作为中药黄连的主要成分,小檗碱因其清热燥湿、泻火解毒的药性,在中医上常内服用于湿热、呕吐、泻痢、黄疸、高热神昏、心火亢盛、心烦不寐、目赤、牙痛、消渴及痈肿疔疮等症候,外敷用于湿疹、湿疮及耳道流脓等症候[1]。近年来,小檗碱被发现在治疗肿瘤、癌症、糖尿病、心血管病、高血脂症、炎症、细菌和病毒感染、脑缺血性损伤、精神失调、神经障碍、阿尔茨海默病及骨质疏松等具有药理作用[2]。炎症性肠病(inflammatory bowel disease,IBD)是一种易复发的慢性肠道炎症疾病,可导致人和动物出现腹痛、腹泻及排出黏稠或带血粪便等症状,不易根治。因具有抗菌、抗炎、抗氧化及调节免疫等生理功能,小檗碱有益于IBD的预防和治疗。本文介绍小檗碱的种类和性质、IBD的基本特征,探讨小檗碱对IBD的调控机制,为其在实践中的应用提供科学依据。
1 小檗碱的种类和性质小檗碱是小檗科、罂粟科、毛茛科、芸香科、防己科及鼠李科等药用植物的根、茎及皮所含的主要活性成分,常见的有黄连、黄柏、冬青叶小檗、刺檗及印度小檗等。小檗碱是毛茛科黄连属多年生草本植物黄连、三角叶黄连或云连干燥根茎的有效药理成分,又称黄连素。
小檗碱是一种异喹啉生物碱,分子式为C20H18NO4,分子质量为336 u,熔点为85~86 ℃,为黄色针状结晶,无臭,味极苦。其在热水或甲醇中可溶,在水或乙醇中微溶,在氯仿中极微溶,在乙醚或苯中不溶。临床应用主要为其盐酸盐和硫酸盐,现主要通过化学合成获得。用不同的碱处理,可得到季铵式、醛式及醇式3种不同形式的小檗碱,其中以季铵式最稳定。
2 IBD的基本特征IBD是溃疡性结肠炎(ulcerative colitis,UC)和克罗恩病(Crohn’s disease,CD)的总称,为一类易复发的慢性肠道炎症疾病,可导致人和动物出现腹痛、腹泻及排出黏稠或带血粪便等症状,是较难治疗且能造成重大危害的疾病之一[3]。其中,UC是一种非特异性炎症性疾病,病变部位一般位于结肠;而CD是一种慢性肉芽肿性炎症性疾病,常见于回肠末端和结肠前端。目前,IBD的病因尚未完全阐明,其发病机制涉及遗传易感性、生活节律改变、环境不良及肠道菌群失调等多种因素及其相互作用[4]。研究表明,免疫系统和神经系统之间存在密切的相互作用,两者都可通过肠神经胶质细胞与肠上皮细胞、嗜酸性粒细胞或肥大细胞的直接相互作用,或通过组胺、神经激肽、血清素等许多细胞因子的信号传导进行交流,诱导炎症的发生和增加、IBD和疼痛调节中的动力障碍[5]。肠道、环境和细胞因子相互作用可引发过度黏膜免疫应答,也能导致IBD的产生[6]。肠道黏膜上皮屏障遭到破坏,会导致抗炎因子和促炎因子的平衡失调,激发一系列抗原特异性免疫反应及炎症变化,并释放大量细胞因子和炎症介质,从而引起正常或已受损的肠道组织产生过度黏膜免疫反应,加剧肠道黏膜损伤,诱导IBD的产生和发展[7]。同时,黏膜免疫系统紊乱会引起黏膜对肠道菌群过度免疫应答,也能诱导IBD的发生。目前,可用于治疗IBD的主要药物包括氨基水杨酸制剂、糖皮质激素及免疫抑制剂等,但上述药物较为昂贵,且只能缓解IBD诱发的炎症,限制并发症,并不能完全治愈[1]。
3 小檗碱对IBD的调控作用及其机制从安全性和有效性角度考虑,将天然产物用于防治IBD是一个必然选择。大量体内研究显示,对乙酸、吲哚美辛、三硝基苯磺酸(trinitrobenzene sulfonic acid,TNBSA)和葡聚糖硫酸酯钠(dextran sulfate sodium,DDS)等制剂诱导的啮齿动物IBD,小檗碱具有治疗的潜在优势[8]。小檗碱的抗菌、抗炎、调血脂、降血糖、抗肿瘤、抗氧化、降血压、抗血栓、止痛、兴奋平滑肌及调节免疫等药理特性,皆可能成为调控IBD的潜在机制。
3.1 抗菌止泻IBD的发病与细菌或病毒感染有关,故抑菌抗病毒成为预防和治疗IBD的关键。小檗碱是一种可与脂多糖(lipopolysaccharides,LPS)、细菌细胞壁组分及细胞表面蛋白直接相互作用的带正电荷化合物,具有广谱抗菌作用,对多种耐药菌均有抑制作用[9]。口服后,小檗碱因不易被吸收而滞留在肠道中,使得肠道内药物浓度较高,为抑菌作用创造了条件。小檗碱可逆转IBD模型动物肠道内大肠杆菌和肠球菌数量增加而乳酸菌和双歧杆菌数量减少的趋势[1]。Chae等[10]发现,小檗碱对人肠道的常驻菌均有抑制作用,其中对类腐败梭菌等有害菌抑制作用较强,而对乳酸菌等有益菌抑制作用较弱。Lv等[11]报道,给因艰难梭菌感染而诱发肠道损伤和结肠炎的C57BL/6小鼠灌服小檗碱,可有效抑制肠杆菌科细菌的增殖,抵消灌服万可霉素的副作用,调整肠道微生物区系,杜绝复发,提高成活率。小檗碱的抑菌作用与其影响细菌代谢和增强肠道黏膜上皮细胞壁钙离子通透性有关。IBD的发病症状之一,是肠道黏膜上皮细胞间形成间隙导致水与电解质渗出,引起腹泻。小檗碱可直接影响肠道内细菌毒素诱导的水和电解质的分泌。Chen等[12]指出,小檗碱通过上调肠道黏膜上皮细胞钠氢交换蛋白3与水通道蛋白4来调节水钠吸收,并通过抑制肠道平滑肌运动而延长肠道排空时间,从而降低IBD患者的腹泻率。小檗碱的抑菌作用会被细菌对抗生素产生多重耐药性的外排泵和相关蛋白所拮抗,产生耐药性,使其体外抑菌效果较差。然而,小檗碱的抑菌作用会与其他作用共同发挥影响,使其不仅成为对抗IBD的有效药物,也成为人畜广泛使用的抗菌止泻药。
3.2 镇痛疼痛是IBD的常见症状。在有效治疗IBD的同时,应减轻患者的疼痛。小檗碱的镇痛和抗抑郁作用在IBD的治疗中有着重要作用[13]。Chen等[14]报道,通过增加肠道神经元μ和δ阿片受体的表达,小檗碱可反转患腹泻型肠易激综合征小鼠的肠道运动过强和过度分泌的症状,从而减轻疼痛感受。Tang等[15]认为,一氧化氮(nitric oxide,NO)在疼痛传输中有重要作用,小檗碱可通过介导NO来减轻内脏超敏反应带来的疼痛感。Kim[8]发现,小檗碱的抗炎和抗氧化作用能缓解大鼠坐骨神经慢性压迫性损伤所引起的疼痛。Jiang等[16]报道,小檗碱可减轻复发性口疮引起的疼痛。另外,小檗碱还可缓解由低温或机械损伤引起的疼痛及利血平诱导的疼痛和抑郁[1]。
3.3 抑制氧化应激氧化应激是活性氧自由基产生的一种负作用,与包括IBD在内的多种疾病密切相关。一旦体内活性分子生成与清除的平衡被打破,氧化损伤便会发生[17]。因此,抑制氧化应激是治疗IBD的可选手段之一。小檗碱既能抑制活性分子的生成,又可诱导构建抗氧化防御能力,还可使病变细胞发生氧化应激,具备理想抗氧化剂的潜质[18]。在体外,小檗碱可直接淬灭活性分子,还可螯合还原性过渡金属,间接阻止活性分子的生成[19];在体内,小檗碱会钝化活性分子,干预生成活性分子的酶系统,通过抑制氧化酶来切断活性分子的生成途径[20]。同时,小檗碱通过调节内源抗氧化酶活性和维持内源非酶抗氧化剂水平,诱导机体构建抗氧化防御能力[21]。另外,小檗碱会特异性干预病变细胞内活性分子的生成和去毒,表现为在病变细胞内促氧化,而在正常细胞内抗氧化[22]。
3.4 保护肠道黏膜上皮屏障肠道黏膜上皮屏障功能障碍是患IBD的后果之一。小檗碱有助于恢复肠道黏膜上皮屏障功能,抑制炎症反应,从而介导肠道黏膜康复。在Caco-2单细胞层内,小檗碱可逆转由肿瘤坏死因子-α(tumor necrosis factor-α,TNF-α)、干扰素-γ(interferon-γ,IFN-γ)、过氧化氢及白细胞介素(interleukin,IL)-1诱导的屏障功能失调,降低细胞通透性,修复细胞间紧密连接损伤[23]。类似的结果在HT-29/B6人结肠单细胞层内也被观察到[24]。小檗碱能有效抑制由TNF-α、IFN-γ及衣霉素诱导的Caco-2细胞内质网应激[25]。Li等[26]发现,小檗碱可抑制由多微生物败血症诱导肠道黏膜屏障损伤的大鼠体内TNF-α和IL-6水平升高的趋势,提高上皮细胞紧密连接蛋白水平及通透性。Gu等[27]报道,小檗碱可逆转腹腔注射10 mg/kg LPS诱导内毒素血症的小鼠结肠上皮和膜微区内紧密连接蛋白的再分配。Tan等[28]证实,腹腔注射100、150、200 mg/kg小檗碱均可有效改善腹膜空气暴露诱导的肠道黏膜上皮屏障损伤。对于DDS诱导肠道损伤和结肠炎的小鼠,小檗碱可抑制其结肠组织损伤和缩短的趋势,上调紧密连接蛋白ZO-1、occludin及抗凋亡蛋白的表达,下调凋亡蛋白的表达[29]。
3.5 抗炎机体内抗炎因子与促炎因子处于动态平衡中,若一方改变则打破平衡,诱发炎症。小檗碱可介导Toll样受体(Toll-like receptor,TLR),对机体炎症反应发挥调节作用。TLR可在上皮细胞表面表达,能识别多种类型的病原体或损伤相关分子模式,从而启动细胞内信号传导,导致效应分子的表达和分泌。Mogensen[30]发现,小檗碱可影响TLR-2介导的信号通路,进而调控炎症因子的表达。Li等[31]报道,小檗碱可通过调节免疫应答平衡,从而缓解TNBSA诱导的IBD症状,同时降低结肠黏膜上皮细胞和血清中IFN-γ、IL-17、IL-6、IL-1β及TNF-α水平。小檗碱也可介导环氧酶-2(cyclooxygenase-2,COX-2)表达,从而调控机体炎症反应和组织损伤。Kawano等[32]发现,小檗碱可在体外和体内抑制结肠黏膜上皮细胞和巨噬细胞内COX-2的表达和活性。Kuo等[33]报道,小檗碱能抑制十二烷酰佛波醋酸酯诱导的COX-2和前列腺素2的表达,从而干预炎症反应。
3.6 调控辅助性T细胞(T helper cell,Th)IBD的发生与机体内的细胞因子应答息息相关,而第1层级的细胞因子应答受主导疾病的T细胞分化模式支配。在T细胞的分化中,Th1主要分泌IL-2、IL-12及IFN-γ等,Th17主要分泌IL-17A、IL-21、IL-6、IL-23及TNF-α等,Th2主要分泌IL-5、IL-13、IL-10及IL-4等。IL-10和IL-4等抗炎因子可参与维持正常肠道免疫功能,而IL-1、IL-6、IL-8及TNF-α等促炎因子可介导IBD的发生[34]。Th1/Th2和Th17/调节性T细胞失衡也是IBD发病的因素之一,其中Th17是诱导炎症反应的主要细胞因子,如IBD患者肠道黏膜巨噬细胞和淋巴细胞促炎细胞因子的释放与Th17有关[35]。因此,对靶向细胞因子的干预是治疗IBD的途径之一。Qin等[36]发现,小檗碱可通过对Janus激酶/信号传导子和转录激活子(signal transducer and activator of transcription,STAT)通路的直接作用来实现对Th1和Th17的抑制,从而阻止IBD的发生。Cui等[37]认为,小檗碱通过激活细胞外调节蛋白激酶1/2抑制Th17分化,通过抑制p38丝裂原活化蛋白激酶和c-Jun氨基末端激酶的活化来抑制Th1分化,同时加剧下调STAT1和STAT4的活性。Li等[38]报道,小檗碱有抑制淋巴细胞增殖及下调Th1和Th2细胞因子的作用。
4 小结IBD对人和动物危害极大,迄今使用药物疗法根本无法治愈。体外和体内研究显示,小檗碱治疗IBD的能力较强,这与其具有抗菌止泻、镇痛解痉、抗氧化、上皮屏障保护、抗炎及调控Th的能力有关。就安全性和有效性而言,小檗碱具有防治IBD的潜在优势。目前,将小檗碱用于IBD治疗的案例很少。因此,有必要开展大规模的临床试验,同时加强药物化学的相关研究。
[1] |
HABTEMARIAM S. Berberine and inflammatory bowel disease:a concise review[J]. Pharmacological Research, 2016, 113: 592-599. DOI:10.1016/j.phrs.2016.09.041 |
[2] |
KUMAR A, EKAVALI, CHOPRA K, et al. Current knowledge and pharmacological profile of berberine:an update[J]. European Journal of Pharmacology, 2015, 761: 288-297. DOI:10.1016/j.ejphar.2015.05.068 |
[3] |
DE MATTOS B R R, GARCIA M P G, NOGUEIRA J B, et al. Inflammatory bowel disease:an overview of immune mechanisms and biological treatments[J]. Mediators of Inflammation, 2015, 2015: 493012. |
[4] |
BERNSTEIN C N. Treatment of IBD:where we are and where we are going[J]. The American Journal of Gastroenterology, 2015, 110(1): 114-126. DOI:10.1038/ajg.2014.357 |
[5] |
BAUMGART D C, CARDING S R. Inflammatory bowel disease:cause and immunobiology[J]. The Lancet, 2007, 369(9573): 1627-1640. DOI:10.1016/S0140-6736(07)60750-8 |
[6] |
PEDERSEN J, COSKUN M, SOENDERGAARD C, et al. Inflammatory pathways of importance for management of inflammatory bowel disease[J]. World Journal of Gastroenterology, 2014, 20(1): 64-77. DOI:10.3748/wjg.v20.i1.64 |
[7] |
FONSECA-CAMARILLO G, YAMAMOTO-FURUSHO J K. Immunoregulatory pathways involved in inflammatory bowel disease[J]. Inflammatory Bowel Diseases, 2015, 21(9): 2188-2193. DOI:10.1097/MIB.0000000000000477 |
[8] |
KIM H J. Berberine ameliorates allodynia induced by chronic constriction injury of the sciatic nerve in rats[J]. Journal of Medicinal Food, 2015, 18(8): 909-915. DOI:10.1089/jmf.2014.3346 |
[9] |
ZHOU X, YANG C, LI Y, et al. Potential of berberine to enhance antimicrobial activity of commonly used antibiotics for dairy cow mastitis caused by multiple drug-resistant Staphylococcus epidermidis infection[J]. Genetics and Molecular Research, 2015, 14(3): 9683-9692. DOI:10.4238/2015.August.19.1 |
[10] |
CHAE S H, JEONG I H, CHOI D H, et al. Growth-inhibiting effects of Coptis japonica root-derived isoquinoline alkaloids on human intestinal bacteria[J]. Journal of Agricultural and Food Chemistry, 999, 47(3): 934-938. |
[11] |
LV Z, PENG G L, LIU W H, et al. Berberine blocks the relapse of Clostridium difficile infection in C57BL/6 mice after standard vancomycin treatment[J]. Antimicrobial Agents and Chemotherapy, 2015, 59(7): 3726-3735. DOI:10.1128/AAC.04794-14 |
[12] |
CHEN C Q, TAO C H, LIU Z C, et al. Randomized clinical trial of berberine hydrochloride in patients with diarrhea-predominant irritable bowel syndrome[J]. Phytotherapy Research, 2015, 29(11): 1822-1827. DOI:10.1002/ptr.v29.11 |
[13] |
HSU Y Y, TSENG Y T, LO Y C. Berberine, a natural antidiabetes drug, attenuates glucose neurotoxicity and promotes Nrf2-related neurite outgrowth[J]. Toxicology and Applied Pharmacology, 2013, 272(3): 787-796. DOI:10.1016/j.taap.2013.08.008 |
[14] |
CHEN C Q, LU M L, PAN Q H, et al. Berberine improves intestinal motility and visceral pain in the mouse models mimicking diarrhea-predominant irritable bowel syndrome (IBS-D) symptoms in an opioid-receptor dependent manner[J]. PLoS One, 2015, 10(12): e0145556. DOI:10.1371/journal.pone.0145556 |
[15] |
TANG Q L, LAI M L, ZHONG Y F, et al. Antinociceptive effect of berberine on visceral hypersensitivity in rats[J]. World Journal of Gastroenterology, 2013, 19(28): 4582-4589. DOI:10.3748/wjg.v19.i28.4582 |
[16] |
JIANG X W, ZHANG Y, ZHU Y L, et al. Effects of berberine gelatin on recurrent aphthous stomatitis:a randomized, placebo-controlled, double-blind trial in a Chinese cohort[J]. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 2013, 115(2): 212-217. DOI:10.1016/j.oooo.2012.09.009 |
[17] |
王祖浩, 郭勇, 周美含, 等. 榛仁五肽对HUVEC细胞氧化应激损伤的保护作用[J]. 现代食品科技, 2018, 34(3): 1-7. |
[18] |
汪水平, 王文娟, 彭希豪, 等. 盐酸小檗碱对肉兔脂质代谢、内分泌及抗氧化功能的影响[J]. 畜牧兽医学报, 2013, 44(5): 745-753. |
[19] |
MCCUBREY J A, LERTPIRIYAPONG K, STEELMAN L S, et al. Regulation of GSK-3 activity by curcumin, berberine and resveratrol:potential effects on multiple diseases[J]. Advances in Biological Regulation, 2017, 65: 77-88. DOI:10.1016/j.jbior.2017.05.005 |
[20] |
DANIEL B, KONRAD B, TOPLAK M, et al. The family of berberine bridge enzyme-like enzymes:a treasure-trove of oxidative reactions[J]. Archives of Biochemistry and Biophysics, 2017, 632: 88-103. DOI:10.1016/j.abb.2017.06.023 |
[21] |
SIOW Y L, SARNA L, KARMIN O. Redox regulation in health and disease-therapeutic potential of berberine[J]. Food Research International, 2011, 44(8): 2409-2417. DOI:10.1016/j.foodres.2010.12.038 |
[22] |
MISTRY B M, SHIN H S, KEUM Y S, et al. Synthesis and evaluation of antioxidant and cytotoxicity of the N-mannich base of berberine bearing benzothiazole moieties[J]. Anti-Cancer Agents in Medicinal Chemistry, 2017, 17(12): 1652-1660. |
[23] |
DIGUILIO K M, MERCOGLIANO C M, BORN J, et al. Sieving characteristics of cytokine-and peroxide-induced epithelial barrier leak:inhibition by berberine[J]. World Journal of Gastrointestinal Pathophysiology, 2016, 7(2): 223-234. DOI:10.4291/wjgp.v7.i2.223 |
[24] |
AMASHEH M, FROMM A, KRUG S M, et al. TNFα-induced and berberine-antagonized tight junction barrier impairment via tyrosine kinase, Akt and NFκB signaling[J]. Journal of Cell Science, 2010, 123(23): 4145-4155. DOI:10.1242/jcs.070896 |
[25] |
HAO X H, YAO A L, GONG J F, et al. Berberine ameliorates pro-inflammatory cytokine-induced endoplasmic reticulum stress in human intestinal epithelial cells in vitro[J]. Inflammation, 2012, 35(3): 841-849. DOI:10.1007/s10753-011-9385-6 |
[26] |
LI G X, WANG X M, JIANG T, et al. Berberine prevents damage to the intestinal mucosal barrier during early phase of sepsis in rat through mechanisms independent of the NOD-like receptors signaling pathway[J]. European Journal of Pharmacology, 2014, 730: 1-7. DOI:10.1016/j.ejphar.2014.02.006 |
[27] |
GU L L, LI N, GONG J F, et al. Berberine ameliorates intestinal epithelial tight-junction damage and down-regulates myosin light chain kinase pathways in a mouse model of endotoxinemia[J]. The Journal of Infectious Diseases, 2011, 203(11): 1602-1612. DOI:10.1093/infdis/jir147 |
[28] |
TAN S J, YU W K, LIN Z L, et al. Berberine ameliorates intestinal mucosal barrier damage induced by peritoneal air exposure[J]. Biological and Pharmaceutical Bulletin, 2015, 38(1): 122-126. DOI:10.1248/bpb.b14-00643 |
[29] |
LI Y H, XIAO H T, HU D D, et al. Berberine ameliorates chronic relapsing dextran sulfate sodium-induced colitis in C57BL/6 mice by suppressing Th17 responses[J]. Pharmacological Research, 2016, 110: 227-239. DOI:10.1016/j.phrs.2016.02.010 |
[30] |
MOGENSEN T H. Pathogen recognition and inflammatory signaling in innate immune defenses[J]. Clinical Microbiology Reviews, 2009, 22(2): 240-273. DOI:10.1128/CMR.00046-08 |
[31] |
LI C Z, XI Y B, LI S, et al. Berberine ameliorates TNBS induced colitis by inhibiting inflammatory responses and Th1/Th17 differentiation[J]. Molecular Immunology, 2015, 67(2): 444-454. DOI:10.1016/j.molimm.2015.07.013 |
[32] |
KAWANO K, TAKAGI R, KANEKO A, et al. Berberine is a dopamine D1-and D2-like receptor antagonist and ameliorates experimentally induced colitis by suppressing innate and adaptive immune responses[J]. Journal of Neuroimmunology, 2015, 289: 43-55. DOI:10.1016/j.jneuroim.2015.10.001 |
[33] |
KUO C L, CHI C W, LIU T Y. The anti-inflammatory potential of berberine in vitro and in vivo[J]. Cancer Letters, 2004, 203(2): 127-137. DOI:10.1016/j.canlet.2003.09.002 |
[34] |
CǍTANǍ C S, BERINDAN-NEAGOE I, COZMA V, et al. Contribution of the IL-17/IL-23 axis to the pathogenesis of inflammatory bowel disease[J]. World Journal of Gastroenterology, 2015, 21(19): 5823-5830. DOI:10.3748/wjg.v21.i19.5823 |
[35] |
YANG J F, SUNDRUD M S, SKEPNER J, et al. Targeting Th17 cells in autoimmune diseases[J]. Trends in Pharmacological Sciences, 2014, 35(10): 493-500. DOI:10.1016/j.tips.2014.07.006 |
[36] |
QIN X, GUO B T, WAN B, et al. Regulation of Th1 and Th17 cell differentiation and amelioration of experimental autoimmune encephalomyelitis by natural product compound berberine[J]. Journal of Immunology, 2010, 185(3): 1855-1863. DOI:10.4049/jimmunol.0903853 |
[37] |
CUI G L, QIN X, ZHANG Y B, et al. Berberine differentially modulates the activities of ERK, p38 MAPK, and JNK to suppress Th17 and Th1 T cell differentiation in type 1 diabetic mice[J]. Journal of Biological Chemistry, 2009, 284(41): 28420-28429. DOI:10.1074/jbc.M109.012674 |
[38] |
LI H, LI X L, ZHANG M, et al. Berberine ameliorates experimental autoimmune neuritis by suppressing both cellular and humoral immunity[J]. Scandinavian Journal of Immunology, 2014, 79(1): 12-19. DOI:10.1111/sji.2013.79.issue-1 |