动物营养学报    2019, Vol. 31 Issue (4): 1518-1524    PDF    
能量负平衡对奶牛繁殖的影响及相关机理
周子超, 祖卓鑫, 滑国华, 杨利国     
华中农业大学动物科技学院, 农业动物遗传育种与繁殖教育部重点实验室, 武汉 430070
摘要: 高产奶牛繁殖力低下是世界性难题。能量负平衡(NEB)影响脂肪动员,改变血液代谢指标,诱发能量代谢紊乱及相关疾病,影响卵泡发育及子宫胚胎内环境,影响机体多种激素的分泌,损害奶牛生殖免疫机能,提高该状态下子宫疾病的易感性并诱发炎症反应,延缓产后子宫恢复,制约奶牛的繁殖性能。本文主要阐述NEB对奶牛繁殖的影响及相关机理,为奶牛生产和繁殖研究工作提供参考。
关键词: 能量负平衡     奶牛     繁殖     影响     机理    
Effects of Negative Energy Balance on Reproduction of Dairy Cows and Related Mechanisms
ZHOU Zichao, ZU Zhuoxin, HUA Guohua, YANG Liguo     
Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction for Ministry of Education, College of Animal Science, Huazhong Agricultural University, Wuhan 430070, China
Abstract: The low fertility of high yield dairy cows is a worldwide problem. Negative energy balance (NEB) affects fat mobilization, changes blood metabolism indicators, NEB affects fat mobilization, changes blood metabolism indicators, and induces energy metabolism disorders and related diseases, affects follicular development and uterine embryonic environment, affects the secretion of various hormones in the body, impairs the reproductive immunity of dairy cows, improves the susceptibility of uterine diseases in this state and induces inflammatory reactions, and delays the recovery of postpartum uterus, which restricts the reproductive performance of dairy cows. This paper mainly described the effects of NEB on the reproductive performance of dairy cows and its related mechanisms, and provided a reference for the research of cow production and reproduction.
Key words: negative energy balance     dairy cows     reproduction     effects     mechanisms    

近年来,随着人民生活水平的不断提高,对畜产品的需求量也与日俱增,奶牛产业发展迅速。在现代奶牛养殖中,随着良种化进程的推进,产奶量不断提高,而繁殖率却有所下降,尤其是高产奶牛的繁殖率下降更明显,繁殖障碍时有发生,因而制约奶业的发展。

奶牛妊娠后期(产前3周)至泌乳初期(产后3周)这段时间通常称为过渡期。该时期的奶牛由于经历生理、饲粮、环境和管理等变化,能量的维持需要与生产需要增加,干物质采食量急剧下降,易出现能量负平衡(NEB)。奶牛泌乳高峰期一般出现在产后30~45 d,而采食高峰期一般出现在产后70 d左右。因此,泌乳初期经常是产后奶牛NEB的高发期。一般来说,奶牛产后21~30 d易出现NEB。NEB不仅导致生产性能下降和营养代谢病发病率升高,而且可导致繁殖性能下降,制约奶业的发展。

NEB对奶牛繁殖的影响早在20世纪80年代就有国外学者进行了研究[1],随后的研究中主要集中在饲粮能量和蛋白质水平对繁殖的影响[2-4]、NEB对繁殖性能的改变[5-7]以及NEB的改善研究[8-9],近年来的研究也涉及其深层次的机理[10-11],但目前国内在该方面的系统研究依然较少,故本文就NEB对奶牛繁殖的影响及作用机理进行综述(图 1),旨在揭示其影响模式,为改善奶牛尤其是过渡期奶牛的繁殖力研究提供借鉴与思路。

BHBA:β-羟丁酸β-hydroxybutyrate;DMI:干物质采食量dry matter intake;E2:雌二醇estradiol;IGF-1:胰岛素样生长因子-1 insulin-like growth factor-1;IL-1:白细胞介素-1 interleukin-1;IL-6:白细胞介素-6 interleukin-6;LH:促黄体生成素luetinizing hormone;Leptin:瘦素leptin;NEB:能量负平衡negative energy balalice;NEFA:非酯化脂肪酸non-esterified fatty acid;nAPP:负急性时相蛋白negative acute phase protein;P4:孕酮progesterone;pAPP:正急性时相蛋白positive acute phase protein;ROS:活性氧reactive oxygen;TNF-α:肿瘤坏死因子-α tumor necrosis factor-α。“+”和“-”分别表示在分子水平(或相关功能)上的增加和降低。The symbols “+” and “-”indicate an increase and a decrease in biomolecule levels (or related functions), respectively. 图 1 NEB对奶牛繁殖影响的机理 Fig. 1 Mechanism of effects of NEB on reproduction of dairy cows
1 NEB的代谢特征

由于产前胎儿对瘤胃的物理性压迫,同时受到营养代谢、激素等诸多方面的影响,奶牛干物质采食量下降,瘤胃发酵物的供给不足,造成丙酸缺乏,从而导致葡萄糖缺乏并上调脂肪分解信号,激活激素敏感脂肪酶(HSL)。磷酸化的HSL转移到脂滴中促进脂肪动员,并将脂肪所储存的甘油三酯(TG)水解成非脂化脂肪酸(NEFA)和甘油[12-13],一部分NEFA进入乳腺上皮细胞用于乳脂合成,另一部分NEFA作为能源物质进入肝脏细胞进行β-氧化供能以缓解NEB。若奶牛处于严重NEB状态,NEFA含量超出肝脏的氧化分解能力时则进行不完全β-氧化产生β-羟丁酸(BHBA)等酮体[14]。NEFA与BHBA是重要的能量代谢指标,反映机体能量代谢状态。当血浆NEFA的浓度高于0.70 mEq/L时,奶牛处于较严重的NEB状态[15]

2 NEB诱发能量代谢疾病

NEB引发动物机体能量代谢紊乱并由此进一步削弱动物繁殖性能。高含量的NEFA与BHBA可诱发奶牛一系列的能量代谢疾病。进入肝脏细胞氧化供能的NEFA,若超出肝脏氧化分解的能力,则会进行不完全β-氧化,产生酮体,进而诱发奶牛出现高酮血症或患酮症;另一部分NEFA进入肝脏后,被酯化合成TG。TG与载脂蛋白结合,形成极低密度脂蛋白(VLDL)后从肝脏输出进入血液。当生成的TG超出VLDL形式输出的量时,会沉积在肝脏,从而形成脂肪肝。至少50%的奶牛在产奶期的第1个月会经历亚临床酮症。酮症患牛的临床型子宫内膜炎和卵巢囊肿发生率显著增高,产后生殖器官恢复能力与受孕能力与酮症存在负相关[16]。酮症患牛血液中天冬氨酸转移酶(AST)活性升高,说明肝功能受到损伤,进而导致机体能量代谢障碍。脂肪肝患牛T细胞转化功能明显降低,免疫力下降,易感染其他疾病,并使产后第1次排卵延迟,孕酮(P4)分泌显著降低,进而导致奶牛繁殖力下降[17-18]。另有报道指出,脂肪肝患牛首次配种至产犊间隔天数、受胎至产犊间隔天数及配种次数显著增加,血液中胰岛素样生长因子(IGF)-1和促黄体生成素(LH)含量在首次配种后显著降低[19]。在产后早期的卵巢机能恢复过程中,胰岛素(INS)、IGF-1与LH的联合作用能促进优势卵泡的形成[20]。酮症脂肪肝综合征是奶牛过渡期易患的能量代谢病,能量代谢的紊乱将引起机体多方面的变化,并对繁殖机能产生显著影响。

3 NEB影响激素分泌

激素代谢在奶牛繁殖过程中起重要的调节作用。与NEB相关的奶牛机体代谢变化导致血浆及卵泡液中激素代谢的变化,主要包括INS/IGF系统、促性腺激素(GnRH)、瘦素(Leptin)等的变化。

3.1 对INS/IGF系统的影响

IGF家族主要有IGF-1、IGF-2。血浆中INS和IGF-1可以影响卵母细胞发育,促进卵巢颗粒细胞的增殖及类固醇的分泌;此外,IGF-1还可以调节P4及LH的分泌[21]。外周血中的IGF-1大部分在生长激素(GH)作用下从肝脏细胞释放出来,而在NEB条件下生长激素受体(GHR)表达下调,导致GH-IGF轴解偶联,使血液中IGF-1含量下降[22]。IGF-1对LH的分泌具有调节作用,是刺激P4分泌的强效因子[21, 23]。在重度NEB状态下,奶牛肝脏IGF-1、胰岛素样生长因子结合蛋白(IGFBP)-3、IGFBP-4、IGFBP-5、IGFBP-6和胰岛素样生长因子酸不稳定亚基(IGFALS)基因的表达显著降低,IGFBP-2基因的表达升高[24]。这些基因参与IGF-1的分泌和结合,并与半衰期有关。NEB状态下的奶牛血浆IGF-1的含量将持续走低,这将延缓卵泡的生长、减少雌二醇(E2)的合成及延迟排卵[6]。IGF-2能够促进卵泡的生长,也能促进类固醇激素的分泌,并对胚胎发育有显著影响,主要影响胚胎分裂、分化并可能对其代谢进行调节。NEB促进IGF-2分泌,干扰胚胎的发育,引起胚胎死亡。

INS能促进肝脏、肌肉和脂肪等组织摄取和利用葡萄糖,抑制肝糖原分解及糖异生作用,促进蛋白质和脂肪合成,抑制蛋白质、脂肪分解及酮体生成。INS同样与类固醇合成有关,能够调节颗粒细胞中与性腺激素合成和分泌相关的反应,在正常的生理浓度下能够促进颗粒细胞中E2的生成[25]。NEB奶牛血浆葡萄糖和INS含量均下降,而INS在体外和体内均有刺激奶牛卵泡细胞发育的作用[26]。此外,NEB还可能诱发奶牛机体INS抵抗。发生NEB时,奶牛血液中NEFA和BHBA含量升高,对INS的敏感性显著降低,即INS抵抗程度与血液中NEFA和BHBA含量存在显著的负相关[27]。在妊娠晚期,在奶牛皱胃中输入脂质可提高血浆NEFA含量,诱导奶牛全身性的INS抵抗[28]。INS抵抗的特征是靶组织或靶细胞对循环系统INS敏感性降低,损害细胞对葡萄糖的摄入,导致细胞凋亡。NEB状态下,血浆中高含量NEFA可以引起氧化应激,导致胰岛B细胞功能损害或凋亡[29-30]。高含量的NEFA进一步抑制胰岛B细胞分泌INS,抑制INS与肝脏中的特定受体结合,抑制细胞内葡萄糖转运蛋白的活性[31],诱发INS抵抗。Baruselli等[32]发现,对泌乳晚期奶牛进行人工授精时,受孕率较泌乳早期奶牛低,但将正常胚胎移植至泌乳晚期奶牛时,受孕率却正常,因此认为泌乳晚期的INS抵抗可能损伤卵母细胞,从而导致受孕率降低。

INS/IGF-1信号通路是重要的能源物质代谢信号。INS和IGF(IGF-1、IGF-2)具有相似的分子结构,二者通过与各自的酪氨酸激酶受体结合激发下游信号因子活化,胰岛素受体(IR)与胰岛素样生长因子1受体(IGF-1R)通过磷酸化胰岛素受体底物(IRSs)、Src同源性胶原蛋白等细胞因子完成信号转导作用,INS和IGF-1具有相同的信号转导通路,包括Ras-Raf-丝裂原活化蛋白激酶(MAPK)和磷脂酰肌醇3-激酶(PI3K)/蛋白激酶B(Akt)信号通路[33]。在能量缺乏的条件下,INS/IGF及其受体难以通过相关途径激活哺乳动物雷帕霉素靶蛋白(mTOR)信号通路,而mTOR信号通路与卵子和精子生成、胚胎发育过程及相关细胞中蛋白质代谢调节相关[33-34]

3.2 对GnRH的影响

NEB显著影响下丘脑-垂体性腺轴。LH脉冲分泌频率与能量平衡呈正相关,与血浆NEFA含量呈负相关[35]。在NEB条件下,反刍动物下丘脑GnRH受到抑制,从而抑制LH脉冲分泌频率,延长第1次发情时间,减缓生长卵泡的成熟,抑制排卵。NEB减少LH释放的机制可能涉及神经元氧化能源的供给和下丘脑-垂体的激素调制[36]。此外,血浆LH低频率脉冲促使E2负反馈增强,可能与NEB奶牛乏情有关[37]。外周血中P4受IGF-1的调节,NEB奶牛血液中IGF-1含量降低,导致P4分泌下降。P4诱导子宫组织营养素的分泌,对孕体的维持与养分供给至关重要。因此,P4含量下降对奶牛孕期胚胎发育产生负面影响[38]

3.3 对Leptin的影响

Leptin与繁殖有密切的关系。下丘脑、垂体、性腺、子宫均有Leptin受体。Leptin能刺激GnRH、LH、促卵泡生成素(FSH)、E2分泌。胎盘滋养层可以分泌瘦素,促进胚胎发育和附植,促进胎儿发育,对妊娠维持有重要作用[39]。Leptin通过影响下丘脑-垂体-性腺轴影响繁殖,是维持正常卵巢周期的必要因素。在分娩前35 d之前测量奶牛血浆中Leptin含量,发现血浆Leptin含量降低约50%,尽管在此后逐渐改善能量平衡,但在哺乳期间Leptin含量仍然保持较低水平;白色脂肪组织中Leptin mRNA的表达丰度也呈现相同趋势的变化[40]。Leptin影响采食量,同时促进围产期牛外周血中INS抵抗[41]。Leptin含量与机体能量水平呈正相关,在奶牛妊娠后期Leptin含量升高,分娩时降到最低,并在之后逐渐恢复,恢复的快慢主要取决于NEB的程度与持续时间。NEB状态下奶牛血浆Leptin含量降低,影响奶牛产后发情,增加Leptin可以缩短奶牛产后第1次发情时间间隔[37]

4 NEB对生殖免疫的影响

机体产生足够的免疫应答需要足够的能量支持。NEB奶牛繁殖机能的下降在一定程度上与内环境中高含量的NEFA与BHBA破坏机体免疫力和产后健康有关。在体外使用高产奶牛产后时期(NEB状态)相匹配的NEFA(0.12~1.00 mmol/L)处理免疫细胞后发现细胞功能及其生存能力降低[42]。增加在培养基中NEFA含量可减少外周血单核细胞γ-干扰素(IFN-γ)与免疫球蛋白M(IgM)的合成[43]。免疫球蛋白G(IgG)含量与NEFA含量呈现负相关[44]。不仅仅是NEFA,BHBA也与产后奶牛的免疫抑制有关。在高含量BHBA条件下,白细胞数量出现下降[45]。体外培养嗜中性粒细胞时,增加BHBA含量后细胞的吞噬能力、胞外陷阱形成能力与免疫杀伤能力均降低[46]

许多奶牛在产后子宫遭受微生物侵染,经常发展为持续的子宫内膜炎,影响奶牛繁殖力。用微阵列技术分析严重NEB的产后奶牛子宫内膜细胞的差异表达基因,发现基质金属蛋白酶1(MMP1)、基质金属蛋白酶3(MMP3)、基质金属蛋白酶13(MMP13)、CXC趋化因子配体5(CXCL5)、人类白细胞抗原-DQB(HLA-DQB)、S100钙结合蛋白A8(S100A8)、S100钙结合蛋白A9(S100A9)、S100钙结合蛋白A12(S100A12)、胎球蛋白A(AHSG)、白细胞介素-1受体(IL-1R)、白细胞介素-8(IL-8)和白细胞介素8受体β(IL-8)等炎症反应相关基因的表达显著上调,这些基因涉及基质金属蛋白酶、趋化因子、细胞因子和钙粒蛋白等的编码;此外,ISG20、干扰素诱导与解旋酶C结构域1(IFIH1)、黏病毒耐药蛋白1(MX1)和黏病毒耐药蛋白2(MX2)等干扰素诱导相关基因的表达显著上调[10]。这是处于严重NEB的奶牛发生子宫炎症的原因。炎症因子诸如肿瘤坏死因子-α(TNF-α)、白细胞介素-1(IL-1)和白细胞介素-6(IL-6)等的释放,刺激肝脏正急性时相蛋白(pAPP)的合成,损害负急性时相蛋白(nAPP)的合成,从而干扰肝脏正常功能[47]。NEB可能通过改变子宫免疫反应环境而延长子宫恢复周期,降低奶牛繁殖力,并且通过改变子宫内环境代谢产物,或者间接上调AHSG基因的表达,损害INS受体信号诱发区域性INS抵抗,进而对子宫免疫系统造成不良影响[10]。此外,进行NEB代谢时,活性氧(ROS)水平增加,引发脂质过氧化,对其他组织细胞造成损伤。免疫细胞的膜具有高浓度的多不饱和脂肪酸,对过氧化作用非常敏感,受到刺激时能够产生大量的ROS[48]。NEB可能通过过氧化作用机制削弱机体免疫能力。

5 结语

NEB通过多种途径影响奶牛繁殖机能,其通过影响脂肪动员,改变血液代谢指标,影响卵泡发育环境与子宫内环境,诱发动物机体能量代谢紊乱与能量代谢疾病,削弱奶牛的繁殖性能。NEB奶牛繁殖性能的下降归咎于机体多种神经激素、代谢调节激素的改变。NEB奶牛生殖免疫机能受到损害,不仅增加子宫疾病发病率,还将延缓产后子宫机能恢复。改善营养,适当提高奶牛过渡期饲粮非纤维碳水化合物(NFC)水平,可促进瘤胃乳头的发育以获得吸收足够挥发性脂肪酸(VFA)的能力,从而降低NEB对奶牛繁殖的影响[49]。饲粮添加剂的改良,如在奶牛饲粮中添加过瘤胃脂肪酸和甲基供体,能显著改善NEB,降低血液NEFA和BHBA含量,提高免疫机能[11, 50-51]。此外,改变瘤胃微生物发酵模式也能成为改善奶牛能量代谢,提升繁殖性能的新思路。

参考文献
[1]
BUTLER W R, EVERETT R W, COPPOCK C E. The relationships between energy balance, milk production and ovulation in postpartum Holstein cows[J]. Journal of Animal Science, 1981, 53(3): 742-748. DOI:10.2527/jas1981.533742x
[2]
LUCY M C, STAPLES C R, THATCHER W W, et al. Influence of diet composition, dry-matter intake, milk production and energy balance on time of post-partum ovulation and fertility in dairy cows[J]. Animal Science, 1992, 54(3): 323-331.
[3]
TAMMINGA S. The effect of the supply of rumen degradable protein and metabolisable protein on negative energy balance and fertility in dairy cows[J]. Animal Reproduction Science, 2006, 96(3/4): 227-239.
[4]
BURKE C R, KAY J K, PHYN C V C, et al. Short communication:effects of dietary nonstructural carbohydrates pre- and postpartum on reproduction of grazing dairy cows[J]. Journal of Dairy Science, 2010, 93(9): 4292-4296. DOI:10.3168/jds.2009-2869
[5]
BUTLER W R, SMITH R D. Interrelationships between energy balance and postpartum reproductive function in dairy cattle[J]. Journal of Dairy Science, 1989, 72(3): 767-783. DOI:10.3168/jds.S0022-0302(89)79169-4
[6]
WATHES D C, FENWICK M, CHENG Z, et al. Influence of negative energy balance on cyclicity and fertility in the high producing dairy cow[J]. Theriogenology, 2007, 68(Suppl.1): S232-S241.
[7]
WATHES D C, CHENG Z R, FENWICK M A, et al. Influence of energy balance on the somatotrophic axis and matrix metalloproteinase expression in the endometrium of the postpartum dairy cow[J]. Reproduction, 2011, 141(2): 269-281. DOI:10.1530/REP-10-0177
[8]
GRUMMER R R, WILTBANK M C, FRICKE P M, et al. Management of dry and transition cows to improve energy balance and reproduction[J]. The Journal of Reproduction and Development, 2010, 56(Suppl.1): S22-S28.
[9]
CARDOSO F C, LEBLANC S J, MURPHY M R, et al. Prepartum nutritional strategy affects reproductive performance in dairy cows[J]. Journal of Dairy Science, 2013, 96(9): 5859-5871. DOI:10.3168/jds.2013-6759
[10]
WATHES D C, CHENG Z R, CHOWDHURY W, et al. Negative energy balance alters global gene expression and immune responses in the uterus of postpartum dairy cows[J]. Physiological Genomics, 2010, 39(1): 1-13.
[11]
ESPOSITO G, IRONS P C, WEBB E C, et al. Interactions between negative energy balance, metabolic diseases, uterine health and immune response in transition dairy cows[J]. Animal Reproduction Science, 2014, 144(3/4): 60-71.
[12]
KOLTES D A, SPURLOCK D M. Coordination of lipid droplet-associated proteins during the transition period of Holstein dairy cows[J]. Journal of Dairy Science, 2011, 94(4): 1839-1848. DOI:10.3168/jds.2010-3769
[13]
LOCHER L F, MEYER N, WEBER E M, et al. Hormone-sensitive lipase protein expression and extent of phosphorylation in subcutaneous and retroperitoneal adipose tissues in the periparturient dairy cow[J]. Journal of Dairy Science, 2011, 94(9): 4514-4523. DOI:10.3168/jds.2011-4145
[14]
VAN DORLAND H A, SADRI H, MOREL I, et al. Coordinated gene expression in adipose tissue and liver differs between cows with high or low NEFA concentrations in early lactation[J]. Journal of Animal Physiology and Animal Nutrition, 2012, 96(1): 137-147. DOI:10.1111/jpn.2012.96.issue-1
[15]
RIBEIRO E S, LIMA F S, AYRES H, et al. Effect of postpartum diseases on reproduction of grazing dairy cows[J]. Journal of Dairy Science, 2011, 94(Suppl.1): 63.
[16]
SHIN E K, JEONG J K, CHOI I S, et al. Relationships among ketosis, serum metabolites, body condition, and reproductive outcomes in dairy cows[J]. Theriogenology, 2015, 84(2): 252-260. DOI:10.1016/j.theriogenology.2015.03.014
[17]
周建平, 田文儒, 郑昌乐, 等. 产后脂肪肝奶牛外周血浆孕酮、前列腺素F2α变化规律的研究[J]. 黑龙江畜牧兽医, 1993(9): 1-3.
[18]
周建平, 张俊育, 田文儒, 等. 脂肪肝影响围产期奶牛繁殖力的机理研究[J]. 畜牧兽医学报, 1997, 28(2): 115-119. DOI:10.3321/j.issn:0366-6964.1997.02.004
[19]
GOWRI B, PRATHABAN S, KATHIRESAN D, et al. Impact of the fatty infiltration of liver on fertility in cattle[J]. Indian Veterinary Journal, 2015, 92(9): 60-61.
[20]
FENWICK M A, LLEWELLYN S, FITZPATRICK R, et al. Negative energy balance in dairy cows is associated with specific changes in IGF-binding protein expression in the oviduct[J]. Reproduction, 2008, 135(1): 63-75. DOI:10.1530/REP-07-0243
[21]
THATCHER W W, BILBY T R, BARTOLOME J A, et al. Strategies for improving fertility in the modern dairy cow[J]. Theriogenology, 2006, 65(1): 30-44. DOI:10.1016/j.theriogenology.2005.10.004
[22]
LUCY M C, JIANG H, KOBAYASHI Y. Changes in the somatotrophic axis associated with the initiation of lactation[J]. Journal of Dairy Science, 2001, 84(Suppl.1): E113-E119.
[23]
BROWN K L, CASSELL B G, MCGILLIARD M L, et al. Hormones, metabolites, and reproduction in Holsteins, Jerseys, and their crosses[J]. Journal of Dairy Science, 2012, 95(2): 698-707. DOI:10.3168/jds.2011-4666
[24]
FENWICK M A, FITZPATRICK R, KENNY D A, et al. Interrelationships between negative energy balance (NEB) and IGF regulation in liver of lactating dairy cows[J]. Domestic Animal Endocrinology, 2008, 34(1): 31-44. DOI:10.1016/j.domaniend.2006.10.002
[25]
HEIN G J, PANZANI C G, RODRÍGUEZ F M, et al. Impaired insulin signaling pathway in ovarian follicles of cows with cystic ovarian disease[J]. Animal Reproduction Science, 2015, 156: 64-74. DOI:10.1016/j.anireprosci.2015.02.010
[26]
叶承荣, 张克春, 谭勋. 能量负平衡对高产奶牛繁殖性能影响的研究进展[J]. 上海交通大学学报(农业科学版), 2006, 24(4): 398-401. DOI:10.3969/j.issn.1671-9964.2006.04.018
[27]
OHTSUKA H, KOIWA M, HATSUGAYA A, et al. Relationship between serum TNF activity and insulin resistance in dairy cows affected with naturally occurring fatty liver[J]. Journal of Veterinary Medical Science, 2001, 63(9): 1021-1025. DOI:10.1292/jvms.63.1021
[28]
SALIN S, TAPONEN J, ELO K, et al. Effects of abomasal infusion of tallow or camelina oil on responses to glucose and insulin in dairy cows during late pregnancy[J]. Journal of Dairy Science, 2012, 95(7): 3812-3825. DOI:10.3168/jds.2011-5206
[29]
STEIN D T, STEVENSON B E, CHESTER M W, et al. The insulinotropic potency of fatty acids is influenced profoundly by their chain length and degree of saturation[J]. Journal of Clinical Investigation, 1997, 100(2): 398-403. DOI:10.1172/JCI119546
[30]
RAVNSKJAER K, FRIGERIO F, BOERGESEN M, et al. PPARδ is a fatty acid sensor that enhances mitochondrial oxidation in insulin-secreting cells and protects against fatty acid-induced dysfunction[J]. Journal of Lipid Research, 2010, 51(6): 1370-1379. DOI:10.1194/jlr.M001123
[31]
KARLSSON H K R, CHIBALIN A V, KOISTINEN H A, et al. Kinetics of GLUT4 trafficking in rat and human skeletal muscle[J]. Diabetes, 2009, 58(4): 847-854.
[32]
BARUSELLI P S, VIEIRA L M, SÁ FILHO M F, et al. Associations of insulin resistance later in lactation on fertility of dairy cows[J]. Theriogenology, 2016, 86(1): 263-269. DOI:10.1016/j.theriogenology.2016.04.039
[33]
DUPONT J, REVERCHON M, BERTOLDO M J, et al. Nutritional signals and reproduction[J]. Molecular and Cellular Endocrinology, 2014, 382(1): 527-537. DOI:10.1016/j.mce.2013.09.028
[34]
马勇, 罗海玲, 卢晓楠. 日粮能量和蛋白质对反刍动物繁殖机能影响的机理[J]. 中国草食动物科学, 2014(增刊): 14-16.
[35]
KADOKAWA H, BLACHE D, MARTIN G B. Plasma leptin concentrations correlate with luteinizing hormone secretion in early postpartum Holstein cows[J]. Journal of Dairy Science, 2006, 89(8): 3020-3027. DOI:10.3168/jds.S0022-0302(06)72575-9
[36]
SCHNEIDER J E. Energy balance and reproduction[J]. Physiology & Behavior, 2004, 81(2): 289-317.
[37]
王学君, 刘伟, 苗霆, 等. 能量对奶牛繁殖性能的影响与调控技术[J]. 中国奶牛, 2009(3): 31-33. DOI:10.3969/j.issn.1004-4264.2009.03.011
[38]
ROBINSON R S, FRAY M D, WATHES D C, et al. In vivo expression of interferon tau mRNA by the embryonic trophoblast and uterine concentrations of interferon tau protein during early pregnancy in the cow[J]. Molecular Reproduction and Development, 2006, 73(4): 470-474. DOI:10.1002/(ISSN)1098-2795
[39]
HOGGARD N, HUNTER L, TRAYHURN P, et al. Leptin and reproduction[J]. The Proceedings of the Nutrition Society, 1998, 57(3): 421-427. DOI:10.1079/PNS19980061
[40]
BLOCK S S, BUTLER W R, EHRHARDT R A, et al. Decreased concentration of plasma leptin in periparturient dairy cows is caused by negative energy balance[J]. Journal of Endocrinology, 2001, 171(2): 339-348.
[41]
BLACHE D, CELI P, BLACKBERRY M A, et al. Decrease in voluntary feed intake and pulsatile luteinizing hormone secretion after intracerebroventricular infusion of recombinant bovine leptin in mature male sheep[J]. Reproduction, Fertility and Development, 2000, 12(7/8): 373-381.
[42]
BISINOTTO R S, GRECO L F, RIBEIRO E S, et al. Influences of nutrition and metabolism on fertility of dairy cows[J]. Animal Reproduction, 2012, 9(3): 260-272.
[43]
LACETERA N, SCALIA D, FRANCI O, et al. Short communication:effects of nonesterified fatty acids on lymphocyte function in dairy heifers[J]. Journal of Dairy Science, 2004, 87(4): 1012-1014. DOI:10.3168/jds.S0022-0302(04)73246-4
[44]
MÖSCH A.Parameters of energy metabolism and immunoglobulin G in the serum of dairy cows in the peripartal period[D]. Ph.D.Thesis.Berlin: Freie Universität Berlin, 2012.
[45]
SCALIA D, LACETERA N, BERNABUCCI U, et al. In vitro effects of nonesterified fatty acids on bovine neutrophils oxidative burst and viability[J]. Journal of Dairy Science, 2006, 89(1): 147-154. DOI:10.3168/jds.S0022-0302(06)72078-1
[46]
GRINBERG N, ELAZAR S, ROSENSHINE I, et al. β-hydroxybutyrate abrogates formation of bovine neutrophil extracellular traps and bactericidal activity against mammary pathogenic Escherichia coli[J]. Infection and Immunity, 2008, 76(6): 2802-2807. DOI:10.1128/IAI.00051-08
[47]
HUZZEY J M, DUFFIELD T F, LEBLANC S J, et al. Short communication:haptoglobin as an early indicator of metritis[J]. Journal of Dairy Science, 2009, 92(2): 621-625. DOI:10.3168/jds.2008-1526
[48]
SPEARS J W, WEISS W P. Role of antioxidants and trace elements in health and immunity of transition dairy cows[J]. The Veterinary Journal, 2008, 176(1): 70-76. DOI:10.1016/j.tvjl.2007.12.015
[49]
RABELO E, REZENDE R L, BERTICS S J, et al. Effects of transition diets varying in dietary energy density on lactation performance and ruminal parameters of dairy cows[J]. Journal of Dairy Science, 2003, 86(3): 916-925. DOI:10.3168/jds.S0022-0302(03)73674-1
[50]
CASTAÑEDA-GUTIÉRREZ E, BENEFIELD B C, DE VETH M J, et al. Evaluation of the mechanism of action of conjugated linoleic acid isomers on reproduction in dairy cows[J]. Journal of Dairy Science, 2007, 90(9): 4253-4264. DOI:10.3168/jds.2007-0117
[51]
FARRAN T B, REINHARDT C D, BLASI D A, et al. Source of dietary lipid may modify the immune response in stressed feeder cattle[J]. Journal of Animal Science, 2008, 86(6): 1382-1394. DOI:10.2527/jas.2007-0116