在畜禽生产中,饲粮类型已成为影响肉仔鸡消化道结构和功能的因素之一。Miles等[1]发现与对照饲粮相比,抗生素饲粮使得肉仔鸡回肠的黏膜肌层变薄,绒毛表面积变小、高度降低。Kamran等[2]报道,能量与蛋白质比例恒定而蛋白质水平低的饲粮降低了肉仔鸡的生长性能;而Drew等[3]报道,饲粮蛋白质水平影响肉仔鸡后段消化道中微生物生长,可能因此改变消化道的健康状态。与玉米相比,大麦是低质量的饲料原料。Jia等[4]比较了玉米饲粮和麦类饲粮对罗斯(Ross)肉仔鸡生长性能的影响,发现麦类饲粮显著降低了肉仔鸡的体重(BW),提高了料重比(F/G);同时大麦中大量的非淀粉多糖[5]或水溶性细胞壁造成肠道黏性增加,并阻止营养物质的吸收[6-7],最终可能造成肠道健康状态的改变。
除饲粮类型外,饲粮中添加酵母产品[8]、谷氨酰胺(Gln)[9]和大豆异黄酮(ISF)[10]等添加物对肠道健康有积极影响。诸多研究报道表明,上述3种添加剂能够保护消化道结构,促进肠道损伤后修复,改善肠道免疫状态。酵母产品在动物中应用已经有100多年的历史,主要包括活酵母、酵母提取物和酵母细胞壁等。活酵母可以保护肠道黏膜,预防病原微生物入侵[11];酵母细胞壁成分对消化道健康也有积极作用[8]。Gln虽是非必需氨基酸,但研究表明,动物在应激、感染等特殊状态下,该氨基酸的需要不能得到满足[12];同时Sakamoto等[13]认为Gln可促进损伤后肠道黏膜更好地复原。ISF具备潜在的雌激素活性,染料木黄酮、染料木素和黄豆黄素是ISF中最重要的活性形式[14]。Jiang等[15]报道ISF可显著提高肉仔鸡生长性能,改善组织中抗氧化性能,同时染料木素改善脂多糖应激下肉仔鸡的肠道免疫状态,促进肠道健康[16]。
因此,本研究选用对肉鸡消化道有改善作用的酵母培养物(XPC)、Gln和ISF为添加剂,比较三者在不同饲粮类型条件下对肉仔鸡生长性能、消化道结构和功能的影响。
1 材料与方法 1.1 试验材料XPC来源于美国达农威公司,L-Gln来源于北京嘉康源科技发展有限公司(Gln含量大于98%),ISF来源于北京嘉康源科技发展有限公司(总黄酮含量为40%)。
1.2 试验动物和饲粮试验采用4×3两因子完全随机设计,选取健康、体重相近[(37.58±0.55) g]的1日龄爱拔益加肉仔鸡公雏792只,分为12个组,每组6个重复,每个重复11只鸡。4种饲粮分别为抗生素饲粮(A)、无抗生素饲粮(NA)、能氮比固定的低蛋白质饲粮(LP)和大麦饲粮(B)。在4种饲粮中分别添加0.2% XPC、0.6% Gln和10 mg/kg ISF。饲粮配制参照中华人民共和国农业行业标准(NY/T 33—2004)《鸡饲养标准》配制,饲粮组成及营养水平见表 1。
![]() |
表 1 饲粮组成及营养水平(风干基础) Table 1 Composition and nutrient levels of diets (air-dry basis) |
试验期为42 d,采用层笼饲养,全期鸡舍内温度严格按照《爱拔益加商品代肉仔鸡饲养管理手册》执行。试鸡自由采食和饮水(乳头式饮水器),24 h光照。7日龄免疫新支二联苗(滴鼻点眼),14日龄免疫法氏囊疫苗(饮水)。随时观察、记录鸡只的采食和健康状况。
1.4 样品的采集和指标测定 1.4.1 生长性能指标测定试验期间每天记录观察鸡群健康情况。在肉仔鸡42日龄以重复为单位称量试验鸡空腹重即BW,并计算平均日增重(ADG)、平均日采食量(ADFI)和F/G。
1.4.2 回肠形态结构测定19日龄和35日龄每重复随机选取1只鸡,空腹称重,电击处死,打开腹腔,取2 cm左右的回肠,用生理盐水冲洗干净,浸入4%多聚甲醛固定液,制作组织切片。测定绒毛高度、隐窝深度,并计算绒毛高度/隐窝深度(V/C)值。
1.4.3 肠道组织免疫炎症指标检测19日龄和35日龄,每个重复取1只鸡,电击处死后,取4 cm的回肠段,用滤纸吸干组织液和血液,放入冻存管置于液氮保存,用于测定组织匀浆液中干扰素-γ(IFN-γ)、白细胞介素-10(IL-10)和免疫球蛋白A(IgA)水平。IFN-γ水平按照放射免疫分析药盒(HY-156, RIA KIT)操作说明书测定;IL-10水平采用碘[125I]IL-10放射免疫分析药盒(HY-10107, RIA KIT)测定;IgA水平采用鸡IgA测定试剂盒(HY-754, KIT)免疫比浊法测定。
1.4.4 粪便氮磷残留测定收集17~19日龄和33~35日龄新鲜粪便,并以重复为单位将样品充分混合均匀,喷洒10%盐酸溶液用于固氮,-20 ℃冷冻保存。之后,样品在105 ℃条件下加热15 min,65 ℃烘干72 h,回潮24 h,粉碎过40目筛,密封保存。采用分光光度计测定饲粮和粪便样品中二氧化钛含量[17];采用燃烧法(Dumatherm, Gerhardt, 德国)测定饲粮和粪便样品中粗蛋白质含量(氮含量);采用钼黄比色法测定饲粮和粪便样品中磷含量。
1.5 统计分析试验数据采用SPSS 19.0(2007, SPSS Inc., Chicago, IL 60606-6307)统计软件一般线性模型(GLM)程序进行两因素方差分析,因子显著性采用F检验。对主效应显著的指标进行LSD多重比较,显著性水平设为P<0.05,试验数据以平均值±标准差(mean±SD)表示。
2 结果与分析 2.1 不同类型饲粮和添加剂对肉仔鸡生长性能的影响不同类型饲粮和添加剂对1~42日龄肉仔鸡生长性能的影响见表 2。由表可知,在4种不同类型的饲粮中分别添加XPC、Gln及ISF,各组间1~42日龄肉仔鸡的ADG、ADFI、F/G及BW无显著差异(P>0.05)。但对于不同类型饲粮而言,与其他3种类型饲粮相比,低蛋白质饲粮显著降低肉仔鸡的BW、ADG和ADFI(P<0.05),显著提高肉仔鸡的F/G(P<0.05);抗生素饲粮组的F/G显著低于其他各组(P<0.05)。而对于3种不同的添加剂而言,1~42日龄肉仔鸡的ADG、ADFI、F/G及BW差异不显著(P>0.05)。饲粮类型与添加剂之间无显著的互作效应(P>0.05)。所有组试验鸡只健康状况良好,未观察到发病症状,饲养周期内有极个别鸡只死亡现象。
![]() |
表 2 不同类型饲粮和添加剂对1~42日龄肉仔鸡生长性能的影响 Table 2 Effects of different types of diets and additives on the growth performance of broilers aged from 1 to 42 days |
不同类型饲粮和添加剂对19日龄和35日龄肉仔鸡回肠形态结构的影响见表 3。由表可知,抗生素饲粮中,与添加Gln和ISF相比,添加XPC显著提高19日龄肉仔鸡回肠绒毛高度(P<0.05);与另外2种添加剂相比,添加ISF显著降低19日龄肉仔鸡回肠隐窝深度(P<0.05),且ISF组的V/C值显著大于Gln组(P<0.05);与添加ISF相比,添加Gln显著提高35日龄肉仔鸡回肠绒毛高度(P<0.05)。无抗生素饲粮中,与其他2种添加剂相比,添加Gln显著提高19日龄肉仔鸡回肠绒毛高度(P<0.05)。低蛋白质饲粮中,与添加ISF相比,添加XPC显著降低19日龄肉仔鸡回肠隐窝深度(P<0.05),显著提高19日龄和35日龄肉仔鸡回肠绒毛高度和V/C值(P<0.05)。大麦饲粮中,除ISF组19日龄肉仔鸡回肠V/C值显著高于XPC组(P<0.05)外,其他各组各指标差异均不显著(P>0.05)。对于不同类型饲粮而言,与大麦饲粮相比,抗生素饲粮和无抗生素饲粮显著提高了19日龄肉仔鸡回肠绒毛高度(P<0.05);无抗生素饲粮组19日龄肉仔鸡回肠V/C值显著高于大麦饲粮组(P<0.05);与其他3种饲粮相比,低蛋白质饲粮显著提高35日龄肉仔鸡回肠绒毛高度(P<0.05),且低蛋白质饲粮组35日龄肉仔鸡回肠V/C值显著高于无抗生素饲粮组和大麦饲粮组(P<0.05)。对于3种添加剂而言,与添加XPC相比,添加ISF显著降低19日龄肉仔鸡回肠隐窝深度(P<0.05);与添加Gln和ISF相比,添加XPC显著提高35日龄肉仔鸡回肠绒毛高度(P<0.05)。除35日龄肉仔鸡回肠隐窝深度外,不同饲粮类型和添加剂对回肠形态结构存在显著的互作效应(P<0.05)。
![]() |
表 3 不同类型饲粮和添加剂对肉仔鸡回肠形态结构的影响 Table 3 Effects of different types of diets and additives on ileum morphology of broilers |
不同类型饲粮和添加剂对19日龄和35日龄肉仔鸡回肠炎症免疫指标的影响见表 4。结果表明,除大麦饲粮中添加XPC比添加其他2种添加剂显著提高35日龄肉仔鸡回肠IFN-γ水平(P<0.05)外,其他各处理对19日龄和35日龄肉仔鸡回肠IFN-γ水平无显著影响(P>0.05)。抗生素饲粮中添加XPC使19日龄肉仔鸡回肠IL-10水平显著高于添加ISF(P<0.05),且IgA水平显著高于其他各组(P<0.05)。无抗生素饲粮中,与添加ISF相比,添加XPC和Gln显著提高19日龄肉仔鸡回肠IL-10水平(P<0.05);与添加XPC相比,添加Gln和ISF显著提高19日龄肉仔鸡回肠IgA水平(P<0.05),显著提高35日龄肉仔鸡回肠IL-10水平(P<0.05)。低蛋白质饲粮中添加XPC使19日龄肉仔鸡回肠IgA水平显著高于添加Gln和ISF(P<0.05),而其他指标各组间无显著差异(P>0.05)。大麦饲粮中添加ISF与添加其余2种添加剂相比显著提高19日龄肉仔鸡回肠IL-10水平(P<0.05),而添加XPC比添加ISF显著提高19日龄肉仔鸡回肠IgA水平(P<0.05);与添加ISF相比,添加XPC和Gln显著提高35日龄肉仔鸡回肠IL-10水平(P<0.05)。对不同类型饲粮而言,19日龄时,与低蛋白质饲粮和大麦饲粮相比,抗生素饲粮和无抗生素饲粮显著提高回肠IL-10水平(P<0.05);35日龄时,抗生素饲粮显著降低回肠IL-10水平(P<0.05),而显著提高回肠IgA水平(P<0.05);与无抗生素饲粮和低蛋白质饲粮相比,大麦饲粮亦显著提高19日龄和35日龄回肠IgA水平(P<0.05)。对添加剂而言,与添加ISF相比,添加XPC显著提高19日龄肉仔鸡回肠IL-10和IgA水平(P<0.05);添加Gln与添加其他2种添加剂相比,显著提高35日龄肉仔鸡回肠IgA水平(P<0.05)。对于回肠IFN-γ水平,饲粮类型和添加剂无显著互作效应(P>0.05);而对于回肠IL-10 和IgA水平,饲粮类型和添加剂之间存在显著互作效应(P<0.05)。
![]() |
表 4 不同类型饲粮和添加剂对肉仔鸡回肠炎症免疫指标的影响 Table 4 Effects of different types of diets and additives on ileum inflammation immune parameters of broilers |
不同类型饲粮和添加剂对肉仔鸡粪便中氮、磷残留率的影响见表 5。结果表明,抗生素饲粮中添加XPC使19日龄肉仔鸡粪便中氮和磷残留率显著低于添加Gln和ISF(P<0.05);与添加XPC和Gln相比,抗生素饲粮中添加ISF显著降低35日龄肉仔鸡粪便中氮和磷残留率(P<0.05)。无抗生素饲粮中添加Gln和ISF与添加XPC相比,显著降低19日龄肉仔鸡粪便中氮和磷残留率(P<0.05),显著降低35日龄肉仔鸡粪便中磷残留率(P<0.05)。低蛋白质饲粮中添加XPC比添加Gln显著降低19日龄肉仔鸡粪便中氮残留率(P<0.05)。与添加XPC和ISF相比,大麦饲粮中添加Gln显著降低19日龄肉仔鸡粪便中氮和磷残留率(P<0.05)。对不同类型饲粮而言,抗生素饲粮比其他3种饲粮显著降低19日龄肉仔鸡粪便中氮和磷残留率(P<0.05);低蛋白质饲粮组35日龄肉仔鸡粪便中氮残留率显著低于无抗生素饲粮组和大麦饲粮组(P<0.05);大麦饲粮组肉仔鸡粪便中磷残留率显著高于抗生素饲粮组和无抗生素饲粮组(P<0.05)。对添加剂而言,与添加XPC相比,添加Gln与ISF显著降低19日龄肉仔鸡粪便中磷残留率(P<0.05);与添加XPC相比,添加ISF显著降低35日龄肉仔鸡粪便中氮和磷残留率(P<0.05)。对肉仔鸡粪便中氮和磷残留率而言,饲粮类型与添加剂之间存在显著互作效应(P<0.05)。
![]() |
表 5 不同类型饲粮和添加剂对肉仔鸡粪便中氮、磷残留率的影响 Table 5 Effects of different types of diets and additives on N and P retention rate in faeces of broilers |
研究表明,饲粮类型、能量与蛋白质的比值对肉鸡的生长性能起主要作用[18-19]。本研究也表明,饲喂肉仔鸡能氮比固定的低蛋白质饲粮会降低肉仔鸡的生长性能,这与前人的研究结果一致。Hidalgo等[20]饲喂肉仔鸡能量和蛋白质水平未达到最佳标准的饲粮后,发现肉仔鸡生长性能降低;Kamran等[2]报道,饲喂肉仔鸡低蛋白质而能氮比固定的饲粮降低肉仔鸡的生长性能。4种饲粮中,抗生素饲粮组肉仔鸡的料重比最低。李菊等[21]报道,与无金霉素饲粮相比,含100 mg/kg金霉素的饲粮并未显著提高0~6周龄肉仔鸡的日增重。张日俊等[22]报道,50 mg/kg金霉素组肉仔鸡的饲料转化效率比无金霉素组提高了2.49%。
本试验条件下3种不同添加剂之间,肉仔鸡的ADG、ADFI、F/G及BW差异不显著,同时对生长性能而言,饲粮类型与添加剂之间无显著互作效应。火鸡上的试验结果表明,XPC并未影响3~15周龄火鸡的增重和饲料转换率[23]。Nassiri等[24]报道在玉米-豆粕型饲粮中添加0、0.5%、1.0%和1.5%的Gln,对肉仔鸡的ADFI和F/G均无显著影响。Bregendahl等[25]推测在低蛋白质饲粮条件下,内源合成足够的Gln用于维持肠道上皮细胞功能,因此额外补充Gln对低蛋白质饲粮导致的肉仔鸡生长缓慢、饲料利用率降低并无改善作用。而Payne等[26]也报道低蛋白质饲粮中添加ISF,并未改善ADF、ADFI和饲料转化率。
3.2 不同类型饲粮和添加剂对肉仔鸡回肠形态结构的影响绒毛高度、隐窝深度及V/C值常被用于肠道形态[27],甚至与肠道局部或系统性炎症相关[28-29]。本试验中,肉仔鸡19日龄时,低蛋白质饲粮中添加XPC与添加ISF相比,显著提高回肠绒毛高度和V/C值,显著降低回肠隐窝深度;35日龄时,低蛋白质饲粮中添加XPC与添加ISF和Gln相比显著提高回肠绒毛高度和V/C值。Gao等[30]报道,0.25%的XPC显著提高21日龄肉仔鸡回肠绒毛高度和V/C值。而Jazideh等[31]报道,在热应激条件下饲粮中添加0.25%、0.50%和1.00%的Gln对肉仔鸡回肠结构均无显著影响。
19日龄时,抗生素饲粮组和大麦饲粮组中添加ISF,肉仔鸡回肠V/C值分别显著高于添加Gln或XPC。Halliwell等[32]认为消化道黏膜持续暴露于来源于肠腔中氧化剂、诱变剂以及内源的活性氧,因此对氧化应激很敏感。而Jiang等[15]证明ISF对肉仔鸡表现出抗氧化剂的良好潜力,因此ISF可能作为抗氧化剂起到保护和维持肉仔鸡回肠形态结构的作用。
3.3 不同类型饲粮和添加剂对肉仔鸡回肠炎症免疫指标的影响IFN-γ由抗原递呈细胞和Th1细胞分泌,会增加紧密连接通路的通透性[33-34]。IL-10可以预防肠道疾病[33],具有降低细胞因子[35]、预防炎症反应以及抑制IFN-γ产生的作用[36]。IgA有基底膜中的B淋巴细胞分泌,并不断分泌进入肠腔[37]。
Gao等[30]报道,饲粮中添加0.25%的XPC对21日龄肉仔鸡十二指肠中IgA水平无显著影响;与更高水平XPC组相比,添加0.25%的XPC显著提高42日龄肉仔鸡十二指肠中IgA水平。体外细胞试验观察到添加XPC可下调由白细胞介素-2(IL-2)或植物凝集素(PHA)诱导产生的IFN-γ水平,激活B淋巴细胞以及促进Th2通路[38]。本研究表明,19日龄时抗生素饲粮中添加XPC,与添加ISF相比显著提高肉仔鸡回肠IL-10和IgA水平;低蛋白质饲粮和大麦饲粮中添加XPC比添加ISF显著提高回肠IgA水平。而在35日龄时,大麦饲粮中添加XPC与添加ISF相比并未降低肉仔鸡回肠IFN-γ水平。
资料表明,Gln可提高机体应激后食管中的IgA水平[39]。在小鼠上的试验也表明,Gln具备促进肠道中IgA分泌的作用[40]。0.5%的Gln并未影响血液中IFN-γ的水平[41]。本试验中,19日龄时,无抗生素饲粮中添加Gln与添加ISF相比显著提高肉仔鸡回肠IL-10水平,而35日龄时显著降低IgA水平;35日龄时,大麦饲粮中添加Gln比添加XPC显著降低回肠IFN-γ水平,比添加ISF显著提高IL-10水平。
消化道中微生物在ISF代谢过程中发挥重要作用[42]。肠道细胞的研究结果表明,ISF通过调节促炎症因子——白细胞介素-6(IL-6)发挥抑制肠道的炎症反应[10]。前人研究表明,ISF可抑制由脂多糖诱导的呼吸道CD4+ T淋巴细胞分泌IFN-γ,也会抑制鼻腔敏感小鼠对卵白蛋白的黏膜免疫反应[43]。ISF通过降低IFN-γ与IL-10的比值,可能使得Th1/Th2平衡倾向于Th2反应[44]。本试验中,在抗生素饲粮中,与添加XPC或Gln相比,ISF显著降低了19日龄肉仔鸡回肠IL-10和IgA水平以及35日龄的IgA水平;但在无抗生素饲粮中,添加ISF显著提高了35日龄肉仔鸡回肠IL-10和IgA水平,对回肠免疫状态有显著改善作用;19日龄时,无抗生素饲粮中添加ISF显著提高肉仔鸡回肠IgA水平,而显著降低IL-10水平;大麦饲粮中添加ISF显著降低了35日龄肉仔鸡回肠IFN-γ水平,同时也显著降低了IL-10水平。这说明不同的添加剂在对不同类型的饲粮中发挥的免疫作用可能有所不同。
3.4 不同类型饲粮和添加剂对肉仔鸡粪便中氮、磷残留率的影响本研究结果表明,与添加其他2种添加剂相比,抗生素饲粮中添加XPC显著降低了19日龄肉仔鸡粪便中氮和磷残留率;与添加Gln相比,低蛋白质饲粮中添加XPC显著降低了19日龄肉仔鸡粪便中氮残留率。Gao等[30]报道,XPC虽并未改善15日龄肉仔鸡的磷消化率,但添加0.50%和0.75%的XPC显著提高了35日龄肉仔鸡的磷消化率。李路胜[45]报道,饲粮中添加0.10%、0.15%和0.20%的XPC显著提高了磷的消化率。本试验中,大麦饲粮中添加ISF与添加Gln相比显著提高19日龄肉仔鸡粪便中氮和磷残留率。这与前人的报道不一致,Sahin等[46]报道,热应激条件下染料木素改善鹌鹑的粗蛋白质消化率,降低磷残留率。无抗生素饲粮中添加Gln、ISF比添加XPC显著降低19日龄肉仔鸡粪便中氮和磷残留率,显著降低35日龄肉仔鸡粪便中磷残留率。Vicario等[47]认为Gln可以改善结肠炎小鼠的屏障功能。仔猪饲粮中添加Gln,断奶10 d时干物质和粗蛋白质表观消化率分别提高9.06%和4.77%;断奶30 d时,两者分别提高了5.90%和2.80%[48]。而在肉仔鸡上的研究表明,添加1%、2%和3%的Gln尽管数值显示降低了21日龄时粪便中的氮残留率,但显著不差异[49]。
4 结 论①4种类型饲粮中添加3种添加剂对42日龄肉仔鸡生长性能无显著影响;
②能氮比固定的低蛋白质饲粮显著降低了肉仔鸡的生长性能;
③低蛋白质饲粮中添加XPC可改善回肠形态结构;
④在不同类型饲粮中添加不同的添加剂具有改善肉仔鸡回肠免疫状态及降低粪便中氮、磷残留率的趋势。
[1] |
MILES R D, BUTCHER G D, HENRY P R, et al. Effect of antibiotic growth promoters on broiler performance,intestinal growth parameters,and quantitative morphology[J]. Poultry Science, 2006 , 85 (3) : 476 –485.
DOI: 10.1093/ps/85.3.476 (![]() |
[2] |
KAMRAN Z, SARWAR M, NISA M, et al. Effect of low-protein diets having constant energy-to-protein ratio on performance and carcass characteristics of broiler chickens from one to thirty-five days of age[J]. Poultry Science, 2008 , 87 (3) : 468 –474.
DOI: 10.3382/ps.2007-00180 (![]() |
[3] |
DREW M D, SYED N A, GOLDADE B G, et al. Effects of dietary protein source and level on intestinal populations of Clostridium perfringens in broiler chickens[J]. Poultry Science, 2004 , 83 (3) : 414 –420.
DOI: 10.1093/ps/83.3.414 (![]() |
[4] |
JIA W, SLOMINSKI B A, BRUCE H L, et al. Effects of diet type and enzyme addition on growth performance and gut health of broiler chickens during subclinical Clostridium perfringens challenge[J]. Poultry Science, 2009 , 88 (1) : 132 –140.
DOI: 10.3382/ps.2008-00204 (![]() |
[5] |
THEANDER O, WESTERLUND E, ÅMAN P, et al. Plant cell walls and monogastric diets[J]. Animal Feed Science and Technology, 1989 , 23 (1/2/3) : 205 –225.
(![]() |
[6] |
IKEGAMI S, TSUCHIHASHI F, HARADA H, et al. Effect of viscous indigestible polysaccharides on pancreatic-biliary secretion and digestive organs in rats[J]. Journal of Nutrition, 1990 , 120 (4) : 353 –360.
(![]() |
[7] |
CHOCT M, HUGHES R J, WANG J, et al. Increased small intestinal fermentation is partly responsible for the anti-nutritive activity of non-starch polysaccharides in chickens[J]. British Poultry Science, 1996 , 37 (3) : 609 –621.
DOI: 10.1080/00071669608417891 (![]() |
[8] |
NICOLE R, MASCHING S, SCHATZMAYR G, et al. Efficacy of a yeast derivative on broiler performance,intestinal morphology and blood profile[J]. Livestock Science, 2012 , 143 (2/3) : 195 –200.
(![]() |
[9] |
O'KEEFE S J D. Nutrition and gastrointestinal disease[J]. Scandinavian Journal of Gastroenterology, 1996 , 31 (S220) : 52 –59.
(![]() |
[10] |
PARADKAR P N, BLUM P S, BERHOW M A, et al. Dietary isoflavones suppress endotoxin-induced inflammatory reaction in liver and intestine[J]. Cancer Letters, 2004 , 215 (1) : 21 –28.
DOI: 10.1016/j.canlet.2004.05.019 (![]() |
[11] |
AFRC R F. Probiotics in man and animals[J]. Journal of Applied Bacteriology, 1989 , 66 (5) : 365 –378.
DOI: 10.1111/jam.1989.66.issue-5 (![]() |
[12] |
NEWSHOLME P. Why is L-glutamine metabolism important to cells of the immune system in health,postinjury,surgery or infection?[J]. The Journal of Nutrition, 2001 , 131 (9) : 2515S –2522S.
(![]() |
[13] |
SAKAMOTO M I, FARIA D E, NAKAGI V S, et al. Sources of trophic action on performance and intestinal morphometry of broiler chickens vaccinated against coccidiosis[J]. Revista Brasileira de Ciência Avícola, 2014 , 16 (4) : 389 –396.
DOI: 10.1590/1516-635X1604389-396 (![]() |
[14] |
VITALE D C, PIAZZA C, MELILLI B, et al. Isoflavones:estrogenic activity,biological effect and bioavailability[J]. European Journal of Drug Metabolism and Pharmacokinetics, 2013 , 38 (1) : 15 –25.
DOI: 10.1007/s13318-012-0112-y (![]() |
[15] |
JIANG Z Y, JIANG S Q, LIN Y C, et al. Effects of soybean isoflavone on growth performance,meat quality,and antioxidation in male broilers[J]. Poultry Science, 2007 , 86 (7) : 1356 –1362.
DOI: 10.1093/ps/86.7.1356 (![]() |
[16] |
KAMBOH A A, ZHU W Y. Individual and combined effects of genistein and hesperidin on immunity and intestinal morphometry in lipopolysacharide-challenged broiler chickens[J]. Poultry Science, 2014 , 93 (9) : 2175 –2183.
DOI: 10.3382/ps.2014-03971 (![]() |
[17] |
邓雪娟, 刘国华, 蔡辉益, 等. 分光光度计法测定家禽饲料和食糜中二氧化钛[J].
邓雪娟, 刘国华, 蔡辉益, 等. 分光光度计法测定家禽饲料和食糜中二氧化钛[J]. 饲料工业, 2008 , 29 (2) :57 –58.
(![]() |
[18] |
COLLIN A, MALHEIROS R D, MORAES V M B, et al. Effects of dietary macronutrient content on energy metabolism and uncoupling protein mRNA expression in broiler chickens[J]. British Journal of Nutrition, 2003 , 90 (2) : 261 –269.
DOI: 10.1079/BJN2003910 (![]() |
[19] |
NIETO R, AGUILERA J F, FERNÁNDEZ-FÍGARES I, et al. Effect of a low protein diet on the energy metabolism of growing chickens[J]. Archiv für Tierernaehrung, 1997 , 50 (2) : 105 –119.
DOI: 10.1080/17450399709386124 (![]() |
[20] |
HIDALGO M A, DOZIER Ⅲ W A, DAVIS A J, et al. Live performance and meat yield responses of broilers to progressive concentrations of dietary energy maintained at a constant metabolizable energy-to-crude protein ratio[J]. The Journal of Applied Poultry Research, 2004 , 13 (2) : 319 –327.
DOI: 10.1093/japr/13.2.319 (![]() |
[21] |
李菊, 张日俊. 益生素对肉仔鸡生长性能、屠体性状及肉品质的影响[J].
李菊, 张日俊. 益生素对肉仔鸡生长性能、屠体性状及肉品质的影响[J]. 动物营养学报, 2007 , 19 (4) :372 –378.
(![]() |
[22] |
张日俊, 佟建民, 萨仁娜, 等. 饲用金霉素对肉仔鸡免疫系统生长发育及免疫反应的研究[J].
张日俊, 佟建民, 萨仁娜, 等. 饲用金霉素对肉仔鸡免疫系统生长发育及免疫反应的研究[J]. 畜牧兽医学报, 2000 , 31 (3) :216 –223.
(![]() |
[23] |
FIRMAN J D, MOORE D, BROOMHEAD J, et al. Effects of dietary inclusion of a Saccharomyces cerevisiae fermentation product on performance and gut characteristics of male turkeys to market weight[J]. International Journal of Poultry Science, 2013 , 12 (3) : 141 –143.
DOI: 10.3923/ijps.2013.141.143 (![]() |
[24] |
NASSIRI MOGHADDAM H, ALIZADEH-GHAMSARI A H. Improved performance and small intestinal development of broiler chickens by dietary L-glutamine supplementation[J]. Journal of Applied Animal Research, 2013 , 41 (1) : 1 –7.
DOI: 10.1080/09712119.2012.738214 (![]() |
[25] |
BREGENDAHL K, SELL J L, ZIMMERMAN D R. Effect of low-protein diets on growth performance and body composition of broiler chicks[J]. Poultry Science, 2002 , 81 (8) : 1156 –1167.
DOI: 10.1093/ps/81.8.1156 (![]() |
[26] |
PAYNE R L, BIDNER T D, SOUTHERN L L, et al. Dietary effects of soy isoflavones on growth and carcass traits of commercial broilers[J]. Poultry Science, 2001 , 80 (8) : 1201 –1207.
DOI: 10.1093/ps/80.8.1201 (![]() |
[27] |
JEURISSEN S H M, LEWIS F, VAN DER KLIS J D, et al. Parameters and techniques to determine intestinal health of poultry as constituted by immunity,integrity,and functionality[J]. Current Issues in Intestinal Microbiology, 2002 , 3 (1) : 1 –14.
(![]() |
[28] |
JIANG Z Y, SUN L H, LIN Y C, et al. Effects of dietary glycyl-glutamine on growth performance,small intestinal integrity,and immune responses of weaning piglets challenged with lipopolysaccharide[J]. Journal of Animal Science, 2009 , 87 (12) : 4050 –4056.
DOI: 10.2527/jas.2008-1120 (![]() |
[29] |
LEE K W, LEE S H, LILLEHOJ H S, et al. Effects of direct-fed microbials on growth performance,gut morphometry,and immune characteristics in broiler chickens[J]. Poultry Science, 2010 , 89 (2) : 203 –216.
DOI: 10.3382/ps.2009-00418 (![]() |
[30] |
GAO J, ZHANG H J, YU S H, et al. Effects of yeast culture in broiler diets on performance and immunomodulatory functions[J]. Poultry Science, 2008 , 87 (7) : 1377 –1384.
DOI: 10.3382/ps.2007-00418 (![]() |
[31] |
JAZIDEH F, FARHOOMAND P, DANESHYAR M, et al. The effects of dietary glutamine supplementation on growth performance and intestinal morphology of broiler chickens reared under hot conditions[J]. Turkish Journal of Veterinary & Animal Sciences, 2014 , 38 (3) : 264 –270.
(![]() |
[32] |
HALLIWELL B, ZHAO K, WHITEMAN M. The gastrointestinal tract:a major site of antioxidant action?[J]. Free Radical Research, 2000 , 33 (6) : 819 –830.
DOI: 10.1080/10715760000301341 (![]() |
[33] |
TURNER J R. Intestinal mucosal barrier function in health and disease[J]. Nature Reviews Immunology, 2009 , 9 (11) : 799 –809.
DOI: 10.1038/nri2653 (![]() |
[34] |
MADARA J L, STAFFORD J. Interferon-γ directly affects barrier function of cultured intestinal epithelial monolayers[J]. Journal of Clinical Investigation, 1989 , 83 (2) : 724 –727.
DOI: 10.1172/JCI113938 (![]() |
[35] |
MARSHALL J S, LEAL-BERUMEN I, NIELSEN L, et al. Interleukin (IL)-10 inhibits long-term IL-6 production but not preformed mediator release from rat peritoneal mast cells.[J]. Journal of Clinical Investigation, 1996 , 97 (4) : 1122 –1128.
DOI: 10.1172/JCI118506 (![]() |
[36] |
FIORENTINO D F, BOND M W, MOSMANN T R. Two types of mouse T helper cell.Ⅳ.Th2 clones secrete a factor that inhibits cytokine production by Th1 clones[J]. Journal of Experimental Medicine, 1989 , 170 (6) : 2081 –2095.
DOI: 10.1084/jem.170.6.2081 (![]() |
[37] |
BRANDTZAEG P, PABST R. Let's go mucosal:communication on slippery ground[J]. Trends in Immunology, 2004 , 25 (11) : 570 –577.
DOI: 10.1016/j.it.2004.09.005 (![]() |
[38] |
JENSEN G S, PATTERSON K M, YOON I. Yeast culture has anti-inflammatory effects and specifically activates NK cells[J]. Comparative Immunology,Microbiology and Infectious Diseases, 2008 , 31 (6) : 487 –500.
DOI: 10.1016/j.cimid.2007.08.005 (![]() |
[39] |
许彬东, 黄国忠, 谢金标, 等. 谷氨酰胺强化的肠外营养对食管癌病人术后机体应激反应及免疫功能的影响[J].
许彬东, 黄国忠, 谢金标, 等. 谷氨酰胺强化的肠外营养对食管癌病人术后机体应激反应及免疫功能的影响[J]. 肠外与肠内营养, 2014 , 21 (5) :285 –288.
(![]() |
[40] |
BURKE D J, ALVERDY J C, AOYS E, et al. Glutamine-supplemented total parenteral nutrition improves gut immune function[J]. Archives of Surgery, 1989 , 124 (12) : 1396 –1399.
DOI: 10.1001/archsurg.1989.01410120042009 (![]() |
[41] |
SZABÓ J, ANDRÁSOFSZKY E, TUBOLY T, et al. Effect of arginine or glutamine supplementation on production,organ weights,interferon gamma,interleukin 6 and antibody titre of broilers[J]. Acta Veterinaria Hungarica, 2014 , 62 (3) : 348 –361.
DOI: 10.1556/AVet.2014.017 (![]() |
[42] |
YUAN J P, WANG J H, LIU X. Metabolism of dietary soy isoflavones to equol by human intestinal microflora-implications for health[J]. Molecular Nutrition & Food Research, 2007 , 51 (7) : 765 –781.
(![]() |
[43] |
WEI J, BHATT S, CHANG L M., et al. Isoflavones,genistein and daidzein,regulate mucosal immune response by suppressing dendritic cell function[J]. PLoS One, 2012 , 7 (10) : e47979 .
DOI: 10.1371/journal.pone.0047979 (![]() |
[44] |
RACHO Ń D, RIMOLDI G, WUTTKE W. In vitro effects of genistein and resveratrol on the production of interferon-γ (IFNγ) and interleukin-10(IL-10) by stimulated murine splenocytes[J]. Phytomedicine, 2006 , 13 (6) : 419 –424.
DOI: 10.1016/j.phymed.2005.10.006 (![]() |
[45] |
李路胜. 酵母培养物对肉鸡生产性能和饲料利用率的影响[J].
李路胜. 酵母培养物对肉鸡生产性能和饲料利用率的影响[J]. 饲料工业, 2008 , 29 (16) :32 –34.
(![]() |
[46] |
SAHIN N, SAHIN K, ONDERCI M, et al. Effects of dietary genistein on nutrient use and mineral status in heat-stressed quails[J]. Experimental Animals, 2006 , 55 (2) : 75 –82.
DOI: 10.1538/expanim.55.75 (![]() |
[47] |
MARÍA V, CONCEPCIÓ A, MONTSERRAT R, et al. Dietary glutamine affects mucosal functions in rats with mild DSS-induced colitis[J]. The Journal of Nutrition, 2007 , 137 (8) : 1931 –1937.
(![]() |
[48] |
肖英平, 洪奇华, 刘秀婷, 等. 谷氨酰胺对断奶仔猪生长性能、营养物质表观消化率、空肠碱性磷酸酶活性及与肠道健康相关因子基因表达的影响[J].
肖英平, 洪奇华, 刘秀婷, 等. 谷氨酰胺对断奶仔猪生长性能、营养物质表观消化率、空肠碱性磷酸酶活性及与肠道健康相关因子基因表达的影响[J]. 动物营养学报, 2012 , 24 (8) :1438 –1446.
(![]() |
[49] |
KHEMPAKA S, OKRATHOK S, HOKKING L, et al. Influence of supplemental glutamine on nutrient digestibility and utilization,small intestinal morphology and gastrointestinal tract and immune organ developments of broiler chickens[J]. World Academy of Science,Engineering and Technology, 2011 , 5 (8) : 497 –499.
(![]() |