肠道是机体营养物质消化吸收的主要场所,也是防御肠道微生物感染的先天性屏障,肠道健康是机体正常生长发育的关键。微小RNA (microRNAs,miRNAs)是一类长度20~24 nt的非编码单链小分子RNA,是基因转录后调控的重要因子[1]。目前,肠道相关miRNAs的研究主要集中在人和小鼠肠道疾病发生发展调控方面。然而,越来越多研究表明miRNAs在肠道形态结构维持、内稳态维持、营养代谢等方面亦发挥重要调控作用。畜禽肠道健康相关miRNAs的研究也越来越受到关注。本文拟就miRNAs对肠道健康的影响及作用机制进行综述,以期为相关研究的开展提供参考。
1 肠道miRNAs表达miRNAs在肠道中表达丰富,Coutinho等[2]在牛小肠中检测到559种miRNAs,且187种为小肠特异性表达miRNAs;Sharbati等[3]在仔猪肠道中鉴定出332种miRNAs,且201种为肠道中新发现miRNAs。除此之外,不同肠段形态结构、营养物质消化吸收以及微生物定植存在较大差异,相应地,miRNAs在不同肠段的表达亦存在较大差异,且miRNAs在肠道的表达随着肠道组织的发育存在时间性差异[4]。
2 miRNAs与肠道细胞增殖、分化和凋亡小肠黏膜上皮是一个快速自我更新的组织,肠道细胞的增殖、分化和凋亡与肠道健康密切相关,这一过程受阻将导致肠道功能紊乱。Dicer1酶是miRNAs合成的关键酶,Dicer基因缺失可导致小鼠空肠和结肠隐窝细胞凋亡剧增,空肠细胞迁移亦显著增加[5];miR-29b参与调控小肠黏膜生长,过表达miR-29b可使细胞停滞于G1期[6];miR-375亦参与调控肠内分泌细胞发育等[7]。综上所述,miRNAs参与调控肠道细胞增殖、分化和凋亡,在维持肠道形态结构完整和正常功能行使中起重要作用。
3 miRNAs与肠道营养代谢肠道作为营养物质消化吸收的主要器官,miRNAs参与肠上皮对营养物质的消化吸收过程,如miR-494参与肠道氯化钠(NaCl)吸收及电解质平衡调控[8];miR-584可通过调控小鼠乳铁蛋白受体表达,参与新生动物营养代谢过程[9]。肠道内容物中的营养物质亦可通过影响肠道组织miRNAs表达参与相关代谢通路调控。微量元素硒可通过相关miRNAs调控Caco-2细胞花生四烯酸代谢、谷胱甘肽代谢及氧化应激等通路[10]。多酚类物质如槲皮素可通过调控肠道相关miRNAs表达影响肠道对铁离子的吸收转运[11]。除此之外,miRNAs可介导营养物质对相关疾病的营养调控过程。高红肉饮食可通过提高miR-17-92表达水平增加结肠癌风险,而抗性淀粉作用刚好相反[12]。核桃中多不饱和脂肪酸通过上调小鼠大肠肿瘤组织中相关miRNAs表达,调控抗炎、抗增殖和细胞凋亡相关靶基因的表达[13]。综上所述,miRNAs在肠道营养物质吸收、代谢与功能行使过程中起重要调控作用,相关miRNAs可为营养调控提供新靶点与新思路。
4 miRNAs与肠道屏障功能肠道屏障功能是肠道防止有毒有害物质通过肠黏膜进入机体的结构和功能总和,是维持机体内环境稳态的重要保障。肠道屏障功能破坏会影响机体健康,导致多种疾病发生。
4.1 肠道黏膜上皮屏障肠道黏膜上皮屏障主要包括上皮细胞表面的黏液层和肠上皮细胞及其之间的紧密连接。肠道上皮屏障的破坏可导致肠黏膜通透性增加及细菌移位,并触发炎症等一系列病理过程。众多研究结果表明,miRNAs参与肠道上皮屏障功能调控。覆盖于肠上皮表面的黏液层由杯状细胞分泌,而miRNAs参与调节小肠上皮杯状细胞分化[14],小肠特异性缺失Dicer1酶的小鼠结肠上皮中杯状细胞数量明显减少,并导致小肠黏膜免疫力缺失[15]。另外,miRNAs参与肠道上皮紧密连接通透性的调控过程:miRNAs介导酒精等对肠道上皮紧密连接通透性的影响[16];miRNAs参与年龄对肠道通透性的影响[17];miRNAs亦参与应激等造成的肠道上皮损伤调控[18];等。
4.2 肠道免疫屏障肠道黏膜免疫系统是动物机体免疫系统的重要组成部分,在抵抗病原微生物入侵、保障机体健康方面起着重要作用。固有免疫系统是机体抵抗病原的第一重防御。miRNAs参与固有免疫细胞发育,如miR-181、miR-150、miR-15/16促进自然杀伤细胞发育而miR-483、miR-583抑制其发育[19];miR-155、miR-221等参与调控树突状细胞凋亡[20]。另外,miRNAs参与固有免疫应答过程,如miR-122等可通过调控模式识别受体NOD样受体(NLR)家族成员NOD2参与炎症性肠病的病程调控等[21]。除此之外,miRNAs在机体特异性免疫系统中扮演重要角色。miRNAs参与免疫细胞成熟与激活,如miR-29、miR-155、miR-17-92参与Th1细胞分化及功能调控[22],miR-21可通过一种T细胞内源性途径调控Th2细胞分化[23]。miRNAs亦参与免疫细胞功能发挥,如miR-146a可约束肠道T细胞群体的扩张及减少免疫球蛋白A (IgA)的产生[24]。另外,miRNAs可通过调控其免疫相关靶基因的表达参与肠道特异性免疫反应及肠道免疫稳定维持,如miR-150与白细胞介素-1受体1激酶[25],miR-212/132与白细胞介素-10[26],等。miRNAs在自身免疫系统疾病乳糜泄病人十二指肠中异常表达亦证实miRNAs在肠道免疫屏障中的重要作用[27]。
4.3 肠道微生物屏障肠道栖息着与机体共生的庞大微生物群体,构成机体肠道的微生物屏障。肠道微生态稳定是机体健康的保障。肠道共生菌与机体互作促进肠道内环境稳定,而miRNAs参与该系列过程。肠道共生微生物影响肠道miRNAs表达谱:与正常情况相比,无菌条件下饲养的小鼠盲肠中有16种miRNAs表达异常[28]。除此之外,肠道微生物参与细菌感染对宿主肠道编码蛋白基因和miRNAs表达的调控:正常小鼠和无菌小鼠感染单核细胞增多性李斯特氏菌后,肠道多个miRNAs表达的变化和肠道微生物存在与否有关[29]。
益生菌广泛用于促进人和动物健康水平,其在分子水平发挥作用的一种可能机制是调控肠道miRNAs和免疫相关基因表达。仔猪饲喂屎肠球菌NCIMA 10415可提高回肠和空肠淋巴细胞中miR-423-5p表达进而参与免疫调控[30]。慢性酒精刺激可诱导miR-122a表达,最终导致肠道屏障功能破坏,而鼠李糖乳酸杆菌GG株培养上清液可通过抑制酒精诱导的miR-122a表达上调保护肠道完整性[31]。因此,研究miRNAs在益生菌与肠道互作中的调控作用,对开发利用益生菌具有重要意义。
5 miRNAs与肠道疾病miRNAs参与炎性肠疾病病程发展调控。例如,miR-125参与调控节段性回肠炎病人病程发展[32],而miR-19b可减少其炎症反应[33];miR-29a参与调控溃疡性结肠炎的发病过程[34],而miR-155参与其肠肌纤维细胞炎症表型[35];等。因此,这些miRNAs有望成为预测炎性肠病病程发展标记及治疗靶点。另外,miRNAs在2种炎症性肠病间表达变化的差异可作为鉴定和区别两者的生物标记,如miR-19a、miR-21、miR-31、miR-101、miR-146a和miR-375[36]。结肠直肠癌是肠道常见的恶性肿瘤,多种miRNAs参与其病程发展。例如,miR-214表达与结肠炎相关结肠癌病程发展相关[37];miR-17-92在结肠癌的发展过程中起重要作用,可靶向调控多个诱导肿瘤血管发生相关基因的表达[38];等。除此之外,miRNAs可作为癌症诊断的生物标记,如miR-26b在溃疡性结肠炎相关的结肠癌组织和血清中表达上调且与疾病恶化程度相关,而在散发性结肠癌中表达显著下调,因此其可作为区分溃疡性结肠炎相关的结肠癌和散发性结肠癌的生物标记[39]。总之,miRNAs在肠道疾病病程中起重要调控作用,并在具有相似症状疾病间存在表达变化的差异性,可为肠道疾病的检测治疗提供新靶点与新思路。
6 饮食中miRNAs对肠道的影响饮食中包含大量的外源miRNAs。有研究结果表明,外源miRNAs可通过进食获得并进入受体细胞调控相关靶基因表达进而影响受体细胞功能[40]。牛奶中外泌体miRNAs可通过肠道内吞作用进入新生儿机体内并在新生儿免疫系统发育中扮演重要角色[41]。但到目前为止,通过进食获得外源miRNAs功能的研究还存在较大争议。Snow等[42]在进食苹果和香蕉后人血清中几乎没有检测到植物源miRNAs。饲喂高表达miR-30b转基因小鼠奶的幼鼠血液、小肠、肝脏、肺脏和肾脏中miR-30b水平与饲喂野生型小鼠奶亦无显著性差异[43]。若外源性miRNAs可通过肠道吸收调控相关靶器官基因表达则使口服miRNAs作为相关疾病的治疗手段成为可能。另外,肠道作为直接摄取外源miRNAs的器官,miRNAs作为肠道疾病治疗手段可能更易于其他器官。因此该方向的研究依然值得关注。
7 畜禽肠道健康相关miRNAs研究进展在畜禽养殖过程中,肠道健康是影响其生产性能的关键因素。近年来,与畜禽肠道健康相关miRNAs研究也越来越受到重视。断奶应激是影响仔猪生产的重大问题,相同日龄断奶和哺乳状态下仔猪肠道中多种miRNAs表达差异显著,且主要参与肠道代谢、应激及免疫反应[44];大肠杆菌F18感染易造成断奶仔猪腹泻和水肿病,该菌敏感型和抵抗型断奶仔猪肠道中表达差异显著的12种miRNAs可作为该菌易感性的候选标记[45]。miRNAs亦参与了益生菌[30]、霉菌毒素[46]等对猪肠道健康的调控。在家禽研究方面,miRNAs参与病原感染引起的宿主反应过程,如接种空肠弯曲杆菌的鸡盲肠中4种miRNAs表达变化显著[47];另外,miRNAs参与肠道疾病和病原易感性的调控,如坏死性肠炎敏感性不同的2个白莱航鸡品系肠道中10种miRNAs表达差异显著[48],马立克病抵抗和敏感的不同品系鸡肠道中多个miRNAs差异表达并参与炎症相关基因调控[49]。综上所述,miRNAs在畜禽肠道健康调控、疾病诊断、抗病育种等方面具有重要的研究价值,但现有研究主要停留在筛选阶段,miRNAs具体作用机制还需进一步深入研究。
8 小结人和小鼠模型等肠道健康相关miRNAs的研究已使我们充分认识到miRNAs在肠道健康中的重要调控作用。但到目前为止,miRNAs在畜禽肠道中功能的研究还比较滞后。随着miRNAs在畜禽肠道发育、营养代谢以及各种应激和肠道疾病中功能研究的进一步深入,miRNAs及其靶基因形成的调控通路有望成为畜禽健康调控的新靶点,为畜禽肠道健康的营养调控及相关疾病的抗病育种研究提供新思路,具有重要的研究意义与应用前景。
[1] | ZHANG L, CHENG J, FAN X M. MicroRNAs:new therapeutic targets for intestinal barrier dysfunction[J]. World Journal of Gastroenterology, 2014 , 20 (19) : 5818 –5825. DOI: 10.3748/wjg.v20.i19.5818 |
[2] | COUTINHO L L, MATUKUMALLI L K, SONSTEGARD T S, et al. Discovery and profiling of bovine microRNAs from immune-related and embryonic tissues[J]. Physiological Genomics, 2007 , 29 (1) : 35 –43. DOI: 10.1152/physiolgenomics.00081.2006 |
[3] | SHARBATI S, FRIEDLÄNDER M R, SHARBATI J, et al. Deciphering the porcine intestinal microRNA transcriptome[J]. BMC Genomics, 2010 , 11 : 275 . DOI: 10.1186/1471-2164-11-275 |
[4] | LIANG G X, MALMUTHUGE N, MCFADDEN T B, et al. Potential regulatory role of microRNAs in the development of bovine gastrointestinal tract during early life[J]. PLoS One, 2014 , 9 (3) : e92592 . DOI: 10.1371/journal.pone.0092592 |
[5] | MCKENNA L B, SCHUG J, VOUREKAS A, et al. MicroRNAs control intestinal epithelial differentiation, architecture, and barrier function[J]. Gastroenterology, 2010 , 139 (5) : 1654 –1664, 1664.e1. DOI: 10.1053/j.gastro.2010.07.040 |
[6] | XIAO L, RAO J N, ZOU T T, et al. miR-29b represses intestinal mucosal growth by inhibiting translation of cyclin-dependent kinase 2[J]. Molecular Biology of the Cell, 2013 , 24 (19) : 3038 –3046. DOI: 10.1091/mbc.E13-05-0287 |
[7] | KNUDSEN L A, PETERSEN N, SCHWARTZ T W, et al. The microRNA repertoire in enteroendocrine cells:identification of miR-375 as a potential regulator of the enteroendocrine lineage[J]. Endocrinology, 2015 , 156 (11) : 3971 –3983. DOI: 10.1210/en.2015-1088 |
[8] | ANBAZHAGAN A N, PRIYAMVADA S, KUMAR A, et al. Translational repression of SLC26A3 by miR-494 in intestinal epithelial cells[J]. American Journal of Physiology-Gastrointestinal and Liver Physiology, 2014 , 306 (2) : G123 –G131. DOI: 10.1152/ajpgi.00222.2013 |
[9] | LIAO Y, LÖNNERDAL B. miR-584 mediates post-transcriptional expression of lactoferrin receptor in Caco-2 cells and in mouse small intestine during the perinatal period[J]. International Journal of Biochemistry & Cell Biology, 2010 , 42 (8) : 1363 –1369. |
[10] | MACIEL-DOMINGUEZ A, SWAN D, FORD D, et al. Selenium alters miRNA profile in an intestinal cell line:evidence that miR-185 regulates expression of GPX2 and SEPSH2[J]. Molecular Nutrition & Food Research, 2013 , 57 (12) : 2195 –2205. |
[11] | LESJAK M, HOQUE R, BALESARIA S, et al. Quercetin inhibits intestinal iron absorption and ferroportin transporter expression in vivo and in vitro[J]. PLoS One, 2014 , 9 (7) : e102900 . DOI: 10.1371/journal.pone.0102900 |
[12] | PERES J. Resistant starch may reduce colon cancer risk from red meat[J]. Journal of the National Cancer Institute, 2014 , 106 (10) . DOI: 10.1093/jnci/dju341 |
[13] | TSOUKAS M A, KO B J, WITTE T R, et al. Dietary walnut suppression of colorectal cancer in mice:mediation by miRNA patterns and fatty acid incorporation[J]. The Journal of Nutrition Biochemistry, 2015 , 26 (7) : 776 –783. DOI: 10.1016/j.jnutbio.2015.02.009 |
[14] | GOTO Y, KIYONO H. Epithelial cell microRNAs in gut immunity[J]. Nature Immunology, 2011 , 12 (3) : 195 –197. DOI: 10.1038/ni0311-195 |
[15] | BITON M, LEVIN A, SLYPER M, et al. Epithelial microRNAs regulate gut mucosal immunity via epithelium-T cell crosstalk[J]. Nature Immunology, 2011 , 12 (3) : 239 –246. DOI: 10.1038/ni.1994 |
[16] | YU T, LU X J, LI J Y, et al. Overexpression of miR-429 impairs intestinal barrier function in diabetic mice by down-regulating occludin expression[J]. Cell and Tissue Research, 2016 . DOI: 10.1007/s00441-016-2435-5 |
[17] | TRAN L, GREENWOOD-VAN MEERVELD B. Age-associated remodeling of the intestinal epithelial barrier[J]. The Journals of Gerontology Series A:Biological Sciences and Medical Sciences, 2013 , 68 (9) : 1045 –1056. DOI: 10.1093/gerona/glt106 |
[18] | YU J, LIU F, YIN P, et al. Integrating miRNA and mRNA expression profiles in response to heat stress-induced injury in rat small intestine[J]. Functional & Integrative Genomics, 2011 , 11 (2) : 203 –213. |
[19] | LEONG J W, WAGNER J A, IRELAND A R, et al. Transcriptional and post-transcriptional regulation of NK cell development and function[J]. Clinical Immunology, 2016 . DOI: 10.1016/j.clim.2016.03.003 |
[20] | LU C M, HUANG X, ZHANG X X, et al. miR-221 and miR-155 regulate human dendritic cell development, apoptosis, and IL-12 production through targeting of p27kip1, KPC1, and SOCS-1[J]. Blood, 2011 , 117 (16) : 4293 –4303. DOI: 10.1182/blood-2010-12-322503 |
[21] | CHEN Y, WANG C X, LIU Y, et al. miR-122 targets NOD2 to decrease intestinal epithelial cell injury in Crohn's disease[J]. Biochemical and Biophysical Research Communications, 2013 , 438 (1) : 133 –139. DOI: 10.1016/j.bbrc.2013.07.040 |
[22] | KALLA R, VENTHAM N T, KENNEDY N A, et al. MicroRNAs:new players in IBD[J]. Gut, 2015 , 64 (3) : 504 –513. DOI: 10.1136/gutjnl-2014-307891 |
[23] | SAWANT D V, WU H, KAPLAN M H, et al. The Bcl6 target gene microRNA-21 promotes Th2 differentiation by a T cell intrinsic pathway[J]. Molecular Immunology, 2013 , 54 (3/4) : 435 –442. |
[24] | RUNTSCH M C, HU R, ALEXANDER M, et al. microRNA-146a constrains multiple parameters of intestinal immunity and increases susceptibility to DSS colitis[J]. Oncotarget, 2015 , 6 (30) : 28556 –28572. |
[25] | KUMAR V, TORBEN W, KENWAY C S, et al. Longitudinal examination of the intestinal lamina propria cellular compartment of simian immunodeficiency virus-infected rhesus macaques provides broader and deeper insights into the link between aberrant microRNA expression and persistent immune activation[J]. Journal of Virology, 2016 , 90 (10) : 5003 –5019. DOI: 10.1128/JVI.00189-16 |
[26] | CHINEN I, NAKAHAMA T, KIMURA A, et al. The aryl hydrocarbon receptor/microRNA-212/132 axis in T cells regulates IL-10 production to maintain intestinal homeostasis[J]. International Immunology, 2015 , 27 (8) : 405 –415. DOI: 10.1093/intimm/dxv015 |
[27] | MAGNI S, COMANI G B, ELLI L, et al. miRNAs affect the expression of innate and adaptive immunity proteins in celiac disease[J]. American Journal of Gastroenterology, 2014 , 109 (10) : 1662 –1674. DOI: 10.1038/ajg.2014.203 |
[28] | SINGH N, SHIRDEL E A, WALDRON L, et al. The murine caecal microRNA signature depends on the presence of the endogenous microbiota[J]. International Journal of Biological Sciences, 2012 , 8 (2) : 171 –186. DOI: 10.7150/ijbs.8.171 |
[29] | ARCHAMBAUD C, SISMEIRO O, TOEDLING J, et al. The intestinal microbiota interferes with the microRNA response upon oral Listeria infection[J]. MBio, 2013 , 4 (6) : e00707 –13. |
[30] | KREUZER-REDMER S, BEKURTZ J C, ARENDS D, et al. Feeding of Enterococcus faecium NCIMB 10415 leads to intestinal miRNA-423-5p-induced regulation of immune-relevant genes[J]. Applied and Environmental Microbiology, 2016 , 82 (8) : 2263 –2269. DOI: 10.1128/AEM.04044-15 |
[31] | ZHAO H Y, ZHAO C Q, DONG Y Y, et al. Inhibition of miR122a by Lactobacillus rhamnosus GG culture supernatant increases intestinal occludin expression and protects mice from alcoholic liver disease[J]. Toxicology Letters, 2015 , 234 (3) : 194 –200. DOI: 10.1016/j.toxlet.2015.03.002 |
[32] | PECK B C E, WEISER M, LEE S E, et al. microRNAs classify different disease behavior phenotypes of Crohn's disease and may have prognostic utility[J]. Inflammatory Bowel Diseases, 2015 , 21 (9) : 2178 –2187. DOI: 10.1097/MIB.0000000000000478 |
[33] | CHENG X Q, ZHANG X F, SU J W, et al. miR-19b downregulates intestinal SOCS3 to reduce intestinal inflammation in Crohn's disease[J]. Scientific Reports, 2015 , 5 : 10397 . DOI: 10.1038/srep10397 |
[34] | LV B, LIU Z, WANG S, et al. miR-29a promotes intestinal epithelial apoptosis in ulcerative colitis by down-regulating Mcl-1[J]. International Journal of Clinical and Experimental Pathology, 2014 , 7 (12) : 8542 –8552. |
[35] | PATHAK S, GRILLO A R, SCARPA M, et al. miR-155 modulates the inflammatory phenotype of intestinal myofibroblasts by targeting SOCS1 in ulcerative colitis[J]. Experimental & Molecular Medicine, 2015 , 47 : e164 . |
[36] | SCHAEFER J S, ATTUMI T, OPEKUN A R, et al. microRNA signatures differentiate Crohn's disease from ulcerative colitis[J]. BMC Immunology, 2015 , 16 : 5 . DOI: 10.1186/s12865-015-0069-0 |
[37] | POLYTARCHOU C, HOMMES D W, PALUMBO T, et al. microRNA214 is associated with progression of ulcerative colitis, and inhibition reduces development of colitis and colitis-associated cancer in mice[J]. Gastroenterology, 2015 , 149 (4) : 981 –992.e911. DOI: 10.1053/j.gastro.2015.05.057 |
[38] | MA H B, PAN J S, JIN L X, et al. MicroRNA-17~92 inhibits colorectal cancer progression by targeting angiogenesis[J]. Cancer Letters, 2016 , 376 (2) : 293 –302. DOI: 10.1016/j.canlet.2016.04.011 |
[39] | BENDERSKA N, DITTRICH A L, KNAUP S, et al. miRNA-26b Overexpression in ulcerative colitis-associated carcinogenesis[J]. Inflammatory Bowel Diseases, 2015 , 21 (9) : 2039 –2051. DOI: 10.1097/MIB.0000000000000453 |
[40] | ZHANG L, HOU D X, CHEN X, et al. Exogenous plant MIR168a specifically targets mammalian LDLRAP1:evidence of cross-kingdom regulation by microRNA[J]. Cell Research, 2012 , 22 (1) : 107 –126. DOI: 10.1038/cr.2011.158 |
[41] | GU Y R, LI M Z, WANG T, et al. Lactation-related microRNA expression profiles of porcine breast milk exosomes[J]. PLoS One, 2012 , 7 (8) : e43691 . DOI: 10.1371/journal.pone.0043691 |
[42] | SNOW J W, HALE A E, ISAACS S K, et al. Ineffective delivery of diet-derived microRNAs to recipient animal organisms[J]. RNA Biology, 2013 , 10 (7) : 1107 –1116. DOI: 10.4161/rna.24909 |
[43] | LAUBIER J, CASTILLE J, LE GUILLOU S, et al. No effect of an elevated miR-30b level in mouse milk on its level in pup tissues[J]. RNA Biology, 2015 , 12 (1) : 26 –29. DOI: 10.1080/15476286.2015.1017212 |
[44] | TAO X, XU Z W. microRNA transcriptome in swine small intestine during weaning stress[J]. PLoS One, 2013 , 8 (11) : e79343 . DOI: 10.1371/journal.pone.0079343 |
[45] | YE L, SU X M, WU Z C, et al. Analysis of differential miRNA expression in the duodenum of Escherichia coli F18-sensitive and-resistant weaned piglets[J]. PLoS One, 2012 , 7 (8) : e43741 . DOI: 10.1371/journal.pone.0043741 |
[46] | BRZUZAN P, WOẐNY M, WOLINSKA-NIZIOȽ L, et al. microRNA expression profiles in liver and colon of sexually immature gilts after exposure to Fusarium mycotoxins[J]. Polish Journal of Veterinary Sciences, 2015 , 18 (1) : 29 –38. |
[47] | DINH H, HONG Y H, LILLEHOJ H S. Modulation of microRNAs in two genetically disparate chicken lines showing different necrotic enteritis disease susceptibility[J]. Veterinary Immunology and Immunopathology, 2014 , 159 (1/2) : 74 –82. |
[48] | LIU X Y, LIU L Y, ZHANG M Z, et al. Chicken cecal microRNAs in the response to Campylobacter jejuni inoculation by Solexa sequencing[J]. Poultry Science, 2016 . DOI: 10.3382/ps/pew190 |
[49] | HONG Y H, DINH H, LILLEHOJ H S, et al. Differential regulation of microRNA transcriptome in chicken lines resistant and susceptible to necrotic enteritis disease[J]. Poultry Science, 2014 , 93 (6) : 1383 –1395. DOI: 10.3382/ps.2013-03666 |