动物营养学报    2018, Vol. 30 Issue (3): 829-836    PDF    
过瘤胃蛋氨酸对围产期奶牛代谢及健康的调控作用及机理
孙博非1, 余超2, 曹阳春1, 蔡传江1, 李生祥1, 姚军虎1     
1. 西北农林科技大学动物科技学院, 杨陵 712100;
2. 陕西省商洛市畜牧产业发展中心, 商洛 726000
摘要: 受多种因素影响,奶牛围产期处于能量和其他营养物质的负平衡状态,多发营养代谢病。研究表明,蛋氨酸可调控奶牛围产期能量和脂质代谢,改善肝脏功能,并可增强机体抗氧化和免疫功能。本文综述了蛋氨酸调控奶牛围产期代谢和机体健康的相关进展,探讨奶牛围产期过瘤胃蛋氨酸的适宜添加量,旨在为蛋氨酸在奶牛围产期的基础研究和应用提供参考。
关键词: 蛋氨酸     围产期奶牛     代谢调控     健康调控     机理    
Methionine Regulates the Metabolism and Health of Transition Dairy Cows and Its Mechanism
SUN Bofei1, YU Chao2, CAO Yangchun1, CAI Chuanjiang1, LI Shengxiang1, YAO Junhu1     
1. College of Animal Science and Technology, Northwest A & F University, Yangling 712100, China;
2. The Development Centre of Animal Husbandry in Shangluo City of Shanxi Province, Shangluo 726000, China
Abstract: The negative balances of energy and other nutrients usually occur during the transition period because of a series of factors, thereby inducing many metabolic disorders. It is reported that dietary supplementation of rumen-protected methionine can regulate energy and lipid metabolism, improve liver health, and enhance the antioxidant capacity and immune function of transition dairy cows. In this article, the physiological metabolism and body health of transition dairy cows regulated by rumen-protected methionine were reviewed, and the appropriate supplementation doses were discussed as well. Hence, this review could provide references for the fundamental research and application of methionine in transition dairy cows.
Key words: methionine     transition dairy cow     metabolic regulation     health regulation     mechanism    

奶牛围产期包括围产前期(产前21 d)和围产后期(产后21 d)2个阶段,是奶牛泌乳周期中的关键时期。此阶段奶牛经历妊娠-分娩-泌乳的生理转变,涉及多个组织的协调变化,营养需要量显著增加,而干物质采食量(dry matter intake,DMI)急剧下降,营养摄入严重不足,奶牛往往处于多种营养物质的负平衡状态,其中能量负平衡(negative energy balance, NEB)尤为突出[1]。围产期奶牛通过动员体脂缓解NEB,产生的非酯化脂肪酸(nonesterified fatty acids,NEFA)主要进入肝脏进行代谢,主要有3条代谢途径:1)完全氧化形成CO2和H2O,高效供能;2)不完全氧化生成酮体,供能效率低,并易诱发酮病;3)酯化反应形成甘油三酯(triglycerides, TG),其在肝脏蓄积可导致脂肪肝的发生[2]。酮病和脂肪肝严重威胁奶牛围产期健康,并继发一系列营养代谢病,造成奶牛过早淘汰。蛋氨酸(methionine,Met)是维持动物生长发育和各项生理活动的必需氨基酸,也是机体重要的甲基供体,在肝脏一碳单位循环及相关代谢过程中发挥重要作用[3]。研究表明,Met可调控围产期奶牛能量和脂质代谢,维持肝脏健康[4],改善机体抗氧化和免疫功能[5-6],且母体的部分调控效应可在犊牛中有所体现[7]。本文概述了Met理化性质和生物学功能及瘤胃降解特性,综述了过瘤胃蛋氨酸(rumen-protected methionine, RPM)调控奶牛围产期相关代谢的研究进展,并探讨了围产期奶牛饲粮RPM的适宜添加量,旨在为Met在奶牛围产期的基础研究及应用提供科学依据和技术参考。

1 Met营养概述

Met的分子式为C5H11O2NS,化学结构式如图 1,相对分子质量149.21,是人类和动物体内的含硫必需氨基酸。Met与细胞信号转导、核酸和蛋白质合成等许多生理生化过程密切相关。Met营养平衡对奶牛生长发育、生理代谢、机体健康和泌乳性能的高效发挥至关重要,除构成细胞蛋白质外,还具有以下功能:1)作为底物和调控物质,参与奶牛机体蛋白质合成,其中泌乳牛乳腺蛋白质合成尤其关键。Met和赖氨酸(lysine, Lys)是奶牛泌乳最重要的2种限制性氨基酸,其限制性排位由基础饲粮的类型决定[8];2)其代谢产物S-腺苷甲硫氨酸(S-adenosylmethionine, SAM)是机体重要的甲基供体,参与和调控多种生理生化过程[9];3)与胆碱类似,Met可促进肝脏极低密度脂蛋白(very-low-density lipoprotein, VLDL)和肉毒碱合成,调控肝细胞脂质代谢[2, 10];4)合成部分抗氧化物质(如牛磺酸),维持奶牛机体氧化还原状态[11];5)调控奶牛免疫细胞活性和功能,增强机体免疫力[11-12]。此外,对产毛动物而言,Met还可转化为半胱氨酸,促进绒毛生长,增加绒毛产量[13]

图 1 蛋氨酸的化学结构式 Figure 1 The chemical structure of methionine

在瘤胃微生物的作用下,Met可在瘤胃大量降解,并在瘤胃参与相关代谢过程,到达小肠的Met较少,限制了奶牛对饲粮Met的利用[10]。在瘤胃中,Met一部分用于合成菌体蛋白,还有一部分进入其他代谢通路。例如,Met可作为甲基供体,与瘤胃微生物产生的氢结合,产生甲烷,造成能量和氨基酸损失。因此,需在奶牛饲粮中添加RPM,以保证充足的Met在小肠被吸收,随血液循环进入靶器官,发挥相应生理功能[3]

2 Met对奶牛围产期生理代谢和健康的调控

在奶牛体内,Met和胆碱的代谢过程相互关联,且二者间互相转化。以奶牛机体一碳单位循环为理论基础,Met和胆碱均具有促进围产期奶牛肝脏健康和代谢、增强抗氧化和免疫功能以及降低代谢性疾病的发生等功能[11, 14]。Met还可调控奶牛围产期消化道功能,提高饲粮氮素利用率,降低氮排放,改善产后泌乳性能[15-16],Met亦可作为底物和调控物质,通过哺乳动物雷帕霉素靶蛋白(mTOR)等通路促进奶牛机体蛋白质合成[8, 17]

2.1 Met对围产期奶牛肝脏的调节功能

RPM可调控围产期奶牛肝脏功能,促进肝细胞脂质和碳水化合物代谢,提高肝脏能量和其他物质的输出。脂质代谢异常或超载是威胁奶牛围产期肝脏健康和功能的主要诱因,通过营养调控促进NEFA完全氧化、TG转运和糖异生是保障肝脏能量高效转化和代谢以及重要蛋白质(如白蛋白和代谢酶类)合成的重要技术思路。

由于Met在一碳单位循环(图 2)和蛋白质合成中的重要作用,饲粮RPM对奶牛围产期肝脏功能和营养代谢的调控及其机理已成为研究热点。奶牛围产期饲粮添加RPM可上调肝脏过氧化物酶体增殖物激活受体α(peroxisome proliferator-activated receptor α, PPARα)的表达,进而提高丙酮酸羧化酶(pyruvate carboxylase, PC)、微粒体甘油三酯转运蛋白(microsomal triglyceride transfer protein, MTTP)和磷酸烯醇式丙酮酸激酶(phosphoenolpyruvate carboxykinase, PEPCK)的表达量,表明RPM可促进肝细胞脂蛋白组装,并增强糖异生[18]。进一步研究发现,这可能与一碳单位循环及某些基因的启动子甲基化有关[18-19]。Li等[4]研究发现,饲粮添加RPM提高了血液VLDL含量,且肝组织TG含量有所降低(4.70% vs. 3.40%,湿重基础),这说明RPM可促进TG转运,降低肝脏脂质沉积;同时,血液NEFA含量下降,这提示奶牛体脂动员减少,可能是由于NEB有所缓解。RPM可调控奶牛围产期肝脏脂质和能量代谢及转化,降低脂质沉积,但其信号网络、内分泌和其他可能机制等尚待阐明。一些关键通路和调控因子,如腺苷一磷酸激活的蛋白激酶[adenosine 5′-monophosphate (AMP)-activated protein, AMPK]、PPARα和固醇调节元件结合蛋白1c(sterol regulatory element binding protein 1c,SREBP-1c)等在饲粮甲基营养物质(Met、胆碱、甜菜碱和叶酸)调控奶牛围产期肝脏代谢和健康过程中扮演何种角色?其作用机理又是什么?尚待阐明。

Transsulfuration:转硫氢基反应;Transmethylation:转甲基反应;Carnitine:肉毒碱;CPT-1:肉毒碱棕榈酰转移酶1 carnitine palmitoyltransferase 1;Serine:丝氨酸;Glycine:甘氨酸;HCY:同型半胱氨酸homocysteine;DMG:二甲基甘氨酸dimethylglycine;MTR:5-甲基四氢叶酸-同型半胱氨酸甲基转移酶5-methyltetrahydrofolate-homocysteine methyltransferase;THF:四氢叶酸tetrahydrofolate;5-MTHF:5-甲基四氢叶酸5-methyltetrahydrofolate;MTHFR:亚甲基四氢叶酸还原酶methylenetetrahydrofolate reductase;SAM:S-腺苷甲硫氨酸S-adenosylmethionine;SAH:S-腺苷半胱氨酸S-adenocylhomocysteine;Cysteine:半胱氨酸;Choline:胆碱;Methionine:蛋氨酸;PC:磷脂酰胆碱phosphatidylcholine;VLDL:极低密度脂蛋白very low density lipoprotein;MTTP:微粒体甘油三酯转运蛋白microsomal triglyceride transfer protein;PE:磷脂酰乙醇胺phosphatidylethanolamine;Cystathionine:胱硫醚;GSH:谷胱甘肽glutathione;Antioxidants:抗氧化剂;Taurine:牛磺酸;CSA:半胱亚磺酸cysteine sulfinic acid;GNMT:甘氨酸-N-甲基转移酶glycine-N-methyltransferase;PEMT:磷脂酰乙醇胺N-甲基转移酶phosphatidylethanolamine N-methyltransferase;GAMT:胍基乙酸N-甲基转移酶guanidinoacetate N-methyltransferase;TG:甘油三酯triglyceride;BHMT:甜菜碱-同型半胱氨酸-S-甲基转移酶betaine-homocysteine S-methyltranferase;phoshphlipase D:磷酸脂酶D; Rumen-protected choline:过瘤胃胆碱;Rumen-protected methionine:过瘤胃蛋氨酸; CDP pathway:CDP通路; membranes:细胞膜。 图 2 甲基供体循环通路及其调控奶牛围产期代谢和健康的可能途径 Figure 2 Circulation of methyl donors and their potential roles in regulation of metabolism and health of dairy cows at perinatal period[3, 20]
2.2 Met对围产期奶牛机体健康的影响

RPM通过奶牛机体一碳单位循环合成抗氧化物质,减少自由基对奶牛细胞的氧化损伤,并可增强机体免疫力,降低代谢性疾病和其他疾病的发生。研究表明,饲粮添加RPM可促进谷胱甘肽等抗氧化物质的从头合成,提高血浆氧自由基的清除能力,降低氧化应激和肝脏炎症反应,增强机体免疫功能[5-6]。Met供应与免疫反应密切相关,RPM影响奶牛免疫功能的原因有很多,如促进奶牛T淋巴细胞增殖[21],增强血液中性粒细胞的功能[22],降低氧化应激对免疫细胞的损伤[12],改变外周血T淋巴细胞亚群比例(CD4+/CD8+)等[3, 11]。此外,利用奶牛原代肝细胞培养技术,发现高含量NEFA和β-羟基丁酸(β-hydroxybutyric acid,BHBA)可导致肝细胞氧化应激,引起炎症反应,造成细胞损伤,降低肝细胞功能,并诱发细胞凋亡[3, 23-26]。可以推测,RPM可能通过缓解奶牛围产期NEB,减少体脂动员,增强肝脏功能,降低血液NEFA和BHBA含量,减轻NEFA和BHBA对免疫细胞的损伤,间接提高奶牛围产期免疫功能,这已在部分研究得到证实[27-29]。综上可知,Met在维持奶牛围产期机体氧化还原状态和免疫功能方面具有重要作用。

围产期奶牛饲粮添加RPM可提高肝脏甜菜碱-同型半胱氨酸-S-甲基转移酶(betaine-homocysteine S-methyltranferase, BHMT)、磷脂酰乙醇胺N-甲基转移酶(phosphatidylethanolamine N-methyltransferase, PEMT)、蛋氨酸腺苷转移酶1A(methionine adenosyltransferase 1A, MAT1A)、S-腺苷高半胱氨酸水解酶(S-adenosylhomocysteine hydrolase, SAHH)和胱硫醚β合成酶(cystathionine β-synthase, CBS)的基因表达量,降低5-甲基四氢叶酸-同型半胱氨酸甲基转移酶(5-methyltetrahydrofolate-homocysteine methyltransferas, MTR)的活性,表明RPM影响肝脏一碳单位循环,促进肝脏磷脂酰胆碱和一些抗氧化剂(牛磺酸和谷胱甘肽)的合成,这可能是RPM有利于奶牛肝脏和机体健康,并提高生产性能的重要原因[7, 19-20, 30]。还有研究发现,RPM影响肝脏全基因组和PPARα基因启动子区特定位点的甲基化,并上调PPARα等一系列能量和脂质代谢相关靶基因的表达,进而促进肝细胞脂质代谢和转运,降低TG沉积,并增强碳水化合物的代谢和转化[18]

2.3 Met对犊牛生理的调控作用

RPM经小肠消化、吸收进入奶牛体内后,Met可转化为SAM,提供游离甲基,引起肝脏和其他器官关键基因启动子区的甲基化,上调或下调部分基因和调控因子的表达,调控相关代谢,且部分变化可遗传给后代[7]

奶牛围产前期补充RPM,可提高新生犊牛提高肝脏DNA甲基转移酶1[DNA (cytosine-5)-methyltransferase 1, DNMT1]基因的表达量[7],但这并不能证明母体肝脏的表观遗传学变化传代给犊牛,也可能是母体补充RPM提高了血液Met含量,进而通过胎盘血液循环进入胚胎,使得胚胎获得的Met或其他甲基供体增加,自身发生上述变化。在新生犊牛原代肝细胞培养试验中,提高培养基中Met和氯化胆碱含量,均可不同程度影响肝细胞甲基转移、转硫及相关过程,促进VLDL合成,并降低培养基中自由基积累[20]。因此,关于奶牛围产前期甲基供体供应对犊牛肝脏代谢及机体健康的影响,仍需进一步研究、确证,最终构建RPM调控奶牛围产期肝脏功能、主要营养物质的代谢和转化以及机体健康的机制网络,为甲基供体在奶牛上的营养实践提供理论基础。

3 围产期奶牛RPM的适宜添加量

作为奶牛泌乳重要的限制性氨基酸之一,泌乳奶牛Met的相关研究较多,多集中于Met对奶牛乳腺上皮细胞蛋白质合成的调控及其机理,且一般与Lys一起研究[8, 15, 31-33],而对围产期奶牛的研究较少。制定泌乳奶牛Met需要量时,以保证饲粮代谢蛋白质(metabolizable protein, MP)满足需要为前提,在此基础上考虑不同氨基酸在MP中的含量及氨基酸间的比例关系,一般认为泌乳奶牛饲粮Lys : Met≈3 : 1,NRC(2001)推荐量为MP 7.2%和MP 2.4%。因此,通常根据基础饲粮MP、Lys和Met等含量的实测值,按照上述比例推算RPM添加量。现有营养标准和相关研究尚未给出奶牛围产期RPM建议添加量,基于本课题组研究并综合分析他人研究结果(表 1),建议围产期奶牛RPM添加量为10~20 g/d(以Met计)。

表 1 过瘤胃蛋氨酸的添加量及其对奶牛围产期代谢的影响 Table 1 Supplementary doses of RPM and their effects on the metabolism of transition dairy cows
4 小结

奶牛围产期的营养与管理对胎儿发育、奶牛健康、泌乳和繁殖性能十分关键,甚至影响奶牛整个泌乳生涯。RPM在调控奶牛围产期肝脏健康及营养代谢中发挥重要作用,其生理和分子机制并未完全明确,且添加量及添加形式尚无统一标准,有待研究。未来研究应主要关注以下4点:1)RPM精准添加量及添加方式的标准化。以饲粮MP、能氮和氨基酸平衡为基础,充分考虑Met形式、过瘤胃和利用率、效价等因素,规范添加方式;2)明确RPM调控奶牛围产期肝脏功能、代谢和健康的关键信号通路,并探寻神经内分泌和其他生理机制,系统解析其调控机制,并整合胆碱相关研究和机理,构建一碳单位调控奶牛围产期肝脏代谢的机理和技术网络;3)以核因子κB(nuclear factor kappa B, NF-κB)、Toll样受体4(Toll like receptor, TLR4)和红系衍生的核因子2相关因子2(nuclear factor erythroid 2-related factor 2, Nrf2)等通路为核心,研究RPM调控奶牛抗氧化和免疫功能的机理;4)进一步挖掘母体Met供应对胚胎发育、代谢和犊牛健康的影响,并探寻相关生理机制和信号传导,以及可能的表观遗传学机理。

参考文献
[1]
余超. 生物素对围产期奶牛泌乳净能和代谢蛋白平衡及生产性能的影响[D]. 硕士学位论文. 杨凌: 西北农林科技大学, 2016. http://cdmd.cnki.com.cn/Article/CDMD-10712-1016157689.htm
[2]
孙菲菲, 曹阳春, 李生祥, 等. 胆碱对奶牛围产期代谢的调控[J]. 动物营养学报, 2014, 26(1): 26-33.
[3]
孙菲菲. 胆碱和蛋氨酸对奶牛围产期营养平衡和机体健康的影响及机制[D]. 博士学位论文. 杨凌: 西北农林科技大学, 2017.
[4]
LI C, BATISTEL F, OSORIO J S, et al. Peripartal rumen-protected methionine supplementation to higher energy diets elicits positive effects on blood neutrophil gene networks, performance and liver lipid content in dairy cows[J]. Journal of Animal Science and Biotechnology, 2016, 7(1): 18. DOI:10.1186/s40104-016-0077-9
[5]
OSORIO J, TREVISI E, JI P, et al. Biomarkers of inflammation, metabolism, and oxidative stress in blood, liver, and milk reveal a better immunometabolic status in peripartal cows supplemented with Smartamine M or MetaSmart[J]. Journal of Dairy Science, 2014, 97(12): 7437-7450. DOI:10.3168/jds.2013-7679
[6]
OSORIO J, JI P, DRACKLEY J, et al. Smartamine M and MetaSmart supplementation during the peripartal period alter hepatic expression of gene networks in 1-carbon metabolism, inflammation, oxidative stress, and the growth hormone-insulin-like growth factor 1 axis pathways[J]. Journal of Dairy Science, 2014, 97(12): 7451-7464. DOI:10.3168/jds.2014-8680
[7]
JACOMETO C B, ZHOU Z, LUCHINI D, et al. Maternal supplementation with rumen-protected methionine increases prepartal plasma methionine concentration and alters hepatic mRNA abundance of 1-carbon, methionine, and transsulfuration pathways in neonatal Holstein calves[J]. Journal of Dairy Science, 2017, 100(4): 3209-3219. DOI:10.3168/jds.2016-11656
[8]
NAN X M, BU D P, LI X Y, et al. Ratio of lysine to methionine alters expression of genes involved in milk protein transcription and translation and mTOR phosphorylation in bovine mammary cells[J]. Physiological Genomics, 2014, 46(7): 268-275. DOI:10.1152/physiolgenomics.00119.2013
[9]
胡诚军, 江青艳, 孔祥峰. 畜禽蛋氨酸代谢及其生理功能研究进展[J]. 饲料工业, 2016, 37(15): 23-27.
[10]
ARDALAN M, DEHGHAN-BANADAKY M, REZAYAZDI K, et al. The effect of rumen-protected methionine and choline on plasma metabolites of Holstein dairy cows[J]. The Journal of Agricultural Science, 2011, 149(5): 639-646. DOI:10.1017/S0021859610001292
[11]
SUN F F, CAO Y C, CAI C J, et al. Regulation of nutritional metabolism in transition dairy cows:energy homeostasis and health in response to post-ruminal choline and methionine[J]. PLoS One, 2016, 11(8): e0160659. DOI:10.1371/journal.pone.0160659
[12]
ZHOU Z, BULGARI O, VAILATI-RIBONI M, et al. Rumen-protected methionine compared with rumen-protected choline improves immunometabolic status in dairy cows during the peripartal period[J]. Journal of Dairy Science, 2016, 99(11): 8956-8969. DOI:10.3168/jds.2016-10986
[13]
SAHOO A, SOREN N. Nutrition for wool production[J]. Webmedcentral Nutrition, 2011, 2(10): WMC002384.
[14]
ZHOU Z, VAILATI-RIBONI M, TREVISI E, et al. Better postpartal performance in dairy cows supplemented with rumen-protected methionine compared with choline during the peripartal period[J]. Journal of Dairy Science, 2016, 99(11): 8716-8732. DOI:10.3168/jds.2015-10525
[15]
SINCLAIR K D, GARNSWORTHY P C, MANN G E, et al. Reducing dietary protein in dairy cow diets:implications for nitrogen utilization, milk production, welfare and fertility[J]. Animal, 2014, 8(2): 262-274. DOI:10.1017/S1751731113002139
[16]
WANG C, LIU H Y, WANG Y M, et al. Effects of dietary supplementation of methionine and lysine on milk production and nitrogen utilization in dairy cows[J]. Journal of Dairy Science, 2010, 93(8): 3661-3670. DOI:10.3168/jds.2009-2750
[17]
HUANG X, ZANG Y L, ZHANG M H, et al. Nuclear factor of κB1 is a key regulator for the transcriptional activation of milk synthesis in bovine mammary epithelial cells[J]. DNA and Cell Biology, 2017, 36(4): 295-302. DOI:10.1089/dna.2016.3610
[18]
OSORIO J S, JACOMETO C B, ZHOU Z, et al. Hepatic global DNA and peroxisome proliferator-activated receptor alpha promoter methylation are altered in peripartal dairy cows fed rumen-protected methionine[J]. Journal of Dairy Science, 2016, 99(1): 234-244. DOI:10.3168/jds.2015-10157
[19]
ZHOU Z, GARROW T A, DONG X W, et al. Hepatic activity and transcription of betaine-homocysteine methyltransferase, methionine synthase, and cystathionine synthase in periparturient dairy cows are altered to different extents by supply of methionine and choline[J]. The Journal of Nutrition, 2017, 147(1): 11-19. DOI:10.3945/jn.116.240234
[20]
CHANDLER T L, WHITE H M. Choline and methionine differentially alter methyl carbon metabolism in bovine neonatal hepatocytes[J]. PLoS One, 2017, 12(2): e0171080. DOI:10.1371/journal.pone.0171080
[21]
SODER K J, HOLDEN L A. Lymphocyte proliferation response of lactating dairy cows fed varying concentrations of rumen-protected methionine[J]. Journal of Dairy Science, 1999, 82(9): 1935-1942. DOI:10.3168/jds.S0022-0302(99)75429-9
[22]
OSORIO J, JI P, DRACKLEY J K, et al. Supplemental Smartamine M or MetaSmart during the transition period benefits postpartal cow performance and blood neutrophil function[J]. Journal of Dairy Science, 2013, 96(10): 6248-6263. DOI:10.3168/jds.2012-5790
[23]
DENG Q, MA D, SHI Z, et al. Effects of β-hydroxybutyricacid on the synthesis and assembly of very low-density lipoprotein in bovine hepatocytes in vitro[J]. Journal of Animal Physiology and Animal Nutrition, 2016, 100(2): 331-336. DOI:10.1111/jpn.2016.100.issue-2
[24]
LI Y, DING H Y, WANG X C, et al. High levels of acetoacetate and glucose increase expression of cytokines in bovine hepatocytes, through activation of the NF-κB signalling pathway[J]. Journal of Dairy Research, 2016, 83(1): 51-57. DOI:10.1017/S0022029915000680
[25]
SHI X, LI X, LI D, et al. β-hydroxybutyrate activates the NF-κB signaling pathway to promote the expression of pro-inflammatory factors in calf hepatocytes[J]. Cellular Physiology and Biochemistry, 2014, 33(4): 920-932. DOI:10.1159/000358664
[26]
SHI X X, LI D D, DENG Q H, et al. NEFAs activate the oxidative stress-mediated NF-κB signaling pathway to induce inflammatory response in calf hepatocytes[J]. The Journal of Steroid Biochemistry and Molecular Biology, 2015, 145: 103-112. DOI:10.1016/j.jsbmb.2014.10.014
[27]
LACETERA N, FRANCI O, SCALIA D, et al. Effects of nonesterified fatty acids and β-hydroxybutyrate on functions of mononuclear cells obtained from ewes[J]. American Journal of Veterinary Research, 2002, 63(3): 414-418. DOI:10.2460/ajvr.2002.63.issue-3
[28]
LACETERA N, SCALIA D, FRANCI O, et al. Short communication:effects of nonesterified fatty acids on lymphocyte function in dairy heifers[J]. Journal of Dairy Science, 2004, 87(4): 1012-1014. DOI:10.3168/jds.S0022-0302(04)73246-4
[29]
LACETERA N, SCALIA D, BERNABUCCI U, et al. Lymphocyte functions in overconditioned cows around parturition[J]. Journal of Dairy Science, 2005, 88(6): 2010-2016. DOI:10.3168/jds.S0022-0302(05)72877-0
[30]
VAILATI-RIBONI M, OSORIO J S, TREVISI E, et al. Supplemental Smartamine M in higher-energy diets during the prepartal period improves hepatic biomarkers of health and oxidative status in Holstein cows[J]. Journal of Animal Science and Biotechnology, 2017, 8(1): 17. DOI:10.1186/s40104-017-0147-7
[31]
AWAWDEH M S. Rumen-protected methionine and lysine:effects on milk production and plasma amino acids of dairy cows with reference to metabolisable protein status[J]. Journal of Dairy Research, 2016, 83(2): 151-155. DOI:10.1017/S0022029916000108
[32]
ROBINSON P H. Impacts of manipulating ration metabolizable lysine and methionine levels on the performance of lactating dairy cows:A systematic review of the literature[J]. Livestock Science, 2010, 127(2/3): 115-126.
[33]
ZANTON G I, BOWMAN G R, VÁZQUEZ-AÑÓN M, et al. Meta-analysis of lactation performance in dairy cows receiving supplemental dietary methionine sources or postruminal infusion of methionine[J]. Journal of Dairy Science, 2014, 97(11): 7085-7101. DOI:10.3168/jds.2014-8220
[34]
ACOSTA D A V, DENICOL A C, TRIBULO P, et al. Effects of rumen-protected methionine and choline supplementation on the preimplantation embryo in Holstein cows[J]. Theriogenology, 2016, 85(9): 1669-1679. DOI:10.1016/j.theriogenology.2016.01.024
[35]
DALBACH K F, LARSEN M, RAUN B M L, et al. Effects of supplementation with 2-hydroxy-4-(methylthio)-butanoic acid isopropyl ester on splanchnic amino acid metabolism and essential amino acid mobilization in postpartum transition Holstein cows[J]. Journal of Dairy Science, 2011, 94(8): 3913-3927. DOI:10.3168/jds.2010-3724
[36]
ARDALAN M, REZAYAZDI K, DEHGHAN-BANADAKY M. Effect of rumen-protected choline and methionine on physiological and metabolic disorders and reproductive indices of dairy cows[J]. Journal of Animal Physiology and Animal Nutrition, 2010, 94(6): e259-e265. DOI:10.1111/jpn.2010.94.issue-6
[37]
ORDWAY R S, BOUCHER S E, WHITEHOUSE N L, et al. Effects of providing two forms of supplemental methionine to periparturient Holstein dairy cows on feed intake and lactational performance[J]. Journal of Dairy Science, 2009, 92(10): 5154-5166. DOI:10.3168/jds.2009-2259
[38]
SOCHA M T, PUTNAM D E, GARTHWAITE B D, et al. Improving intestinal amino acid supply of pre-and postpartum dairy cows with rumen-protected methionine and lysine[J]. Journal of Dairy Science, 2005, 88(3): 1113-1126. DOI:10.3168/jds.S0022-0302(05)72778-8
[39]
PHILLIPS G J, CITRON T L, SAGE J S, et al. Adaptations in body muscle and fat in transition dairy cattle fed differing amounts of protein and methionine hydroxy analog[J]. Journal of Dairy Science, 2003, 86(11): 3634-3647. DOI:10.3168/jds.S0022-0302(03)73969-1