2. 中国农业科学院与世界农用林业中心, 农用林业与可持续畜牧业联合实验室, 北京 100193;
3. 湖南畜产品质量安全协同创新中心, 长沙 410128
2. Joint Lab on Agroforestry and Sustainable Animal Husbandry, Chinese Academy of Agricultural Sciences and World Agroforestry Centre, Beijing 100193, China;
3. Hunan Co-Innovation Centre of Animal Production Safety, Changsha 410128, China
幼龄阶段是反刍动物一个重要的生理时期,这个阶段的生长发育与其潜在生产性能有着密切的关系。瘤胃发育是犊牛生长发育的重要指标,新生犊牛具有未发育的前胃和食管沟的独特功能,以及皱胃和肠道相似的消化酶活性,使其成为与单胃动物更加相似的复胃动物[1]。由于初生犊牛的瘤胃发育不健全,瘤胃壁很薄,瘤网胃的容积很小,因此,如何促进断奶前犊牛的瘤胃发育是确保其生产性能发挥的关键。此外,由于刚出生的犊牛胃肠道微生物及免疫系统还不够健全,肠道疾病易在新生犊牛中发生,腹泻是初生犊牛中最常见的健康问题之一,发病严重时甚至会造成死亡,影响行业的经济效益。
短链脂肪酸(short chain fatty acids, SCFA)以直链脂肪酸乙酸、丙酸和丁酸为主,参与体内的生理调节反应。反刍动物瘤胃内SCFA的浓度为60~150 mmol/L,其中乙酸占60%~70%,丙酸占15%~20%,丁酸占10%~15%[2],主要在瘤胃内消化吸收,为宿主提供约占总代谢能75%的能量[3]。研究表明,瘤胃上皮细胞碳酸氢根(HCO3-)分泌量与瘤胃内高浓度的SCFA密切相关,HCO3-进入瘤胃后与氢离子(H+)发生中和反应,可降低瘤胃pH,进而促进瘤胃上皮的生长[4],因此,瘤胃内SCFA不仅是给瘤胃发育提供能量,还是刺激瘤胃生长发育的关键[5]。现有文献表明,对于肠道的生长发育而言,SCFA不仅能为肠黏膜细胞提供能量,还能促进细胞的代谢和生长[6],并能够抑制抗炎因子的生成,对肠道炎症及病变反应,尤其是腹泻起到抑制作用[7-8]。而肠道菌群在肠黏膜表面与宿主细胞的相互作用下影响肠道微环境[9],细菌发酵产生的SCFA亦是肠道中主要的阴离子,浓度达到50~150 mmol/L,可降低肠道pH,进而促进益生菌的增殖,并抑制特定病原菌定植[10-11],维持肠道稳态,调控幼龄动物胃肠道健康发育。本文拟从胃肠道上皮和微生物2个层次来探究并综述外源添加SCFA促进断奶前犊牛胃肠道发育的分子机制,及其对断奶前犊牛胃肠道微生物定植的影响及机理,对犊牛健康培育与科学饲养有重要意义。
1 SCFA刺激犊牛瘤胃及肠道的生长发育瘤胃成熟过程是能量吸收代谢、细胞基因分化表达的结果。经历许多代谢途径的变化,在瘤胃发酵产物的刺激下,瘤胃黏膜具有了生酮的作用,由依赖于葡萄糖为主要能量来源转化为依赖于饲料中的SCFA主要能量来源[12]。早期的研究表明,淀粉经犊牛瘤胃微生物发酵产生的SCFA可直接刺激瘤胃上皮的生长和功能的发育[13]。此外,添加支链SCFA也可促进犊牛生长发育和瘤胃发酵[14]。瘤胃乳头的形态变化与分支的出现,主要是由于瘤胃内丁酸和丙酸对瘤胃上皮细胞的刺激作用,促进了细胞的增殖[15],并影响参与瘤胃上皮发育相关基因的表达,提高瘤胃乳头的长度和宽度,从而扩大瘤胃上皮吸收面积[5]。丁酸盐能够上调瘤胃上皮细胞正丁酸代谢物和SCFA跨膜转移相关蛋白mRNA表达[16],促进犊牛的瘤胃发育。异丁酸亦可促进犊牛瘤胃乳头的长度和宽度以及瘤胃上皮黏膜的生长激素受体(GHR)、羟甲基戊二酰辅酶A合酶(HMGCS)的mRNA相对表达量[17]。经肠道细菌酵解后产生的SCFA,除少部分为机体提供能量外,80%用于肠黏膜细胞的能量供给,其中丁酸的代谢能力最强,可以直接为肠上皮细胞提供能量[18],刺激肠上皮细胞的发育,提高犊牛小肠的成熟速度和吸收能力[19]。直接给犊牛添加丙酸钙可促进犊牛体重的增加和前肠的发育[20],提高小肠黏膜GHR、胰岛素受体(INSR)及钠葡萄糖共转运载体(SGLT1)mRNA相对表达量,促进小肠黏膜的发育[5]。
但由于犊牛瘤胃壁具有很高的代谢活性[21],大部分SCFA在瘤胃内经由瘤胃上皮吸收转运,其转运途径有以非离子形式的简单扩散作用进行,也有以离子形式在转运载体的帮助下通过SCFA-HCO3-离子交换以及电介导转运吸收,但是相关转运蛋白以及具体转运机制目前还不太清楚。
2 SCFA降低胃肠道内pH,抑制胃肠道有害菌并改善胃肠道菌群结构微生物定植是一个复杂的过程,受宿主和微生物之间的相互作用以及多种外界因素影响,在最初的定植之后,持续暴露于宿主的特异性微生物不仅对于黏膜免疫系统的发育和成熟有调节作用,而且对动物的营养和健康都是非常重要的[22]。SCFA是肠道菌群之间用于信息交流的感应分子,对菌群内部结构的稳定起到决定作用[23]。SCFA与胃肠道微生物的关系具有双重性,既促进有益微生物的生长和抑制有害微生物(大肠杆菌和沙门菌等)的生长,并且有益微生物的增长也会反过来刺激增加SCFA的合成。SCFA的产生使瘤胃维持一个较理想的酸性环境,适合微生物的繁殖和寄生,这些微生物又进一步发酵瘤胃饲料,使瘤胃处于一个良性循环[24]。研究表明,在瘤胃内,瘤胃上皮细胞HCO3-分泌量与瘤胃内高浓度的SCFA密切相关,HCO3-进入瘤胃后与H+发生中和反应,可降低瘤胃pH[4],促进益生菌的生长增殖并抑制病原菌的定植[10-11],进而维持瘤胃微生物区系的稳态。Wang等[17]的研究证实,断奶前后犊牛饲喂异丁酸可增加溶纤维丁酸弧菌和产琥珀酸丝状杆菌细菌总数,并提高断奶前犊牛的生黄瘤胃球菌的细菌总数。
乳酸杆菌与大肠杆菌数量的比值代表动物对肠道紊乱疾病的抵抗能力,比值越高,抵抗力越强,饲粮中添加丁酸可明显降低回肠大肠菌群的数量,同时提高乳酸杆菌的数量,提高乳酸杆菌与大肠杆菌数量的比值[25]。当肠道中SCFA浓度升高时,不仅能够提供菌群自身生长所需的能量,还降低肠道内pH,增加肠道内酸性环境,明显抑制大肠杆菌和沙门菌等有害菌的繁殖,使有益菌得到增殖,从而改善肠道菌群结构[26-27]。
此外,最新研究表明,高膳食纤维可在人体肠道内富集15个SCFA产生菌,进而产生SCFA,介导菌群对血糖稳态的影响,并通过重点分析产SCFA菌的丰度和多样性与肠道炎症的关系,得出高膳食纤维在产生SCFA的过程中富集的15个菌株,改善了肠道环境,降低了肠道pH,增加了丁酸盐浓度,15个菌株竞争性地抑制了其他“有害菌”,减少了有害代谢产物(如吲哚、硫化氢)的产生,从而构建了更加健康的肠道[28]。Zwittink等[29]通过宏蛋白质组学和16S rRNA技术关联分析揭示了早产儿肠道微生物演替过程中功能变化,阐明了肠道微生物演替定植影响肠道相关生物学代谢过程。
但由于新生犊牛胃肠道发育不完善,微生物种类和丰度均很低,可产生的内源性SCFA很少,外源性添加SCFA能否通过降低犊牛胃肠道pH,抑制胃肠道有害菌,影响胃肠道的微生物演替定植,进一步影响肠道上皮相关生物学代谢途径,进而调控肠道健康发育的研究鲜有报道。
3 SCFA缓解动物肠道炎症反应,维持肠黏膜屏障的完整性SCFA对肠上皮细胞有营养和促进增殖、分化作用,对维持肠黏膜屏障完整性和稳定肠道微环境具有重要意义,并且可以改变对代谢疾病的易感性,作用于游离脂肪酸受体(free fatty acid receptor,FFAR),在调节代谢、免疫和疾病上扮演着重要的角色[30],能通过影响某些炎性细胞释放细胞因子而起到抗炎作用,Tedelind等[31]通过对乙酸、丙酸、丁酸与抗炎因子释放的关系研究中发现,30 mmol/L的乙酸、丙酸和丁酸能降低肿瘤坏死因子(TNF-α)的释放,而不影响白细胞介素(IL)-κ蛋白的释放,表明SCFA对结肠炎症具有良好的治疗效果。SCFA可通过激活肠上皮细胞短链脂肪酸受体G蛋白偶联受体(G protein-coupled receptor,GPR)41和GPR43,活化丝裂原活化蛋白激酶(MAPK)信号通路,产生各种趋化因子和细胞因子,增强炎症应答[32],其中乙酸可通过GPR43诱导树突状细胞表达醛脱氢酶1家族成员A2(aldehyde dehydrogenase 1 family subfamily A2,ALDH1A2),进而促进B细胞分泌免疫球蛋白A(IgA)[33],而高脂高糖饮食可使产SCFA的细菌减少,GPR43表达降低,从而导致肠道炎症加重[34]。
肠黏膜屏障包括肠肌层和表面的肠上皮细胞层,肠上皮细胞层与肠道菌群直接接触,是菌群-宿主发生交互作用的重要场所。肠上皮细胞通过紧密连接相互连接,构成肠上皮屏障,在异常情况下,紧密连接蛋白合成减少,上皮细胞间间隙增加,即所谓的“肠通透性增加”[35]。肠道菌群对肠上皮屏障具有生长促进作用,正常菌群释放SCFA抑制肠黏膜的通透性,对维持肠黏膜屏障的完整性具有积极意义[11]。但肠道菌群异常改变的肠易激综合征(irritable bowel syndrome,IBS)患者由于肠上皮细胞对SCFA摄入不足,直接影响紧密连接蛋白的分布,导致其肠黏膜通透性增加[36],肠黏膜变薄,保护作用下降,细菌及抗原进入黏膜下层损伤肠细胞[37]。适当浓度的SCFA中高比例的丁酸盐具有改善肠屏障的功能,并且保护单层细胞不被破坏[16]。最新研究表明,SCFA可诱导肠上皮细胞分泌IL-18、抗菌肽和黏蛋白,激活肠上皮细胞内低氧诱导因子(hypoxia inducible factor,HIF),诱导结肠中调节性T细胞(Treg),从而加强肠上皮紧密连接,促进黏蛋白生成,加速肠黏膜屏障修复,维持肠道黏膜屏障的完整性,增强肠道免疫及肠黏膜屏障的作用[38-42],还可增加肠上皮细胞中维持免疫耐受的关键信号分子维甲酸(retinoic acid,RA)的含量来促进黏膜稳态[43]。
然而,由于新生犊牛胃肠道发育不完善,内源性产生的SCFA很少,而关于外源性添加SCFA能否影响肠道紧密连接蛋白的分布,进而缓解犊牛肠道炎症反应,维持肠黏膜屏障的完整性仍不清楚。
4 小结新生犊牛胃肠道发育不完善,微生物种类和丰度均很低,可产生的内源性SCFA很少,外源性添加SCFA能否通过降低犊牛胃肠道pH,抑制胃肠道有害菌,影响胃肠道的微生物定植,进而影响胃肠道上皮细胞的发育,增强肠道抗炎能力,最终促进犊牛胃肠道健康发育仍不清楚。因此,进一步系统的研究SCFA是如何影响犊牛胃肠道微生物定植以及胃肠道的健康发育机制,将对进一步指导行业健康发展、减少犊牛腹泻率、充分发挥犊牛潜在的泌乳潜力具有重要的科学意义。
[1] |
HEINRICHS A J, LESMEISTER K E, GARNSWORTHY P C.Rumen development in the dairy calf[C]//Calf and Heifer Rearing: principles of rearing the modern dairy heifer from calf to calving.60th University of Nottingham Easter School in agricultural science.Nottingham: University of Nottingham Easter School, 2005.
|
[2] |
PENNER G B, TANIGUCHI M, GUAN L L, et al. Effect of dietary forage to concentrate ratio on volatile fatty acid absorption and the expression of genes related to volatile fatty acid absorption and metabolism in ruminal tissue[J]. Journal of Dairy Science, 2009, 92(6): 2767-2781. DOI:10.3168/jds.2008-1716 |
[3] |
BERGMAN E N. Energy contributions of volatile fatty acids from the gastrointestinal tract in various species[J]. Physiological Reviews, 1990, 70(2): 567-590. DOI:10.1152/physrev.1990.70.2.567 |
[4] |
BILK S, HUHN K, HONSCHAK U, et al. Bicarbonate exporting transporters in the ovine ruminal epithelium[J]. Journal of Comparative Physiology B, 2005, 175(5): 365-374. DOI:10.1007/s00360-005-0493-1 |
[5] |
ZHANG X Z, WU X, CHEN W B, et al. Growth performance and development of internal organ, and gastrointestinal tract of calf supplementation with calcium propionate at various stages of growth period[J]. PLoS One, 2017, 12(7): e0179940. DOI:10.1371/journal.pone.0179940 |
[6] |
KOWALSKI Z M, GÓRKA P, FLAGA J, et al. Effect of microencapsulated sodium butyrate in the close-up diet on performance of dairy cows in the early lactation period[J]. Journal of Dairy Science, 2015, 98(5): 3284-3291. DOI:10.3168/jds.2014-8688 |
[7] |
PIEKARSKA J, MI Ś TA D, HOUSZKA M, et al. Trichinella spiralis:the influence of short chain fatty acids on the proliferation of lymphocytes, the goblet cell count and apoptosis in the mouse intestine[J]. Experimental Parasitology, 2011, 128(4): 419-426. DOI:10.1016/j.exppara.2011.05.019 |
[8] |
VINOLO M A R, RODRIGUESH G, HATANAKA E, et al. Suppressive effect of short-chain fatty acids on production of proinflammatory mediators by neutrophils[J]. The Journal of Nutritional Biochemistry, 2011, 22(9): 849-855. DOI:10.1016/j.jnutbio.2010.07.009 |
[9] |
ÖHMAN L, TÖRNBLOM H, SIMRÉN M. Crosstalk at the mucosal border:importance of the gut microenvironment in IBS[J]. Nature Reviews Gastroenterology & Hepatology, 2015, 12(1): 36-49. |
[10] |
ESWARAN S, MUIR J, CHEYW D. Fiber and functional gastrointestinal disorders[J]. The American Journal of Gastroenterology, 2013, 108(5): 718-727. DOI:10.1038/ajg.2013.63 |
[11] |
FUKUDA S, TOH H, HASE K, et al. Bifidobacteria can protect from enteropathogenic infection through production of acetate[J]. Nature, 2012, 469(5): 543-547. |
[12] |
LANE M A, JESSB W. EEffect of volatile fatty acid infusion on development of the rumen epithelium in neonatal sheep[J]. Journal of Dairy Science, 1997, 80(4): 740-746. DOI:10.3168/jds.S0022-0302(97)75993-9 |
[13] |
SUTTON J D, MCGILLIARDA D, RICHARDM, et al. Functional development of rumen mucosa.Ⅱ.Metabolic activit[J]. Journal of Dairy Science, 1963, 46(6): 530-537. DOI:10.3168/jds.S0022-0302(63)89090-6 |
[14] |
LIU Q, WANGC, GUO G, et al. Effects of branched-chain volatile fatty acids supplementation on growth performance, ruminal fermentation, nutrient digestibility, hepatic lipid content and gene expression of dairy calves[J]. Animal Feed Science and Technology, 2018, 237: 27-34. DOI:10.1016/j.anifeedsci.2018.01.006 |
[15] |
BEIRANVAND H, GHORBANIG R, KHORVASHM, et al. Interactions of alfalfa hay and sodium propionate on dairy calf performance and rumen development[J]. Journal of Dairy Science, 2014, 97(4): 2270-2280. DOI:10.3168/jds.2012-6332 |
[16] |
DENGLER F, RACKWITZ R, BENESCH F, et al. Both butyrate incubation and hypoxia upregulate genes involved in the ruminal transport of SCFA and their metabolites[J]. Journal of Animal Physiology and Animal Nutrition, 2015, 99(2): 379-390. DOI:10.1111/jpn.2015.99.issue-2 |
[17] |
WANG C, LIU Q, ZHANGY L, et al. Effects of isobutyrate supplementation in pre- and post-weaned dairy calves diet on growth performance, rumen development, blood metabolites and hormone secretion[J]. Animal, 2016, 11(5): 794-801. |
[18] |
张军, 黄佳佳. 丁酸盐在动物营养中的应用[J]. 饲料广角, 2006(21): 45-46. |
[19] |
GERBERT C, FRIETEN D, KOCH C, et al.Organ and epithelial growth in the gastrointestinal tract of Holstein calves fed milk replacer ad libitum and supplemented with butyrate[C]//Prodceedings of the Society of Nutrition Physiology.[S.l.]: [s.n.], 2017.
|
[20] |
BUNTING L D, TARIFAT A, CROCHETB T, et al. Effects of dietary inclusion of chromium propionate and calcium propionate on glucose disposal and gastrointestinal development in dairy calves[J]. Journal of Dairy Science, 2000, 83(11): 2491-2498. DOI:10.3168/jds.S0022-0302(00)75141-1 |
[21] |
BANNINK A, FRANCE J, LOPEZ S, et al. Modelling the implications of feeding strategy on rumen fermentation and functioning of the rumen wall[J]. Animal Feed Science and Technology, 2008, 143(1/2/3/4): 3-26. |
[22] |
MALMUTHUGE N, GRIEBELPJ, GUANL L. The gut microbiome and its potential role in the development and function of newborn calf gastrointestinal tract[J]. Frontiers in Veterinary Science, 2015, 2: 36. |
[23] |
RHEE S H, POTHOULAKIS C, MAYER E A. Principles and clinical implications of the brain-gut-enteric microbiota axis[J]. Nature Reviews Gastroenterology & Hepatology, 2009, 6(5): 306-314. |
[24] |
BENSADOUN A, PALADINESO L, REIDJ T. Effect of level of intake and physical form of the diet on plasma glucose concentration and volatile fatty acid absorption in ruminants[J]. Journal of Dairy Science, 1962, 45(10): 1203-1210. DOI:10.3168/jds.S0022-0302(62)89597-6 |
[25] |
GÁLFI P, BOKORI J. Feeding trial in pigs with a diet containing sodium n-butyrate[J]. Acta Veterinaria Hungarica, 1990, 38(1/2): 3-17. |
[26] |
PASTELL H, WESTERMANN P, MEYERA S, et al. In vitro fermentation of arabinoxylan-derived carbohydrates by bifidobacteria and mixed fecal microbiota[J]. Journal of Agricultural and Food Chemistry, 2009, 57(18): 8598-8606. DOI:10.1021/jf901397b |
[27] |
刘松珍, 张雁, 张名位, 等. 肠道短链脂肪酸产生机制及生理功能的研究进展[J]. 广东农业科学, 2013, 40(11): 99-103. DOI:10.3969/j.issn.1004-874X.2013.11.029 |
[28] |
ZHAO L P, ZHANG F, DING X Y, et al. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes[J]. Science, 2018, 359(6380): 1151-1156. DOI:10.1126/science.aao5774 |
[29] |
ZWITTINK R D, VAN ZOEREN-GROBBEN D, MARTIN R, et al. Metaproteomics reveals functional differences in intestinal microbiota development of preterm infants[J]. Molecular & Cellular Proteomics, 2017, 16(9): 1610-1620. |
[30] |
SPILJAR M, MERKLER D, TRAJKOVSKI M. The Immune system bridges the gut microbiota with systemic energy homeostasis:focus on TLRs, mucosal barrier, and SCFAs[J]. Frontiers in Immunology, 2017, 8: 1353. DOI:10.3389/fimmu.2017.01353 |
[31] |
TEDELIND S, WESTBERG F, KJERRULF M, et al. Anti-inflammatory properties of the short-chain fatty acids acetate and propionate:a study with relevance to inflammatory bowel disease[J]. World Journal of Gastroenterology, 2007, 13(20): 2826-2832. DOI:10.3748/wjg.v13.i20.2826 |
[32] |
KIM M H, KANGS G, PARKJ H, et al. Short-chain fatty acids activate GPR41 and GPR43 on intestinal epithelial cells to promote inflammatory responses in mice[J]. Gastroenterology, 2013, 145(2): 396-406. DOI:10.1053/j.gastro.2013.04.056 |
[33] |
WU W, SUN M, CHEN F, et al. Microbiota metabolite short-chain fatty acid acetate promotes intestinal IgA response to microbiota which is mediated by GPR43[J]. Mucosal Immunology, 2017, 10(4): 946-956. DOI:10.1038/mi.2016.114 |
[34] |
AGUS A, DENIZOT J, THÉVENOT J, et al. Western diet induces a shift in microbiota composition enhancing susceptibility to Adherent-Invasive E.coli infection and intestinal inflammation[J]. Scientific Reports, 2016, 6: 19032. DOI:10.1038/srep19032 |
[35] |
徐万里, 陆高, 梁世杰, 等. 短链脂肪酸介导的菌群-宿主互动与肠易激综合征的研究进展[J]. 世界华人消化杂志, 2015, 23(36): 5815-5822. |
[36] |
HYLAND N P, QUIGLEYE M, BRINTE. Microbiota-host interactions in irritable bowel syndrome:epithelial barrier, immune regulation and brain-gut interactions[J]. World Journal of Gastroenterology, 2014, 20(27): 8859-8866. |
[37] |
VELASQUEZ-MANOFF M. The peacekeepers[J]. Nature, 2015, 518(7540): S3-S11. DOI:10.1038/518S3a |
[38] |
HAN X F, SONG H M, WANG Y L, et al. Sodium butyrate protects the intestinal barrier function in peritonitic mice[J]. International Journal of Clinical and Experimental Medicine, 2015, 8(3): 4000-4007. |
[39] |
KELLY C J, ZHENG L, CAMPBELLE L, et al. Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function[J]. Cell Host & Microbe, 2015, 17(5): 662-671. |
[40] |
MACIA L, TAN J, VIEIRAA T, et al. Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome[J]. Nature Communications, 2015, 6: 6734. DOI:10.1038/ncomms7734 |
[41] |
SUN M M, WU W, LIU Z J, et al. Microbiota metabolite short chain fatty acids, GPCR, and inflammatory bowel diseases[J]. Journal of Gastroenterology, 2016, 52(1): 1-8. |
[42] |
TAMBURINI S, SHEN N, WUH C, et al. The microbiome in early life:implications for health outcomes[J]. Nature Medicine, 2016, 22(7): 713-722. DOI:10.1038/nm.4142 |
[43] |
SCHILDERINK R, VERSEIJDEN C, SEPPEN J, et al. The SCFA butyrate stimulates the epithelial production of retinoic acid via inhibition of epithelial HDAC[J]. American Journal of Physiology:Gastrointestinal and Liver Physiology, 2016, 310(11): G1138-G1146. DOI:10.1152/ajpgi.00411.2015 |