动物营养学报    2018, Vol. 30 Issue (10): 3810-3817    PDF    
动物氨基酸转运与感知系统研究进展
权素玉1, 南雪梅1*, 蒋林树2, 熊本海1     
1. 中国农业科学院北京畜牧兽医研究所, 动物营养学国家重点实验室, 北京 100193;
2. 北京农学院, 奶牛营养学北京市重点实验室, 北京 102206
摘要: 氨基酸转运载体既有转运活性,又可作为感受器发挥胞外氨基酸感知功能。细胞膜上的氨基酸转运载体,尤其是转运大中性氨基酸包括亮氨酸的转运载体,能够通过胞内营养信号通路,包括调控细胞生长的哺乳动物雷帕霉素靶蛋白复合物1(mTORC1)通路以及被氨基酸饥饿所激活的一般性调控阻遏蛋白激酶(GCN)通路,调控细胞代谢。鉴于氨基酸转运载体的研究对动物营养学的重要性,本文对氨基酸转运载体的分类、氨基酸转运载体介导的氨基酸感知功能及氨基酸转运载体的组织特异性进行综述,以期更好的协助相关研究的发展。
关键词: 氨基酸转运     氨基酸感知     mTORC1通路     GCN通路    
Advances in Animal Amino Acid Transporting and Sensing System
QUAN Suyu1, NAN Xuemei1*, JIANG Linshu2, XIONG Benhai1     
1. State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agriculture Sciences, Beijing 100193, China;
2. Beijing Key Laboratory for Dairy Cow Nutrition, Beijing University of Agriculture, Beijing 102206, China
Abstract: Amino acid transporters have both carrier activity and extracellular amino acid sensing function as a receptor. The amino acid transporters on membrane, especially the transporters of large neutral amino acids including leucine, can regulate cell metabolism through the cellular nutrition signaling pathway:mammalian target of rapamycin complex 1 (mTORC1) pathway regulating cell growth and general control nonderepressible kinase (GCN) pathway activated by amino acid starvation. Given that the study of amino acid transporters is important to animal nutrition, the classification of amino acid transporters, amino acid sensing function mediated by amino acid transporters and the tissue specificity of amino acid transporters were reviewed to better assisting the development of related research.
Key words: amino acid transporting     amino acid sensing     mTORC1 pathway     GCN pathway    

氨基酸是构成动物机体最重要的物质之一,以各种方式影响着动物的生长发育。其中,20种L-氨基酸为机体蛋白质的合成提供原料,特殊情况下氨基酸也可产生与碳水化合物相当的能量为大多数细胞的代谢提供能量;此外,氨基酸不仅为三羧酸循环和糖异生提供中间产物,也是许多激素、神经递质等合成所需的前体物质,在机体特殊物质代谢过程,如多胺、肌酸和磷脂酰丝氨酸代谢中发挥重要作用。因此,机体需要高效的调节机制来平衡细胞内外的氨基酸浓度以保证其内稳态有条不紊地运行,而氨基酸转运载体在该过程中发挥了至关重要的作用[1]

Christensen是哺乳动物细胞氨基酸转运载体研究的先驱,他发现几种氨基酸由胞外进入胞内时存在竞争关系,并进一步通过分子克隆证明了氨基酸转运载体的存在[2]。目前,对于机体内氨基酸营养代谢相关的哺乳动物雷帕霉素靶蛋白复合物1(mammalian target of rapamycin complex 1,mTORC1)通路和一般性调控阻遏蛋白激酶(general control nonderepressible kinase,GCN)通路的研究已非常广泛,但对于氨基酸穿梭细胞的转运机制及其信号感知的研究甚少,本文综述了近年来这方面的研究进展,以期为后续研究提供参考。

1 氨基酸转运载体的分类

细胞膜的磷脂双分子层是一种选择性屏障,诸如氨基酸这样的大分子无法扩散穿过,需要跨膜转运载体即跨膜氨基酸转运载体来协助其穿梭。氨基酸转运载体在转运氨基酸时会选择性偶联Na+、H+、K+和Cl-的逆向转运。哺乳动物氨基酸转运载体的现代分类方法基于转运载体基因序列的相似性,这种分类方法正在逐渐取代基于“系统”(如功能特性、底物特异性、离子依赖性、pH敏感性、动力学特性)的传统分类方法[3]

哺乳动物氨基酸转运载体的结合位点通常能够识别一系列结构相似的氨基酸,按照这种特性氨基酸可分为以下几类:大中性氨基酸(large neutral amino acids,LNAAs)、小中性氨基酸(small neutral amino acids,SNAAs)、阳离子氨基酸(cationic amino acids,CAAs)和阴离子氨基酸(anionic amino acids,AAAs)[4]。目前存在6种典型的氨基酸转运载体超家族:溶质运载蛋白家族(solute carrier family,SLC)成员1(SLC1)、SLC6、SLC7、SLC36、SLC38和SLC43[5]。此外,还包括SLC16,为单羧酸转运载体,能够转运芳香性氨基酸。这些氨基酸转运载体的典型特点是拥有10~12个跨膜结构域且围绕着中心孔区域。SLC3家族虽然也被归类为氨基酸转运载体,但其结构并不典型,因为它们只有单个跨膜结构域糖蛋白,作为SLC7家族的调节亚基发挥作用[6]

SLC1家族包括5个高亲和力谷氨酰胺(glutamine,Gln)转运载体(SLC1A1、SLC1A2、SLC1A3、SLC1A6、SLC1A7)和2个中性氨基酸转运载体(SLC1A4和SLC1A5)。SLC1A5基因编码丙氨酸(alanine,Ala)-丝氨酸(serine,Ser)-半胱氨酸(cysteine,Cys)转运蛋白2(Ala-Ser-Cys transporter 2,ASCT2),尽管其命名如此,但其更偏向于转运Gln。ASCT2是选择性双向转运载体,Gln、Ser、天冬酰胺(asparagine,Asn)及苏氨酸(threonine,Thr)可双向转运,而Ala、缬氨酸(valine,Val)和蛋氨酸(methionine,Met)只能由细胞外侧向内侧转运[7]。SLC7家族是重要的Gln转运家族,共有13个成员,分成2个亚群:阳离子氨基酸转运载体(CAA transporter,CATs)和L-氨基酸转运载体(L-amino acid transporter,LATs)。4F2细胞表面抗原重链(4F2 cell-surface antigen heavy chain,4F2hc)是一种多功能蛋白质,介导免疫系统调节、细胞激活、生长和黏附,同时又能以与SLC3A2和SLC7A5基因编码蛋白质相结合的形式形成LAT1/4F2hc异二聚体协助转运必需氨基酸。LAT2也可与4F2hc共表达协同转运氨基酸,其区别是LAT1/4F2hc复合体更倾向于转运诸如亮氨酸(leucine,Leu)这样的LNAAs,而LAT2/4F2hc复合体底物范围更宽泛,除LNAAs之外也可转运诸如Ala、甘氨酸(glycine,Gly)这样的小氨基酸。并且LAT1/4F2hc复合体对Gln的亲和力较低,而LAT2/4F2hc复合体对Gln的亲和力较高[8]。SLC38家族属于氨基酸多聚胺有机阳离子(amino acid polyamine-organic cation family,APC)家族,该家族共有11个成员,能够介导Gln、Ala等中性氨基酸及组氨酸(histidine,His)、精氨酸(argnine,Arg)和天冬氨酸(aspartate,Asp)的转运。该家族较被熟知的成员包括SLC38A1、SLC38A2、SLC38A3、SLC38A4及SLC38A5[9]。目前已报道的SLC超家族和具体系统分类本文归纳总结为表 1[3, 10]

表 1 SLC超家族及其系统分类 Table 1 SLC super family and system classification
2 氨基酸转运载体介导的氨基酸感知信号通路

由氨基酸转运载体介导的氨基酸感知信号通路主要有2种:mTORC1通路和GCN通路。在特定氨基酸高浓度时mTORC1通路激活,mTORC1通路能够监控细胞质和亚细胞结构如溶酶体中的氨基酸浓度[11]。GCN通路主要感知细胞质中与tRNA结合的氨基酸浓度,GCN2在该过程中发挥着中心作用[12]

2.1 mTORC1

mTORC1由3个重要部分构成:哺乳动物雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)、mTOR调控相关蛋白(regulatory-associated protein of mTOR,Raptor)及哺乳动物SEC13致死蛋白8(mammalian lethal with SEC13 protein 8,mLST8,又称GβL)[13]。mTOR作为mTORC1复合物的中心成分,为Ser-Thr激酶,在调控细胞生长、蛋白合成、自噬过程中起中心作用;Raptor促使底物与雷帕霉素靶蛋白信号(target of rapamycin signaling,TOS)基序结合从而形成mTORC1复合物;mLST8与蛋白的催化作用相关,能够稳定激酶激活回路。除这必需的3部分外,mTORC1还含有2个抑制性亚基:富含脯氨酸蛋白激酶1底物1(proline-rich AKT1 substrate 1,PRAS40)和含邻苯二甲酸二乙酯结构域的mTOR互作蛋白(DEP domain-containing mTOR-interacting protein,DEPTOR)[14]

mTORC1信号通路与其上游调节分子构成2条调控途径:磷脂酰肌醇3-激酶(phosphatidylinositol 3-kinase,PI3K)-蛋白激酶B(protein kinase B,Akt)-mTORC1信号通路,肝脏激酶B1(liver kinase B1,LKB1)-腺苷酸激活蛋白激酶(AMP-activated protein kinase,AMPK)-mTORC1信号通路。mTORC1信号通路激活后可通过调控下游的核糖体蛋白S6激酶β1(p70 S6 kinase β1,S6K1)和真核细胞翻译起始因子4E结合蛋白(eIF4E binding protein,4EBP)的磷酸化来调节蛋白质的合成[15]。mTORC1信号通路是细胞内关键的合成代谢信号机制,对营养水平、生长因子、能量应激、组织缺氧刺激产生应答[16]

必需氨基酸,如Leu、色氨酸(tryptophan,Try)、苯丙氨酸(phenylalanine,Phe)、Arg等能够激活mTORC1通路[17]。mTORC1对氨基酸浓度的应答要通过2种鸟苷三磷酸酶(GTPase)介导:Rag GTPase和脑内富含的Ras同源GTPase(Ras homolog enriched in brain GTPase,Rheb GTPase)[18]。氨基酸激活mTORC1通路必须通过溶酶体膜G-蛋白和Rheb GTPase来介导,Rheb GTPase通过下游结节性硬化复合体2(tuberous sclerosis complex 2,TSC2)起作用,正向调节mTORC1信号通路[19]。近年来,研究者发现了一些与mTORC1信号通路相关的氨基酸胞内感受器,如Leu tRNA合成酶(LRS)、谷氨酸脱氢酶(GDP)、支链氨基酸受体1等[11]。LRS对胞内Leu浓度非常敏感,通过移位至溶酶体促进核苷与Rag GTPase结合进而激活mTORC1通路[20]。液泡膜H+-腺苷三磷酸酶(ATPase)存在于溶酶体膜,对氨基酸累积非常敏感,可直接作用于Rag GTPase激活mTORC1信号通路,是近年来新发现的重要胞内氨基酸感受器[21]

Kim等[22]研究显示,胰高血糖素选择性封闭可增加中性氨基酸转运载体SLC38A5的表达,后者通过mTORC1信号通路调控小鼠胰腺α细胞的增殖。Pinilla等[23]研究显示,在MCF-7人乳腺癌细胞中,慢性竞争性抑制氨基酸转运载体SLC38A2能够降低细胞中SLC38A2底物氨基酸及必需支链氨基酸的浓度,使mTORC1依赖性S6K1磷酸化水平增加。Nicklin等[24]研究显示,氨基酸转运载体SLA1A5和SLC7A5受到抑制后,HeLa细胞通过限制Gln和Leu的吸收抑制mTORC1通路激活。

2.2 GCN

GCN2属于真核起始因子2α(eukaryotic initiation factor 2α,eIF2α)激酶,能够通过直接结合未负荷空载tRNAs感知细胞内特定的氨基酸缺乏。eIF2α磷酸化后可破坏Met起始密码子,从而阻止mRNA翻译起始,降低球蛋白的合成。氨基酸饥饿后这一反应便于mRNA选择性翻译蛋白质合成、修饰及清除相关基因[7]。许多细胞中,GCN信号通路的重要作用就是在氨基酸缺乏时上调氨基酸转运载体SLC38A2的基因表达,这一过程被称为“适应性调节”,涉及如下几个过程:转录激活因子(activating transcription actor,ATF4)结合于SLC38A2氨基酸反应元件激活转录,通过内部核糖体进入位点维持SLC38A2 mRNA翻译和增加SLC38A2的稳定性(减少其降解)[25]。在GCN信号转导过程中,氨基酸转运载体既起到了“转运子(transporter)”的作用,又起到了“感受体(receptor)”的作用,像这种兼具转运和信号感知功能的载体被称为“transceptors”。目前已明确的“transceptors”包括SLC38A2和SLC36A1,它们能够感知氨基酸的丰度而不依赖于其转运功能[26]

3 氨基酸转运载体与氨基酸感知的组织特异性

近年来,氨基酸转运载体在调节蛋白质合成中的研究日趋增多。细胞内可用氨基酸浓度感知、mTORC1信号通路激活、蛋白质合成机制正在逐渐被人们所了解,同时,多种氨基酸转运载体及其感受器在不同组织细胞中的表达和定位已被研究和揭示。

3.1 骨骼肌的氨基酸转运及感知

研究发现,人类骨骼肌氨基酸转运载体的表达是动态的,可对多种刺激产生应答,表明其对人类骨骼肌的适应性有独特的调节作用,更好地了解其作用机制有利于我们优化营养策略,改善骨骼肌健康。

研究显示,老人抗阻训练后骨骼肌注射氨基酸,其特定的氨基酸转运载体表达增加[27]。给健康的年轻人注射氨基酸,其骨骼肌细胞中氨基酸转运载体SLC7A5、SLC38A2和SLC36A1的mRNA表达显著增加[28]。骨骼肌注射氨基酸,随后氨基酸逐渐恢复至正常水平,蛋白质表达增加仍可持续2~3 h[29]。在动物和人类骨骼肌中,细胞内氨基酸的有效性主要通过mTORC1信号通路调节,mTORC1信号通路激活可促进骨骼肌蛋白质的合成,减弱自噬[30]。最近研究显示,氨基酸转运载体对骨骼肌细胞内和细胞外氨基酸浓度变化有整体作用,它既在氨基酸向胞内转运过程中起中心作用,又通过“transceptors”感知细胞外氨基酸状况[31]。肌肉组织特异性敲除SLC7A5的小鼠饲喂高蛋白质饲粮后表现出轻微胰岛素抵抗,并伴有mTORC1信号通路激活[32]

3.2 上皮细胞的氨基酸转运及感知

1985年,Baumrucker[33]初步阐明了奶牛乳腺组织中氨基酸的功能特性。必需氨基酸,尤其是Leu,在乳蛋白合成过程中起着重要的调控作用。Leu主要通过L转运系统进入胞内,如LAT1(SLC7A5)偶联CD98(SLC3A2)、LAT3(SLC7A7)及y+系统的LAT3(SLC43A1),其中,LAT1常用来研究氨基酸依赖性mTORC1信号通路激活[34]。由于LAT1将Leu转运入细胞的同时,需要反向转运Gln,所以中性氨基酸转运载体ASCT2(SLC1A5)、SNAT2(SLC38A2)及SNAT4(SLC38A4)先于Leu将Gln转运入细胞是Leu跨膜转运的先决条件[35]。Moshel等[36]研究发现,除去奶牛乳腺上皮细胞培养基中的所有氨基酸或选择性除去培养基中的Leu可降低mTORC1信号通路介导的乳蛋白和β-乳球蛋白的表达。氨基酸供应增加后,刺激鸟苷二磷酸转变,鸟苷三磷酸定位在Rag异二聚体上,然后与mTORC1结合后移位至溶酶体膜,进一步发挥作用[37]。Leu供应可影响乳腺上皮细胞酪蛋白的合成[38],且包括Leu在内的多种氨基酸混合添加可促进mTORC1信号通路相关蛋白的磷酸化[39]

特定的氨基酸转运载体不仅能够跨膜运输氨基酸,而且这些氨基酸转运载体能够通过mTORC1信号通路影响蛋白质的合成[40]。Drummond等[41]研究发现,必需氨基酸增加可上调LAT1、CD98、Na+偶联的中性氨基酸转运载体SLC38A2的基因表达,并通过mTORC1信号通路使蛋白质合成代谢增强。抑制特定氨基酸转运载体的活性,同时增加氨基酸浓度,mTORC1信号通路非但没有激活,反而被抑制[24]。Li等[42]研究显示,最佳比率的必需氨基酸供给可通过mTORC1信号通路刺激乳腺上皮细胞β-酪蛋白的合成。Gao等[43]研究发现,单一添加不同浓度Leu或His可通过mTORC1信号通路调控乳蛋白的合成。

除乳腺上皮细胞外,其他组织器官的上皮细胞氨基酸转运载体也可激活mTORC1信号通路。Na+偶联的中性氨基酸转运载体SLC6A19基因敲除小鼠表现出明显的肠上皮及肾上皮细胞氨基酸饥饿症状[44]。以中性氨基酸和CAAs为底物的Na+/Cl-偶联氨基酸转运载体SLC6A14在哺乳动物囊胚时期显著上调,其能为胚泡的激活和滋养层的生长提供足够的氨基酸,尤其是Leu[45]。胎盘的生长受到mTORC1信号通路的调控,后者能够影响氨基酸转运载体的翻译后修饰或其在胎盘表面的移位[46]

4 小结

氨基酸转运载体在哺乳动物细胞生长和代谢过程中发挥重要作用,可通过mTORC1信号通路和GCN信号通路调节机体的营养平衡。体外细胞试验为我们提供了氨基酸感知的分子基础,但研究者通常是在培养基中添加2~5倍体内细胞液浓度的氨基酸混合物,或者是在氨基酸饥饿处理后添加氨基酸混合物来研究mTORC1信号通路的激活,与动物机体真实的代谢情况存在一定偏差,需未来工作者进一步的研究与完善。

参考文献
[1]
BRÖER S, BRÖER A. Amino acid homeostasis and signalling in mammalian cells and organisms[J]. Biochemical Journal, 2017, 474(12): 1935-1963. DOI:10.1042/BCJ20160822
[2]
CHRISTENSEN H N. Methods for distinguishing amino acid transport systems of a given cell or tissue[J]. Federation Proceedings, 1966, 25(3): 850-853.
[3]
PONCET N, TAYLOR P M. The role of amino acid transporters in nutrition[J]. Current Opinion in Clinical Nutrition and Metabolic Care, 2013, 16(1): 57-65. DOI:10.1097/MCO.0b013e32835a885c
[4]
HUNDAL H S, TAYLOR P M. Amino acid transceptors:gate keepers of nutrient exchange and regulators of nutrient signaling[J]. American Journal of Physiology-Endocrinology and Metabolism, 2009, 296(4): E603-E613. DOI:10.1152/ajpendo.91002.2008
[5]
POCHINI L, SCALISE M, GALLUCCIO M, et al. Membrane transporters for the special amino acid glutamine:structure/function relationships and relevance to human health[J]. Frontiers in Chemistry, 2014, 2: 61.
[6]
TAYLOR P M. Role of amino acid transporters in amino acid sensing[J]. The American Journal of Clinical Nutrition, 2013, 99(1): 223S-230S.
[7]
PINGITORE P, POCHINI L, SCALISE M, et al. Large scale production of the active human ASCT2(SLC1A5) transporter in Pichia pastoris-functional and kinetic asymmetry revealed in proteoliposomes[J]. Biochimica et Biophysica Acta (BBA)-Biomembranes, 2013, 1828(9): 2238-2246. DOI:10.1016/j.bbamem.2013.05.034
[8]
DEL AMO E M, URTTI A, YLIPERTTULA M. Pharmacokinetic role of L-type amino acid transporters LAT1 and LAT2[J]. European Journal of Pharmaceutical Sciences, 2008, 35(3): 161-174. DOI:10.1016/j.ejps.2008.06.015
[9]
CHAUDHRY F A, SCHMITZ D, REIMER R J, et al. Glutamine uptake by neurons:interaction of protons with system a transporters[J]. The Journal of Neuroscience, 2002, 22(1): 62-72. DOI:10.1523/JNEUROSCI.22-01-00062.2002
[10]
BIONAZ M, LOOR J J. Gene networks driving bovine mammary protein synthesis during the lactation cycle[J]. Bioinformatics and Biology Insights, 2011, 5: 83-98.
[11]
KIM S G, BUEL G R, BLENIS J. Nutrient regulation of the mTOR complex 1 signaling pathway[J]. Molecules and Cells, 2013, 35(6): 463-473. DOI:10.1007/s10059-013-0138-2
[12]
GALLINETTI J, HARPUTLUGIL E, MITCHELL J R. Amino acid sensing in dietary-restriction-mediated longevity:roles of signal-transducing kinases GCN2 and TOR[J]. Biochemical Journal, 2013, 449(1): 1-10.
[13]
KIM D H, SARBASSOV D D, ALI S M, et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery[J]. Cell, 2002, 110(2): 163-175. DOI:10.1016/S0092-8674(02)00808-5
[14]
SAXTON R A, SABATINI D M. mTOR signaling in growth, metabolism, and disease[J]. Cell, 2017, 168(6): 960-976. DOI:10.1016/j.cell.2017.02.004
[15]
ZHANG M C, ZHAO S G, WANG S S, et al. d-Glucose and amino acid deficiency inhibits casein synthesis through JAK2/STAT5 and AMPK/mTOR signaling pathways in mammary epithelial cells of dairy cows[J]. Journal of Dairy Science, 2018, 101(2): 1737-1746. DOI:10.3168/jds.2017-12926
[16]
EFEYAN A, ZONCU R, SABATINI D M. Amino acids and mTORC1:from lysosomes to disease[J]. Trends in Molecular Medicine, 2012, 18(9): 524-533. DOI:10.1016/j.molmed.2012.05.007
[17]
HARA K, YONEZAWA K, WENG Q P, et al. Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism[J]. Journal of Biological Chemistry, 1998, 273(23): 14484-14494. DOI:10.1074/jbc.273.23.14484
[18]
DURÁN R V, HALL M N. Regulation of TOR by small GTPases[J]. EMBO Reports, 2012, 13(2): 121-128. DOI:10.1038/embor.2011.257
[19]
KIMBALL S R, JEFFERSON L S. Molecular mechanisms through which amino acids mediate signaling through the mammalian target of rapamycin[J]. Current Opinion in Clinical Nutrition and Metabolic Care, 2004, 7(1): 39-44. DOI:10.1097/00075197-200401000-00008
[20]
HAN J M, JEONG S J, PARK M C, et al. Leucyl-tRNA synthetase is an intracellular leucine sensor for the mTORC1-signaling pathway[J]. Cell, 2012, 149(2): 410-424. DOI:10.1016/j.cell.2012.02.044
[21]
ZONCU R, BAR-PELED L, EFEYAN A, et al. mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H+-ATPase[J]. Science, 2011, 334(6056): 678-683. DOI:10.1126/science.1207056
[22]
KIM J, OKAMOTO H, HUANG Z J, et al. Amino acid transporter Slc38a5 controls glucagon receptor inhibition-induced pancreatic α cell hyperplasia in mice[J]. Cell Metabolism, 2017, 25(6): 1348-1361. DOI:10.1016/j.cmet.2017.05.006
[23]
PINILLA J, ALEDO J C, CWIKLINSKI E, et al. SNAT2 transceptor signalling via mTOR:a role in cell growth and proliferation[J]. Frontiers in Bioscience, 2011, 3: 1289-1299.
[24]
NICKLIN P, BERGMAN P, ZHANG B L, et al. Bidirectional transport of amino acids regulates mTOR and autophagy[J]. Cell, 2009, 136(3): 521-534. DOI:10.1016/j.cell.2008.11.044
[25]
PALⅡ S S, THIAVILLE M M, PAN Y X, et al. Characterization of the amino acid response element within the human sodium-coupled neutral amino acid transporter 2(SNAT2) system A transporter gene[J]. Biochemical Journal, 2006, 395(3): 517-527. DOI:10.1042/BJ20051867
[26]
USUI T, NAGUMO Y, WATANABE A, et al. Brasilicardin A, a natural immunosuppressant, targets amino acid transport system L[J]. Chemistry & Biology, 2006, 13(11): 1153-1160.
[27]
DICKINSON J M, DRUMMOND M J, COBEN J R, et al. Aging differentially affects human skeletal muscle amino acid transporter expression when essential amino acids are ingested after exercise[J]. Clinical Nutrition, 2013, 32(2): 273-280. DOI:10.1016/j.clnu.2012.07.009
[28]
EVANS K, NASIM Z, BROWN J, et al. Acidosis-sensing glutamine pump SNAT2 determines amino acid levels and mammalian target of rapamycin signalling to protein synthesis in L6 muscle cells[J]. Journal of the American Society of Nephrology, 2007, 18(5): 1426-1436. DOI:10.1681/ASN.2006091014
[29]
GLYNN E L, FRY C S, DRUMMOND M J, et al. Excess leucine intake enhances muscle anabolic signaling but not net protein anabolism in young men and women[J]. The Journal of Nutrition, 2010, 140(11): 1970-1976. DOI:10.3945/jn.110.127647
[30]
DICKINSON J M, FRY C S, DRUMMOND M J, et al. Mammalian target of rapamycin complex 1 activation is required for the stimulation of human skeletal muscle protein synthesis by essential amino acids[J]. The Journal of Nutrition, 2011, 141(5): 856-862. DOI:10.3945/jn.111.139485
[31]
GOBERDHAN D C I, MEREDITH D, BOYD C A R, et al. PAT-related amino acid transporters regulate growth via a novel mechanism that does not require bulk transport of amino acids[J]. Development, 2005, 132(10): 2365-2375. DOI:10.1242/dev.01821
[32]
PONCET N, MITCHELL F E, IBRAHIM A F M, et al. The catalytic subunit of the system L1 amino acid transporter (Slc7a5) facilitates nutrient signaling in mouse skeletal muscle[J]. PLoS One, 2014, 9(2): e89547. DOI:10.1371/journal.pone.0089547
[33]
BAUMRUCKER C R. Amino acid transport systems in bovine mammary tissue[J]. Journal of Dairy Science, 1985, 68(9): 2436-2451. DOI:10.3168/jds.S0022-0302(85)81119-X
[34]
BEQUETTE B J, HANIGAN M D, CALDER A G, et al. Amino acid exchange by the mammary gland of lactating goats when histidine limits milk production[J]. Journal of Dairy Science, 2000, 83(4): 765-775. DOI:10.3168/jds.S0022-0302(00)74939-3
[35]
BAIRD F E, BETT K J, MACLEAN C, et al. Tertiary active transport of amino acids reconstituted by coexpression of system A and L transporters in Xenopus oocytes[J]. American Journal of Physiology:Endocrinology and Metabolism, 2009, 297(3): E822-E829. DOI:10.1152/ajpendo.00330.2009
[36]
MOSHEL Y, RHOADS R E, BARASH I. Role of amino acids in translational mechanisms governing milk protein synthesis in murine and ruminant mammary epithelial cells[J]. Journal of Cellular Biochemistry, 2006, 98(3): 685-700. DOI:10.1002/(ISSN)1097-4644
[37]
SANCAK Y, PETERSON T R, SHAUL Y D, et al. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1[J]. Science, 2008, 320(5882): 1496-1501. DOI:10.1126/science.1157535
[38]
APPUHAMY J A D R N, KNOEBEL N A, NAYANANJALIE W A D, et al. Isoleucine and leucine independently regulate mTOR signaling and protein synthesis in MAC-T cells and bovine mammary tissue slices[J]. The Journal of Nutrition, 2012, 142(3): 484-491. DOI:10.3945/jn.111.152595
[39]
APELO S I A, SINGER L M, LIN X Y, et al. Isoleucine, leucine, methionine, and threonine effects on mammalian target of rapamycin signaling in mammary tissue[J]. Journal of Dairy Science, 2014, 97(2): 1047-1056. DOI:10.3168/jds.2013-7348
[40]
HUNDAL H S, TAYLOR P M. Amino acid transceptors:gate keepers of nutrient exchange and regulators of nutrient signaling[J]. American Journal of Physiology:Endocrinology and Metabolism, 2009, 296(4): E603-E613. DOI:10.1152/ajpendo.91002.2008
[41]
DRUMMOND M J, GLYNN E L, FRY C S, et al. An increase in essential amino acid availability upregulates amino acid transporter expression in human skeletal muscle[J]. American Journal of Physiology:Endocrinology and Metabolism, 2010, 298(5): E1011-E1018. DOI:10.1152/ajpendo.00690.2009
[42]
LI S S, LOOR J J, LIU H Y, et al. Optimal ratios of essential amino acids stimulate β-casein synthesis via activation of the mammalian target of rapamycin signaling pathway in MAC-T cells and bovine mammary tissue explants[J]. Journal of Dairy Science, 2017, 100(8): 6676-6688. DOI:10.3168/jds.2017-12681
[43]
GAO H N, ZHAO S G, ZHENG N, et al. Combination of histidine, lysine, methionine, and leucine promotes β-casein synthesis via the mechanistic target of rapamycin signaling pathway in bovine mammary epithelial cells[J]. Journal of Dairy Science, 2017, 100(9): 7696-7709. DOI:10.3168/jds.2015-10729
[44]
BRÖER A, JUELICH T, VANSLAMBROUCK J M, et al. Impaired nutrient signaling and body weight control in a Na+ neutral amino acid cotransporter (Slc6a19)-deficient mouse[J]. Journal of Biological Chemistry, 2011, 286(30): 26638-26651. DOI:10.1074/jbc.M111.241323
[45]
VAN WINKLE L J, TESCH J K, SHAH A, et al. System B0, + amino acid transport regulates the penetration stage of blastocyst implantation with possible long-term developmental consequences through adulthood[J]. Human Reproduction Update, 2005, 12(2): 145-157.
[46]
ROOS S, KANAI Y, PRASAD P D, et al. Regulation of placental amino acid transporter activity by mammalian target of rapamycin[J]. American Journal of Physiology:Cell Physiology, 2009, 296(1): C142-C150. DOI:10.1152/ajpcell.00330.2008