动物产品中脂肪的含量与畜产品的品质密切相关,因此越来越受到消费者的关注。脂肪组织既是动物机体沉积脂肪的主要器官之一,又是一种复杂而高度活跃的代谢器官和内分泌器官。脂肪组织能够表达和分泌一些脂肪细胞因子,如脂联素(adiponectin,APN)、瘦素、肿瘤坏死因子α(tumor necrosis factor α,TNF-α)、抵抗素和白介素-6(interleukin-6,IL-6)等,这些细胞因子通过自分泌、内分泌和旁分泌的方式产生,并通过多种信号通路调节机体的脂类代谢[1]。因此,深入探讨脂肪因子对动物脂类代谢的调控机理对调节动物产品的脂肪合成,进而改善其品质具有重要的理论与实际意义。然而,目前相关的研究报道很少,而且主要集中在人和鼠等领域,在猪、禽和反刍动物领域的报道罕见。本文主要从APN、瘦素、TNF-α、IL-6和抵抗素等脂肪细胞因子对动物脂类代谢的调控机理方面做一总结,为进一步改善动物的脂类代谢和肉品质提供参考依据。
1 脂肪细胞因子对动物脂类代谢的调控机理 1.1 APNAPN是由成熟的脂肪细胞合成和分泌的细胞因子,其分子质量为30 ku,是脂肪组织中基因表达十分丰富的蛋白质之一[1]。Qiao等[2]使用高脂肪饲粮诱导母体肥胖,结果表明,随着胎儿血清APN水平的显著提高,胎儿脂肪组织量提高,而在妊娠后期母体血清APN水平降低,这些结果说明胎儿血清APN水平与体重呈正相关,较高的血清APN水平可提高动物脂肪组织的沉积量。Kim等[3]使用APN转基因肥胖小鼠(缺失瘦素)研究得出,APN的过度表达提高了小鼠皮下脂肪组织的量,这是因为APN的过度表达提高了脂肪细胞内的过氧化物酶体增殖物激活受体γ(peroxisome proliferator activated receptor γ,PPARγ)的活性,导致了从异位(肝脏和肌肉)沉积的脂质向皮下脂肪的再分配,但是PPARγ活性提高的机制尚不清楚。有研究认为,APN具有促进脂肪细胞分化和减少脂类分解的作用[4-5],能够抑制能量消耗并提高脂肪细胞内脂肪积累[6]。Qiao等[6]研究指出,APN可通过抑制脂肪细胞内的脂类分解直接调控脂类代谢;Anthonsen等[7]研究认为,APN可抑制甘油三酯(triglyceride,TG)的水解过程,其原因主要与其对蛋白激酶A(protein kinase A,PKA)诱导的激素敏感酯酶(hormone sensitive lipase,HSL)的激活具有抑制作用有关,PKA能够在苏氨酸(Ser)660位点对HSL磷酸化,进而激活HSL。
然而,也有研究发现,肥胖型成年人的血清APN水平较低,而健康成年人的血清APN水平显著高于糖尿病患者和冠心病患者,但是血清APN水平与血清高密度脂蛋白浓度呈正相关,这些结果说明血清APN水平与体重呈负相关,血清APN水平低不利于人体健康[8-10],适宜的血清APN水平可抑制脂肪的合成。瘦人的脂肪组织中APN的mRNA表达量显著高于肥胖人,这与较高的胰岛素敏感性和较低的TNF-α mRNA表达量有关[11]。关于APN影响脂类代谢的机理,有研究发现,AMP-活化蛋白激酶(AMP-activated protein kinase,AMPK)是APN信号通路中的关键信号分子,APN可通过AMPK途径抑制肝脏和肌肉组织的脂肪合成和促进脂肪酸氧化。AMPK是细胞能量状态的关键感应器,是肝脏和机体脂类稳态的主要调控器。肝脏组织中AMPK信号通路的激活可引起其下游的乙酰辅酶A羧化酶(acetyl-coa carboxylase,ACC)直接磷酸化进而失去活性,从而抑制了乙酰辅酶转化为丙二酰辅酶,抑制了肉毒碱棕榈酰转移酶1的活性,因此,AMPK通路的激活引起长链乙酰脂肪酸向线粒体的转运受阻,进而抑制了脂肪酸的氧化过程;丙二酰辅酶是脂肪酸重头合成酶的关键酶,因此,AMPK通路的激活可抑制脂肪酸的合成[12]。Li等[13]研究报道,AMPK的磷酸化会降低固醇调节元件结合蛋白-1c (sterol regulatory element binding protein-1c,SREBP1-c)的活性,SREBP1-c是重要的脂肪形成转录因子,能直接调控脂肪酸合成相关基因ACC和脂肪酸合成酶,因此,AMPK磷酸化激活后可抑制肝脏TG的合成,促进脂肪酸的氧化。此外,骨骼肌中PPARγ辅助活化因子α(PPARγ coactivator,PGC-1α)是调节脂肪酸氧化的主要转录因子之一[14-15]。研究表明AMPK可激活PGC-1α,从而促进骨骼肌线粒体的生物合成和脂肪酸的氧化[16]。Miller等[17]报道,APN通过脂联素Ⅰ型受体(adipoR1)激活肝激酶B1(LKB1),进而激活AMPK信号通路,抑制肝脏中SREBP-1c基因的表达量,进一步说明APN通过AMPK途径抑制肝脏脂肪合成。陈灰[18]研究表明,APN可以通过激活奶牛肝细胞的AMPK下游转录因子PPARα和SREBP-1c及其靶基因,引起肝细胞的脂肪氧化作用受限,脂肪酸合成及转运减少,TG和极低密度脂蛋白的浓度下降,从而减少肝脏的脂质积累。此外,Li等[19]利用APN处理成鼠C2C12肌细胞,结果发现APN处理提高了AMPK磷酸化和PGC-1α的脱乙酰化,从而促进了骨骼肌的脂肪酸氧化。因此,APN可能通过与靶细胞膜上的APN受体结合激活AMPK信号通路,促进动物肝脏和骨骼肌脂肪酸氧化,抑制肝脏脂肪合成,参与机体脂肪代谢的平衡调节。
可见,APN对动物的脂类代谢的影响,目前的研究主要集中在人和鼠方面,在猪、禽和反刍动物领域的研究罕见,而且究竟是促进了脂肪沉积,还是增强了脂肪酸的氧化、抑制了脂肪合成,研究报道结果也不尽一致,因此,确切的调节作用及其机理有待于进一步探讨。
1.2 瘦素瘦素是由动物脂肪细胞所分泌的脂肪因子之一,是一种蛋白质类激素,主要由白色脂肪组织产生,可参与动物的脂肪代谢调控,分子质量为16 ku[1]。大量研究指出,瘦素通过作用于脑信号中枢,抑制进食量、增加消耗能量以抑制脂肪的合成[20-21]。近年来的研究表明,瘦素还可直接抑制脂肪合成,促进脂肪的分解。Li等[22]研究得出,瘦素能上调猪脂肪细胞内脂肪甘油三酯脂酶(adipose triglyceride lipase,ATGL)的mRNA表达量,下调ATGL的蛋白质表达量,且瘦素主要通过Janus激酶(JAK)-信号传导及转录激活因子(STAT)信号通路和PPARγ调控ATGL的mRNA和蛋白质表达。ATGL是PPARγ转录靶基因,在体内或体外PPARγ均能够上调ATGL的mRNA和蛋白质表达[23],而瘦素能够促进PPARγ的表达量,说明瘦素可促进TG的水解。JAK-STAT信号通路是重要的细胞内信号转导通路,也转导脂类代谢相关信号给动物机体维持体内平衡,STAT主要包括STAT1、2、3、4、5A、5B和6等成员,是JAK-STAT信号通路中的主要转录因子,具有细胞和组织特异性[24]。Cernkovich等[25]将小鼠促进脂肪储存的脂肪特异性基因seipin敲除,引起脂肪组织的STAT3基因缺失,与未缺失STAT3基因小鼠相比,缺失STAT3基因小鼠的体重和脂肪组织量显著提高,脂肪细胞肥大,但无脂肪细胞增殖、摄食过量或能量消耗减少现象,这些结果说明STAT3促进了脂肪分解,抑制了脂肪细胞分化。研究指出,JAK2的抑制剂会抑制其下游转录因子STAT3,而且STAT3可调节ATGL的表达[22, 26]。用STAT3的抑制剂Stattic处理牛脂肪细胞会减弱其脂肪的分解作用,并减少ATGL的蛋白质丰度[27]。这些结果表明,瘦素通过JAK2-STAT3信号通路提高了ATGL的蛋白质丰度,促进了脂肪水解作用。
此外,瘦素也可以通过AMPK途径促进骨骼肌的脂肪酸氧化。胰岛素与细胞表面的胰岛素受体(insulin receptor,IR)结合,使磷脂酰肌醇3-激酶(phosphatidylinositol 3-kinase,PI3K)激活,从而加强原生质膜中丝氨酸/苏氨酸蛋白激酶(Akt)的磷酸化程度[28],然而Roman等[29]研究表明,中枢瘦素促进大鼠骨骼肌脂肪酸氧化,减少脂肪合成,其机制是通过激活AMPK,促进ACC的磷酸化实现的;此外,瘦素可增强胰岛素诱导的信号通路IR/PI3K/Akt,改善大鼠胰岛素抵抗。因此,下丘脑缺乏瘦素-PI3K信号途径,会导致周缘组织胰岛素抵抗,这与瘦素信号与胰岛素信号的交互作用有关。Sloan等[30]报道,损坏下丘脑瘦素信号通路会提高心脏中的脂肪酸底物和PPARα配体的传送从而增强心肌脂肪酸氧化。这些研究进一步说明,瘦素可以通过JAK2-STAT3、AMPK、IR/PI3K/Akt信号通路调控脂类代谢。
1.3 IL-6IL-6是由脂肪细胞产生的另一种与脂肪代谢有关的脂肪细胞因子,分子质量在21~30 ku之间,肥胖使机体循环的IL-6水平和脂肪组织IL-6分泌量提高[31]。IL-6可通过丝裂原活化蛋白激酶(mitogen-activated protein kinases,MAPK)信号通路促进骨骼肌和脂肪组织的脂类分解作用、糖分解和脂肪酸氧化。Ruderman等[32]研究表明IL-6主要存在于脂肪组织和下丘脑中心并调控机体组成,小鼠体内缺失IL-6基因会导致肥胖和胰岛素抵抗。AMPK是调控脂类代谢的主要信号,激活AMPK信号会抑制脂肪合成并促进脂肪酸氧化。Glund等[33]在体内或体外的研究表明,IL-6通过激活骨骼肌或脂肪组织的AMPK信号通路,减少脂肪酸的生物合成。细胞外信号调节激酶(extracellular signal-regulated kinases,ERK)1/2、ERK5、Jun-氨基末端激酶(Jun amino-terminal kinases,JNK)1-3和p38MAPK是MAPK家族的主要成员,其中ERK1/2通过在Ser600位点磷酸化HSL,提高其催化活性,增强了脂肪细胞释放游离脂肪酸[34]。Yang等[35]的研究表明,IL-6可诱导猪脂肪细胞脂类分解,主要与IL-6可激活ERK1/2,而ERK1/2能直接磷酸化HSL有关[36]。这些结果说明IL-6通过AMPK和MAPK信号通路促进动物脂肪组织脂肪酸氧化和脂肪的分解。
然而,也有一些相反的研究报道。MacDonald等[37]研究得出,IL-6基因缺失的小鼠会间接促进比目鱼肌的脂肪分解,这与比目鱼肌ATGL及其共激活剂比较基因识别-58(comparative gene identification-58, CGI-58)蛋白质表达量的提高有关,说明IL-6抑制动物脂肪组织的脂肪酸氧化和脂肪的分解,但目前相关的研究报道很少,需要进一步探讨。
1.4 TNF-αTNF-α主要是由脂肪细胞分泌产生的一种非糖基化蛋白,分子质量为17 ku。脂肪组织是产生内源性TNF-α的主要器官,具有组织特异性,其中内脏脂肪表达的TNF-α较皮下脂肪多,而且巨噬细胞分泌量大于脂肪细胞[38]。研究表明,5、8、10 ng/mL的TNF-α处理大鼠前体脂肪细胞时,抑制脂滴在前体脂肪细胞中的增加和融合,添加量为10 ng/mL时抑制效果最佳,说明TNF-α对脂肪细胞的分化具有抑制作用[39]。在鼠和人的前体脂肪细胞系的研究中已经证实Wnt/β-链蛋白(β-catenin)信号通路能够调节脂肪形成[40-41]。Wnt/β-catenin信号通路的激活可抑制其靶基因CCAAT增强子结合蛋白(CCAAT/enhancer binding protein α,C/EBPα)和PPARγ的活性,使前体脂肪细胞处于未分化状态[42-43],抑制了脂肪的形成。Qadir等[44]研究表明,TNF-α通过诱导同源异型盒基因Msx2表达激活Wnt/β-catenin信号通路,从而抑制脂肪细胞分化。研究也指出,TNF-α在前体脂肪细胞中通过下调C/EBPα和PPARγ的表达,抑制前体脂肪细胞向成熟细胞的分化过程[45]。此外,Suzawa等[46]研究报道,TNF-α可通过转化生长因子激酶1(TAK1)-TAK1结合蛋白1(TAB1)-NF-κB诱导激酶(NIK)轴激活核因子-κB(nuclear factor-κB,NF-κB)信号通路,引起PPARγ-依赖配体的反式激活过程受限,进而抑制脂肪细胞的分化,但关于NF-κB信号通路调控脂类代谢的相关报道甚少,需要进一步探讨。
miR-181a是一个重要的基因表达调控因子,可负调控TNF-α。Li等[47]使用miR-181a调节仔猪前体脂肪细胞中的TNF-α的表达,结果得出,miR-181表达减少会提高TNF-α的表达,下调PPARγ的表达,从而抑制脂肪细胞的分化。这些结果说明,TNF-α通过Wnt/β-catenin信号通路和NF-κB信号通路抑制脂肪细胞的分化,但相关的机理需要进一步探究。
TNF-α具有促进动物脂肪分解的作用。Donati等[48]研究指出,TNF-α可抑制3T3-L1脂肪细胞中脂蛋白脂肪酶(lipoprteinlipase, LPL) mRNA的表达。Li等[47]研究得出,miR-181a通过抑制TNF-α来提高LPL、HSL和ATGL mRNA的表达,减少环核苷酸依赖的磷酸二酯酶3B(PDE3B)mRNA的表达,因此TNF-α通过减少PDE3B表达,促进脂滴包被蛋白(perilipin)的磷酸化,从而使TG的水解作用加速[49]。此外,perilipin是脂滴表面的组成成分,会抑制ATGL[50],TNF-α可激活JNK和ERK1/2,从而减少perilipin的mRNA和蛋白质的表达量,促进脂肪的分解[51]。Lorente-Cebrián等[52]研究表明,饲粮中二十碳五烯酸(eicosapentaenoic acid,EPA)含量直接抑制大鼠脂肪细胞和3T3-L1脂肪细胞中TNF-α诱导的脂肪分解作用,EPA这种抗脂肪分解作用是与EPA抑制TNF-α诱导的ERK1/2磷酸化和NF-κB的激活有关,而且EPA在脂肪细胞中可刺激AMPK的激活。这些研究提示TNF-α对脂肪分解的调节作用与MAPK、NF-κB及AMPK信号通路有关,但目前的研究主要以人和大鼠的脂肪细胞为研究对象,而在反刍动物和非反刍动物领域的研究报道罕见,需要进一步探讨。
然而,也有研究表明,肥胖型动物和人的血液中TNF-α水平高,且血液的TNF-α水平与动物体重呈正相关,而且TNF-α通过抑制IR及胰岛素受体底物-1(IRS1)的酪氨酸磷酸化,抑制机体胰岛素的作用,从而加剧胰岛素抵抗[53],促进脂肪的大量合成。研究得出,肥胖症与巨噬细胞渗透进入脂肪组织的量提高有关,从而提高由脂肪组织分泌的TNF-α的量[54-55],这可能是肥胖型动物循环TNF-α水平高的原因;此外,有研究认为TNF-α可促进脂肪细胞中其他脂肪因子如IL-6和瘦素的表达,抑制APN和PPARγ的产生,从而加剧胰岛素抵抗[56],影响脂类代谢。TNF-α在体内以跨膜型(tmTNF-α)与可溶型(sTNF-α)2种形式存在[57]。Zhou等[57]研究表明,tmTNF-α与sTNF-α对胰岛素生物学效应是相反的,tmTNF-α不仅提高PPARγ的表达量,而且提高APN转录活性和胰岛素敏感性。因此,TNF-α对脂类代谢的调节作用与其分型有关,需要进一步探讨。
1.5 抵抗素抵抗素是一种富含半胱氨酸的多肽,在炎症3区(FIZZ3)被发现,是由脂肪细胞分泌的激素,能够促进胰岛素抵抗,促进炎症反应和脂肪细胞分化[58]。研究表明3T3-L1前体脂肪细胞中抵抗素的超表达会促进前体脂肪细胞的分化,通过上调脂肪细胞分化相关的基因如C/EBPα和LPL的下调,来抑制脂肪细胞分化前体脂肪细胞因子(Pref-1)[59]。此外,抵抗素具有促进脂肪分解的作用。白翠玲等[60]研究表明,抵抗素抑制猪组织细胞的葡萄糖摄入,并通过增强LPL活性提高TG的分解,在调节脂类代谢平衡中发挥重要作用。Kim等[61]在3T3-L1细胞中发现,抵抗素通过葡萄糖依赖性促胰岛素多肽(GIP)刺激LPL活性,并参与蛋白激酶B(PKB)的激活和减少LKB1和AMPK的磷酸化,从而促进脂肪分解。Reverchon等[62]研究报道,抵抗素在牛成熟脂肪细胞中表达,促进体外移植脂肪组织的脂肪动员和移植脂肪组织中甘油的释放,并提高ATGL和HSL mRNA的表达水平,进一步说明抵抗素促进脂肪组织中脂肪的分解。Rodriguez-Pacheco等[63]体外试验得出,抵抗素调节脂类代谢,会降低腺垂体细胞中调节脂类代谢的酶如LPL、ACC、FAS、硬脂酰辅酶A去饱和酶和关键转录因子SREBP-1c的mRNA表达水平,说明抵抗素抑制脂肪细胞分化和脂肪酸合成。此外,抵抗素通过激活NF-κB信号通路[64-65]诱导脂肪细胞因子,如IL-6、白介素-12 (IL-12)和TNF-α的分泌[62, 66]。由此可见,脂肪细胞因子不仅对动物的脂类代谢具有调节功能,而且各因子之间也存在复杂的相互作用。
2 小结与展望综上所述,脂肪细胞因子APN、瘦素、IL-6、TNF-α及抵抗素主要通过多种信号通路对脂类代谢进行调节,进而影响脂类代谢,并且相互之间又存在着复杂的相互作用;但目前的研究主要集中在人和鼠等哺乳动物,结果也不尽一致,在猪、禽和反刍动物领域的研究更为罕见。脂肪细胞还分泌其他脂肪细胞因子,如网膜素、内脏脂肪素、Chemerin、脂质运载蛋白2、纤溶酶原激活物抑制物-1(PAI1)、视黄醇蛋白质结合4、分泌型卷曲相关蛋白4和Vaspin等。因此,深入研究这些脂肪细胞因子对动物脂类代谢的调控机理,对通过饲粮等因素调控动物的脂类代谢具有重要的参考价值。
[1] |
曾俊, 杨刚毅. 脂肪细胞因子与胰岛素抵抗的关系及其机制研究新进展[J].
曾俊, 杨刚毅. 脂肪细胞因子与胰岛素抵抗的关系及其机制研究新进展[J]. 成都医学院学报, 2011 , 6 (1) :78 –82.
(![]() |
[2] |
QIAO L P, YOO H S, MADON A, et al. Adiponectin enhances mouse fetal fat deposition[J]. Diabetes, 2012 , 61 (12) : 3199 –3207.
DOI: 10.2337/db12-0055 (![]() |
[3] |
KIM J Y, VAN DE WALL E, LAPLANTE M, et al. Obesity-associated improvements in metabolic profile through expansion of adipose tissue[J]. Journal of Clinical Investigation, 2007 , 117 (9) : 2621 –2637.
DOI: 10.1172/JCI31021 (![]() |
[4] |
KOTANI Y, YOKOTA I, KITAMURA S, et al. Plasma adiponectin levels in newborns are higher than those in adults and positively correlated with birth weight[J]. Clinical Endocrinology, 2004 , 61 (4) : 418 –423.
DOI: 10.1111/cen.2004.61.issue-4 (![]() |
[5] |
KUBOTA N, YANO W, KUBOTA T, et al. Adiponectin stimulates AMP-activated protein kinase in the hypothalamus and increases food intake[J]. Cell Metabolism, 2007 , 6 (1) : 55 –68.
DOI: 10.1016/j.cmet.2007.06.003 (![]() |
[6] |
QIAO L P, KINNEY B, SCHAACK J, et al. Adiponectin inhibits lipolysis in mouse adipocytes[J]. Diabetes, 2011 , 60 (5) : 1519 –1527.
DOI: 10.2337/db10-1017 (![]() |
[7] |
ANTHONSEN M W, RÖNNSTRAND L, WERNSTEDT C, et al. Identification of novel phosphorylation sites in hormone-sensitive lipase that are phosphorylated in response to isoproterenol and govern activation properties in vitro[J]. Journal of Biological Chemistry, 1998 , 273 (1) : 215 –221.
DOI: 10.1074/jbc.273.1.215 (![]() |
[8] |
MOHAMMADZADEH G, ZARGHAMI N. Hypoadiponectinemia in obese subjects with type Ⅱ diabetes:a close association with central obesity indices[J]. Journal of Research Medical Sciences, 2011 , 16 (6) : 713 –723.
(![]() |
[9] |
SKRABAL C A, CZAJA J, HONZ K, et al. Adiponectin-its potential to predict and prevent coronary artery disease[J]. The Thoracic and Cardiovascular Surgeon, 2011 , 59 (4) : 201 –206.
DOI: 10.1055/s-0030-1250211 (![]() |
[10] |
KYRIAZI E, TSIOTRA P C, BOUTATI E, et al. Effects of adiponectin in TNF-α,IL-6,IL-10 cytokine production from coronary artery disease macrophages[J]. Hormone and Metabolic Research, 2011 , 43 (8) : 537 –544.
DOI: 10.1055/s-0031-1277227 (![]() |
[11] |
KERN P A, DI GREGORIO G T, LU T, et al. Adiponectin expression from human adipose tissue:relation to obesity,insulin resistance,and tumor necrosis factor-α expression[J]. Diabetes, 2003 , 52 (7) : 1779 –1785.
DOI: 10.2337/diabetes.52.7.1779 (![]() |
[12] |
GUO H H, LIU G L, ZHONG R M, et al. Cyanidin-3-O-β-glucoside regulates fatty acid metabolism via an AMP-activated protein kinase-dependent signaling pathway in human HepG2 cells[J]. Lipids in Health and Disease, 2012 , 11 : 10 .
DOI: 10.1186/1476-511X-11-10 (![]() |
[13] |
LI Y, XU S Q, MIHAYLOVA M M, et al. AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice[J]. Cell Metabolism, 2011 , 13 (4) : 376 –388.
DOI: 10.1016/j.cmet.2011.03.009 (![]() |
[14] |
JÄGER S, HANDSCHIN C, ST-PIERRE J, et al. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1α[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007 , 104 (29) : 12017 –12022.
DOI: 10.1073/pnas.0705070104 (![]() |
[15] |
ROHAS L M, ST-PIERRE J, ULDRY M, et al. A fundamental system of cellular energy homeostasis regulated by PGC-1α[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007 , 104 (19) : 7933 –7938.
DOI: 10.1073/pnas.0702683104 (![]() |
[16] |
CANTÓ C, GERHART-HINES Z, FEIGE J N, et al. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity[J]. Nature, 2009 , 458 (7241) : 1056 –1060.
DOI: 10.1038/nature07813 (![]() |
[17] |
MILLER R A, CHU Q W, LE LAY J, et al. Adiponectin suppresses gluconeogenic gene expression in mouse hepatocytes independent of LKB1-AMPK signaling[J]. Journal of Clinical Investigation, 2011 , 121 (6) : 2518 –2528.
DOI: 10.1172/JCI45942 (![]() |
[18] |
陈灰.脂联素激活AMPK信号通路调控奶牛肝细胞脂代谢的相关机制[D].硕士学位论文.长春:吉林大学,2013.
http://cdmd.cnki.com.cn/article/cdmd-10183-1013192995.htm
(![]() |
[19] |
LI L, PAN R P, LI R, et al. Mitochondrial biogenesis and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) deacetylation by physical activity:intact adipocytokine signaling is required[J]. Diabetes, 2011 , 60 (1) : 157 –167.
DOI: 10.2337/db10-0331 (![]() |
[20] |
TRAYHURN P. Hypoxia and adipose tissue function and dysfunction in obesity[J]. Physiological Reviews, 2013 , 93 (1) : 1 –21.
DOI: 10.1152/physrev.00017.2012 (![]() |
[21] |
GE J F, QI C C, ZHOU J N. Imbalance of leptin pathway and hypothalamus synaptic plasticity markers are associated with stress-induced depression in rats[J]. Behavioural Brain Research, 2013 , 249 : 38 –43.
DOI: 10.1016/j.bbr.2013.04.020 (![]() |
[22] |
LI Y C, ZHENG X L, LIU B T, et al. Regulation of ATGL expression mediated by leptin in vitro in porcine adipocyte lipolysis[J]. Molecular and Cellular Biochemistry, 2010 , 333 (1/2) : 121 –128.
(![]() |
[23] |
KERSHAW E E, SCHUPP M, GUAN H P, et al. PPARγ regulates adipose triglyceride lipase in adipocytes in vitro and in vivo[J]. American Journal of Physiology Endocrinology and Metabolism, 2007 , 293 (6) : E1736 –E1745.
DOI: 10.1152/ajpendo.00122.2007 (![]() |
[24] |
RICHARD A J, STEPHENS J M. The role of JAK-STAT signaling in adipose tissue function[J]. Biochimica et Biophysica Acta:Molecular Basis of Disease, 2014 , 1842 (3) : 431 –439.
DOI: 10.1016/j.bbadis.2013.05.030 (![]() |
[25] |
CERNKOVICH E R, DENG J B, BOND M C, et al. Adipose-specific disruption of signal transducer and activator of transcription 3 increases body weight and adiposity[J]. Endocrinology, 2008 , 149 (4) : 1581 –1590.
DOI: 10.1210/en.2007-1148 (![]() |
[26] |
FRVHBECK G. Intracellular signalling pathways activated by leptin[J]. Biochemical Journal, 2006 , 393 (1) : 7 –20.
(![]() |
[27] |
KOLTES D A,SPURLOCK D M.Appendix A.Translocation of adipose triglyceride lipase to the lipid droplet increased with leptin treatment in bovine adipocytes[M]//KOLTES D.Novel mechanisms involved with lipid metabolism in adipose tissue of dairy cows.Iowa:Iowa State University,2013:150-175.
(![]() |
[28] |
MANNING B D, CANTLEY L C. AKT/PKB signaling:navigating downstream[J]. Cell, 2007 , 129 (7) : 1261 –1274.
DOI: 10.1016/j.cell.2007.06.009 (![]() |
[29] |
ROMAN E A F R, REIS D, ROMANATTO T, et al. Central leptin action improves skeletal muscle AKT,AMPK,and PGC1α activation by hypothalamic PI3K-dependent mechanism[J]. Molecular and Cellular Endocrinology, 2010 , 314 (1) : 62 –69.
DOI: 10.1016/j.mce.2009.08.007 (![]() |
[30] |
SLOAN C, TUINEI J, NEMETZ K, et al. Central leptin signaling is required to normalize myocardial fatty acid oxidation rates in caloric-restricted ob/ob mice[J]. Diebetes, 2011 , 60 (5) : 1424 –1434.
DOI: 10.2337/db10-1106 (![]() |
[31] |
BASTARD J P, LAGATHU C, CARON M, et al. Point-counterpoint:interleukin-6 does/does not have a beneficial role in insulin sensitivity and glucose homeostasis[J]. Journal of Applied Physiology, 2007 , 102 (2) : 821 –822.
(![]() |
[32] |
RUDERMAN N B, KELLER C, RICHARD A M, et al. Interleukin-6 regulation of AMP-activated protein kinase:potential role in the systemic response to exercise and prevention of the metabolic syndrome[J]. Diabetes, 2006 , 55 (Suppl.2) : S48 –S54.
(![]() |
[33] |
GLUND S, DESHMUKH A, LONG Y C, et al. Interleukin-6 directly increases glucose metabolism in resting human skeletal muscle[J]. Diabetes, 2007 , 56 (6) : 1630 –1637.
DOI: 10.2337/db06-1733 (![]() |
[34] |
KELLY M, GAUTHIER M S, SAHA A K, et al. Activation of AMP-activated protein kinase by interleukin-6 in rat skeletal muscle:association with changes in cAMP,energy state,and endogenous fuel mobilization[J]. Diabetes, 2009 , 58 (9) : 1953 –1960.
DOI: 10.2337/db08-1293 (![]() |
[35] |
YANG Y Q, JU D P, ZHANG M T, et al. Interleukin-6 stimulates lipolysis in porcine adipocytes[J]. Endocrine, 2008 , 33 (3) : 261 –269.
DOI: 10.1007/s12020-008-9085-7 (![]() |
[36] |
GEHART H, KUMPF S, ITTNER A, et al. Mapk signalling in cellular metabolism:stress or wellness?[J]. EMBO Reports, 2010 , 11 (11) : 834 –840.
DOI: 10.1038/embor.2010.160 (![]() |
[37] |
MACDONALD T L, WAN Z X, FRENDO-CUMBO S, et al. IL-6 and epinephrine have divergent fiber type effects on intramuscular lipolysis[J]. Journal of Applied Physiology, 2013 , 115 (10) : 1457 –1463.
DOI: 10.1152/japplphysiol.00558.2013 (![]() |
[38] |
MAURY E, NOËL L, DETRY R, et al. In vitro hyperresponsiveness to tumor necrosis factor-αcontributes to adipokine dysregulation in omental adipocytes of obese subjects[J]. The Journal of Clinical Endocrinology & Metabolism, 2009 , 94 (4) : 1393 –1400.
(![]() |
[39] |
李艳杰.肿瘤坏死因子-α对大鼠前体脂肪细胞增殖与分化的影响[D].硕士学位论文.杨凌:西北农林科技大学,2003.
(![]() |
[40] |
KENNELL J A, MACDOUGALD O A. Wnt signaling inhibits adipogenesis through β-catenin-dependent and-independent mechanisms[J]. Journal of Biological Chemistry, 2005 , 280 (25) : 24004 –24010.
DOI: 10.1074/jbc.M501080200 (![]() |
[41] |
KANAZAWA A, TSUKADA S, KAMIYAMA M, et al. Wnt5b partially inhibits canonical Wnt/β-catenin signaling pathway and promotes adipogenesis in 3T3-L1 preadipocytes[J]. Biochemical and Biophysical Research Communications, 2005 , 330 (2) : 505 –510.
DOI: 10.1016/j.bbrc.2005.03.007 (![]() |
[42] |
ROSS S E, HEMATI N, LONGO K A, et al. Inhibition of adipogenesis by Wnt signaling[J]. Science, 2000 , 289 (5481) : 950 –953.
DOI: 10.1126/science.289.5481.950 (![]() |
[43] |
LIU J J, WANG H, ZUO Y, et al. Functional interaction between peroxisome proliferator-activated receptor γ and β-catenin[J]. Molecular and Cellular Biology, 2006 , 26 (15) : 5827 –5837.
DOI: 10.1128/MCB.00441-06 (![]() |
[44] |
QADIR A S, LEE H L, BAEK K H, et al. Msx2 is required for TNF-α-induced canonical Wnt signaling in 3T3-L1 preadipocytes[J]. Biochemical and Biophysical Research Communications, 2011 , 408 (3) : 399 –404.
DOI: 10.1016/j.bbrc.2011.04.029 (![]() |
[45] |
TAKADA I, KOUZMENKO A P, KATO S. Molecular switching of osteoblastogenesis versus adipogenesis:implications for targeted therapies[J]. Expert Opinion on Therapeutic Targets, 2009 , 13 (5) : 593 –603.
DOI: 10.1517/14728220902915310 (![]() |
[46] |
SUZAWA M, TAKADA I, YANAGISAWA J, et al. Cytokines suppress adipogenesis and PPAR-γ function through the TAK1/TAB1/NIK cascade[J]. Nature Cell Biology, 2003 , 5 (3) : 224 –230.
DOI: 10.1038/ncb942 (![]() |
[47] |
LI H Y, CHEN X, GUAN L Z, et al. MiRNA-181a regulates adipogenesis by targeting tumor necrosis factor-α (TNF-α) in the porcine model[J]. PLoS One, 2013 , 8 (10) : e71568 .
DOI: 10.1371/journal.pone.0071568 (![]() |
[48] |
RUAN H, POWNALL H J, LODISH H F. Troglitazone antagonizes tumor necrosis factor-α-induced reprogramming of adipocyte gene expression by inhibiting the transcriptional regulatory functions of NF-κB[J]. Journal of Biological Chemistry, 2003 , 278 (30) : 28181 –28192.
DOI: 10.1074/jbc.M303141200 (![]() |
[49] |
ZHANG H H, HALBLEIB M, AHMAD F, et al. Tumor necrosis factor-α stimulates lipolysis in differentiated human adipocytes through activation of extracellular signal-related kinase and elevation of intracellular cAMP[J]. Diabetes, 2002 , 51 (10) : 2929 –2935.
DOI: 10.2337/diabetes.51.10.2929 (![]() |
[50] |
MARTIN S, PARTON R G. Lipid droplets:a unified view of a dynamic organelle[J]. Nature Reviews Molecular Cell Biology, 2006 , 7 (5) : 373 –378.
DOI: 10.1038/nrm1912 (![]() |
[51] |
RYDÉN M, ARVIDSSON E, BLOMQVIST L, et al. Targets for TNF-α-induced lipolysis in human adipocytes[J]. Biochemical and Biophysical Research Communications, 2004 , 318 (1) : 168 –175.
DOI: 10.1016/j.bbrc.2004.04.010 (![]() |
[52] |
LORENTE-CEBRIÁN S, BUSTOS M, MARTI A, et al. Eicosapentaenoic acid inhibits tumour necrosis factor-α-induced lipolysis in murine cultured adipocytes[J]. The Journal of Nutritional Biochemistry, 2012 , 23 (3) : 218 –227.
DOI: 10.1016/j.jnutbio.2010.11.018 (![]() |
[53] |
NISHIMURA F, IWAMOTO Y, MINESHIBA J, et al. Periodontal disease and diabetes mellitus:the role of tumor necrosis factor-α in a 2-way relationship[J]. Journal of Periodontology, 2003 , 74 (1) : 97 –102.
DOI: 10.1902/jop.2003.74.1.97 (![]() |
[54] |
LUMENG C N, BODZIN J L, SALTIEL A R. Obesity induces a phenotypic switch in adipose tissue macrophage polarization[J]. Journal of Clinical Investigation, 2007 , 117 (1) : 175 –184.
DOI: 10.1172/JCI29881 (![]() |
[55] |
WEISBERG S P, MCCANN D, DESAI M, et al. Obesity is associated with macrophage accumulation in adipose tissue[J]. Journal of Clinical Investigation, 2003 , 112 (12) : 1796 –1808.
DOI: 10.1172/JCI200319246 (![]() |
[56] |
ROTTER V, NAGAEV I, SMITH U, et al. Interleukin-6(IL-6) induces insulin resistance in 3T3-L1 adipocyteas and is,like IL-8 and tumor necrosis factor-α,overexpressed in human fat cells from insulin-resistant subjects[J]. Journal of Biological Chemistry, 2003 , 278 (46) : 45777 –45784.
DOI: 10.1074/jbc.M301977200 (![]() |
[57] |
ZHOU W J, YANG P, LIU L, et al. Transmembrane tumor necrosis factor-alpha sensitizes adipocytes to insulin[J]. Molecular and Cellular Endocrinology, 2015 , 406 : 78 –86.
DOI: 10.1016/j.mce.2015.02.023 (![]() |
[58] |
ZHANG W Z, CHAI B X, LI J Y, et al. Effect of des-acyl ghrelin on adiposity and glucose metabolism[J]. Endocrinology, 2008 , 149 (9) : 4710 –4716.
DOI: 10.1210/en.2008-0263 (![]() |
[59] |
GONG H, NI Y, GUO X, et al. Resistin promotes 3T3-L1 preadipocyte differentiation[J]. European Journal of Endocrinology, 2004 , 150 (6) : 885 –892.
DOI: 10.1530/eje.0.1500885 (![]() |
[60] |
白翠玲, 罗丹, 刘艳芬, 等. 抵抗素成熟肽的制备及其对猪葡萄糖和脂肪代谢的影响[J].
白翠玲, 罗丹, 刘艳芬, 等. 抵抗素成熟肽的制备及其对猪葡萄糖和脂肪代谢的影响[J]. 动物医学进展, 2013 , 34 (11) :46 –50.
(![]() |
[61] |
KIM S J, NIAN C L, MCLNTOSH C H S. Resistin knockout mice exhibit impaired adipocyte glucose-dependent insulinotropic polypeptide receptor (GIPR) expression[J]. Diabetes, 2013 , 62 (2) : 471 –477.
DOI: 10.2337/db12-0257 (![]() |
[62] |
REVERCHON M, RAMÉ C, COGNIÉ J, et al. Resistin in dairy cows:plasma concentrations during early lactation,expression and potential role in adipose tissue[J]. PLoS One, 2014 , 9 (3) : e93198 .
DOI: 10.1371/journal.pone.0093198 (![]() |
[63] |
RODRIGUEZ-PACHECO F, NOVELLE M G, VAZQUEZ M J, et al. Resistin regulates pituitary lipid metabolism and inflammation in vivo and in vitro[J]. Mediators of Inflammation, 2013 , 2013 : 479739 .
(![]() |
[64] |
GERKOWICZ A, PIETRZAK A, SZEPIETOWSKI J C, et al. Biochemical markers of psoriasis as a metabolic disease[J]. Folia Histochemica et Cytobiologica, 2012 , 50 (2) : 155 –170.
DOI: 10.5603/FHC.2012.0025 (![]() |
[65] |
DE BOER T N, VAN SPIL W E, HUISMAN A M, et al. Serum adipokines in osteoarthritis;comparison with controls and relationship with local parameters of synovial inflammation and cartilage damage[J]. Osteoarthritis and Cartilage, 2012 , 20 (8) : 846 –853.
DOI: 10.1016/j.joca.2012.05.002 (![]() |
[66] |
CHOE J Y, BAE J, JUNG H Y, et al. Serum resistin level is associated with radiographic changes in hand osteoarthritis:cross-sectional study[J]. Joint Bone Spine, 2012 , 79 (2) : 160 –165.
DOI: 10.1016/j.jbspin.2011.04.009 (![]() |