acidosis in dairy cows:the physiological causes,incidence and consequences[J]. The Veterinary Journal, 2008 , 176 (1) : 21 –31.
DOI: 10.1016/j.tvjl.2007.12.016 (![]() |
[33] |
DREWE J, BEGLINGER C, FRICKER G. Effect of ischemia on intestinal permeability of lipopolysaccharides[J]. European Journal of Clinical Investigation, 2001 , 31 (2) : 138 –144.
DOI: 10.1046/j.1365-2362.2001.00792.x (![]() |
[34] |
KHOVIDHUNKIT W, KIM M S, MEMON R A, et al. Thematic review series:the pathogenesis of Atherosclerosis.Effects of infection and inflammation on lipid and lipoprotein metabolism mechanisms and consequences to the host[J]. Journal of Lipid Research, 2004 , 45 : 1169 –1196.
DOI: 10.1194/jlr.R300019-JLR200 (![]() |
[35] |
WAGGONER J W, LÖEST C A, TURNER J L, et al. Effects of bacterial endotoxin and dietary protein on serum hormones and plasma amino acids in growing steers[J]. American Society of Animal Science, 2007 , 85 (1) : 348 –351.
(![]() |
[36] |
WAGGONER J W, LÖEST C A, MATHIS C P, et al. Effects of rumen-protected methionine supplementation and bacterial lipopolysaccharide infusion on nitrogen metabolism and hormonal responses of growing beef steers[J]. Journal of Animal Science, 2009 , 87 (2) : 681 –692.
(![]() |
[37] |
YEH S L, SHANG H F, LIN M T, et al. Effects of dietary glutamine on antioxidant enzyme activity and immune response in burned mice[J]. Nutrition, 2003 , 19 (10) : 880 –885.
DOI: 10.1016/S0899-9007(03)00159-X (![]() |
[38] |
REEDS P J, JAHOOR F. The amino acid requirements of disease[J]. Clinical Nutrition, 2001 , 20 : 15 –22.
DOI: 10.1054/clnu.2001.0402 (![]() |
[39] |
CALDER P C. Branched-chain animo acids and immunity[J]. Journal of Nutrition, 2006 , 136 (1) : 288S –293S.
(![]() |
[40] |
TENENHOUSE H S, DEUTSCH H F. Some physical-chemical properties of chicken γ-globulins and their pepsin and papain digestion products[J]. Immunochemistry, 1996 , 3 (1) : 11 –20.
(![]() |
[41] |
董国忠,周俊,章森,等.瘤胃异常代谢产物内毒素对奶牛免疫、代谢和泌乳的影响[C]//动物营养研究进展.重庆:中国畜牧兽医学会动物营养学分会,2012:151-159.
(![]() |
[42] |
WALDRON M R, NISHIDA T, NONNECKE B J, et al. Effect of lipopolysaccharide on indices of peripheral and hepatic metabolism in lactating cows[J]. Journal of Dairy Science, 2003 , 86 (11) : 3447 –3459.
DOI: 10.3168/jds.S0022-0302(03)73949-6 (![]() |
[43] |
原利荣.内毒素对奶牛乳腺组织免疫活化状态及乳脂肪和乳蛋白合成的影响及其控制[D].硕士学位论文.重庆:西南大学,2015:19-20.
(![]() |
[44] |
ZU L X, HE J H, JIANG H F, et al. Bacterial endotoxin stimulates adipose lipolysis via Toll-like receptor 4 and extracellular signal-regulated kinase pathway[J]. The Journal of Biological Chemistry, 2009 , 284 (9) : 5915 –5926.
DOI: 10.1074/jbc.M807852200 (![]() |
[45] |
臧长江, 张养东, 王加启, 等. 脂多糖对泌乳奶牛乳中氨基酸组成及蛋白质代谢相关基因表达的影响[J].
臧长江, 张养东, 王加启, 等. 脂多糖对泌乳奶牛乳中氨基酸组成及蛋白质代谢相关基因表达的影响[J]. 动物营养学报, 2012 , 24 (9) :1770 –1777.
(![]() |
[46] |
IQBAL S, ZEBELI Q, MAZZOLARI A, et al. Feeding barley grain steeped in lactic acid modulates rumen fermentation patterns and increases milk fat content in dairy cows[J]. Journal of Dairy Science, 2009 , 92 (12) : 6023 –6032.
DOI: 10.3168/jds.2009-2380 (![]() |
[47] |
IQBAL S, ZEBELI Q, MAZZOLARI A, et al. Feeding rolled barley grain steeped in lactic acid modulated energy status and innate immunity in dairy cows[J]. Journal of Dairy Science, 2010 , 93 (11) : 5147 –5156.
DOI: 10.3168/jds.2010-3118 (![]() |
[48] |
MERTENS D R. Creating a system for meeting the fiber requirements of dairy cows[J]. Journal of Dairy Science, 1997 , 80 (7) : 1463 –1481.
DOI: 10.3168/jds.S0022-0302(97)76075-2 (![]() |
[49] |
史仁煌, 董双钊, 付瑶, 等. 日粮NDF和peNDF对奶牛营养作用的研究进展[J].
史仁煌, 董双钊, 付瑶, 等. 日粮NDF和peNDF对奶牛营养作用的研究进展[J]. 中国畜牧杂志, 2015 , 51 (15) :83 –87.
(![]() |
[50] |
CACCAMO M, FERGUSON J D, VEERKAMP R F, et al. Association of total mixed ration particle fractions retained on the Penn State Particle Separator with milk,fat,and protein yield lactation curves at the cow level[J]. Journal of Dairy Science, 2014 , 97 (4) : 2502 –2511.
DOI: 10.3168/jds.2012-6490 (![]() |
[51] |
郭勇庆, 刘进军, 刘洁, 等. 通过提高日粮peNDF含量调控奶牛亚急性瘤胃酸中毒[J].
郭勇庆, 刘进军, 刘洁, 等. 通过提高日粮peNDF含量调控奶牛亚急性瘤胃酸中毒[J]. 中国奶牛, 2014 (14) :5 –7.
(![]() |
[52] |
NRC.Nutrient requirements of dairy cattle[S].7th ed.Washington,D.C.:National Academy Press,2001.
(![]() |
[53] |
HALL M B, HOOVER W H, JENNINGS J P, et al. A method for partitioning neutral detergent-soluble carbohydrates[J]. Journal of the Science of Food and Agriculture, 1999 , 79 (15) : 2079 –2086.
DOI: 10.1002/(ISSN)1097-0010 (![]() |
[54] |
VAN VUGT S J, WAGHORN G C, CLARK D A, et al. Impact of monensin on methane production and performance of cows fed forage diets[J]. Proceedings of the New Zealand Society of Animal Production, 2005 , 65 (3) : 362 –366.
(![]() |
[55] |
韩金涛.短期和长期添加莫能菌素对山羊甲烷产量和瘤胃发酵参数的影响[D].硕士学位论文.杨凌:西北农林科技大学,2014:10-11.
(![]() |
[56] |
MCLAUGHLIN C L, THOMPSON A, GREENWOOD K, et al. Effect of acarbose on acute acidosis[J]. Journal of Dairy Science, 2009 , 92 (6) : 2758 –2766.
DOI: 10.3168/jds.2008-1602 (![]() |
[57] |
SPEIGHT S M, HARMON D L. Batch culture evaluation of carbohydrase inhibitors to mode-rate rumen fermentation[J]. Animal Feed Science and Technology, 2010 , 155 (2/3/4) : 156 –162.
(![]() |
[58] |
BLANCH M, CALSAMIGLIA S, DEVANT M, et al. Effects of acarbose on ruminal fermentation,blood metabolites and microbial profile involved in ruminal acidosis in lactating cows fed a high-carbohydrate ration[J]. Journal of Dairy Research, 2010 , 77 (1) : 123 –128.
DOI: 10.1017/S0022029909990562 (![]() |
[59] |
王立志.热应激对奶牛、奶山羊体内内毒素含量的影响及缓解热应激的营养技术研究[D].博士学位论文.雅安:四川农业大学,2010:66-70.
(![]() |
[60] |
XU Y, NGUYEN Q, LO D C, et al. C-myc-dependent hepatoma cell apoptosis results from oxidative stress and not a deficiency of growth factors[J]. Journal of Cellular Physiology, 1997 , 170 (2) : 192 –199.
DOI: 10.1002/(ISSN)1097-4652 (![]() |
[61] |
荆科, 孙梅. 谷氨酰胺对肠组织TLR2、4及NF-κB的调节与内毒素致肠损伤保护作用的关系[J].
荆科, 孙梅. 谷氨酰胺对肠组织TLR2、4及NF-κB的调节与内毒素致肠损伤保护作用的关系[J]. 世界华人消化杂志, 2011 , 19 (21) :2220 –2225.
(![]() |