动物营养学报    2019, Vol. 31 Issue (8): 3438-3447    PDF    
畜禽饲粮豆粕减量营养调控技术研究进展
薛俊敬1,2 , 李四元1,2 , 方热军1,2     
1. 湖南农业大学动物科学技术学院, 长沙 410128;
2. 湖南畜禽安全生产协同创新中心, 长沙 410128
摘要: 豆粕是畜禽饲粮优质蛋白质源,然而近年来豆粕供求矛盾突出,严重制约了饲料工业的可持续发展。本文对国内外豆粕减量相关研究进行综述,以期为生产实际中畜禽饲粮豆粕减量营养调控技术的应用提供参考依据。
关键词: 豆粕减量    营养价值    技术措施    应用效果    
Research Progress of Nutrition Regulation Technology for Soybean Meal Reduction in Livestock and Poultry Diets
XUE Junjing1,2 , LI Siyuan1,2 , FANG Rejun1,2     
1. College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China;
2. Hunan Co-Innovation Center of Animal Production Safety, Changsha 410128, China
Abstract: Soybean meal is a high-quality feedstuff of livestock and poultry. In recent years, the contradiction between supply and demand of soybean meal becomes prominent, which is not good for the sustainable development of feed industry. This paper reviewed the home and abroad research about the reduction of soybean meal to provide a reference of the use of nutrition regulation technology for the reduction of soybean meal in the diet of livestock and poultry.
Key words: soybean meal reduction    nutritional value    technical measures    effect    

豆粕(soybean meal,SM)作为蛋白质源应用到畜禽饲粮中归因于2个方面:一方面,豆粕具有蛋白质含量高、氨基酸平衡性好、抗营养因子含量低、消化率高等特点;另一方面,受西方玉米-豆粕型饲粮模式的影响。豆粕在畜禽饲粮中所耗费用较高,约占畜禽饲粮成本的70%[1-2]

近年来,大豆应用存在一系列问题:1)中国大豆年需求量持续增加,而本土产量呈下降趋势,导致进口量逐年增加(图 1,数据来自国家统计局),中国约70%的大豆依赖进口;2)对国际市场依赖性过高,导致国内大豆价格、供应量易随着天气、市场和国际贸易政策的变化而波动[3-4];3)大豆在长途运输过程中易发霉变质,产生毒素[5];4)人们对转基因大豆安全性存在质疑[6]。豆粕减量使用,不仅可缓解豆粕供求矛盾,提高经济效益,还可减少氮排放,具有一定的环保效益。因此,降低饲粮中豆粕用量,并寻找质优、价廉、本土化的豆粕替代品成为当前研究热点。

图 1 中国大豆产量、出口量、进口量及国内总需求量 Fig. 1 Volumes of output, export, import and total need of soybean in China

豆粕减量营养调控技术包括低蛋白质饲粮技术及豆粕替代技术。目前已开发了大量豆粕替代品,主要有:1)植物蛋白质源,如菜籽粕(rapeseed meal,RM)、棉籽粕(cottonseed meal,CM)、葵花粕(sunflower meal,SFM)、花生粕(peanut meal,PM)、刀豆、蚕豆(field bean,FB)、羽扇豆、扁豆、豌豆、鹰嘴豆、野豌豆等;2)单细胞蛋白质源,如活性干酵母(active dry yeast,ADY)等;3)糟渣,如醋糟、干酒糟及其可溶物(distillers dried grains with soluble,DDGS)、酱油糟、果渣、豆渣、菌渣、甜菜渣、饴糖渣等;4)昆虫蛋白质源,如黑水虻(black water fly,BWF)、蚕蛹、家蝇、黄粉虫等。本文综述了低蛋白质饲粮技术及豆粕替代技术相关研究,对低蛋白质饲粮技术的应用效果和豆粕替代品的产量、营养价值、应用效果、解决替代品存在问题的技术措施进行分析,以期为畜禽饲粮豆粕减量营养调控技术的应用提供参考依据。

1 低蛋白质饲粮技术

低蛋白质饲粮技术,是根据蛋白质-氨基酸营养平衡理论,在不影响动物生产性能和产品品质的前提下,通过添加适宜种类和数量的氨基酸,提高饲粮氨基酸平衡性,以达到降低饲粮蛋白质水平、减少氮排放的目的。在平衡低蛋白质饲粮的氨基酸时,可参考理想蛋白质模型(氨基酸组成比例与动物体氨基酸需求比例一致的蛋白质)。猪的理想蛋白质模型包括Fuller(1989)、ARC(1981)、Baker(1992)模型等,鸡的理想蛋白质模型包括Baker(1994)、Pack(1996)、NRC(1994)、Lemme(1990)模型等[7-10]

研究表明,参考Lemme(1990)理想蛋白质模型[10],蛋鸡饲粮粗蛋白质水平降低2%,显著提高其产蛋率,且对蛋品质无显著影响[11]。另有在断奶仔猪中的研究表明,饲粮粗蛋白质水平降低3%,在补充外源赖氨酸、色氨酸、苏氨酸、蛋氨酸基础上,单独补充缬氨酸或与异亮氨酸混合物,可将断奶仔猪平均日增重和平均日采食量恢复至正常粗蛋白质组水平,同时,低粗蛋白质组尿氮、粪氮含量显著降低,可有效降低氮排放,具有环保效益[12]。在生长母猪上的研究表明,饲粮粗蛋白质水平降至12%,同时补充外源赖氨酸、色氨酸、苏氨酸、蛋氨酸,可显著提高其日增重及日摄食量,但当粗蛋白质水平降至11%时,则显著降低上述指标,表明生长母猪的最低粗蛋白质需要量可能高于11%[13]

低蛋白质饲粮技术需补充多种外源氨基酸,氨基酸的添加量、种类、配比与动物品种、生长阶段、蛋白质降低水平相关,该技术目前仍不成熟。低蛋白质饲粮技术具有经济效益和环保效益,但畜禽蛋白质需求量受动物遗传控制,降低水平有限。

2 豆粕替代技术 2.1 豆粕替代品产量及营养价值

近年来,我国花生、油菜籽的产量呈上升趋势,且高于大豆(图 2,数据来自国家统计局)。根据NRC(2012)以及《中国饲料成分及营养价值表(2017年第28版)》,总结了部分豆粕替代品营养价值和氨基酸含量,分别见表 1表 2表 1所示棉籽粕和花生粕粗蛋白质含量高于豆粕,而豆粕替代品的粗纤维、中性洗涤纤维、酸性洗涤纤维含量普遍高于豆粕,其中以葵花粕粗纤维含量最高,其粗纤维主要来源于壳(含50%的粗纤维和25%的木质素)[14]表 2所示豆粕替代品氨基酸含量普遍低于豆粕。

图 2 中国部分豆粕替代品产量 Fig. 2 Yields of partial substitutions of soybean meal in China
表 1 部分豆粕替代品营养价值 Table 1 Nutrient values of partial substitutions of soybean meal
表 2 部分豆粕替代品氨基酸含量 Table 2 Contents of amino acids of partial substitutions of soybean meal
2.2 豆粕替代品的添加量及应用效果

部分豆粕替代品添加量及应用效果总结于表 3

表 3 部分豆粕替代品添加量及应用效果 Table 3 Supplementation and application effect of partial substitution of soybean meal

饲粮中菜籽粕、棉籽粕、葵花粕、活性干酵母添加量在一定范围内,可显著提高畜禽生产性能、营养物质消化率,但当添加量超过此范围,则不利于动物生长(表 3)。其原因如下:1)菜籽粕和棉籽粕中存在大量抗营养因子,它们通过与蛋白质、氨基酸、磷脂等物质结合,抑制消化酶活性[38],降低消化率[39];2)高含量的粗纤维不利于其他营养物质与消化道接触,影响营养物质的消化、扩散、吸收[29],降低消化率,并提高摄食量[40],降低饲粮利用效率;3)菜籽粕中芥子油甙的产物异硫氰酸盐干扰碘的吸收,阻碍甲状腺激素的合成,进而刺激甲状腺腺泡持续增生,导致甲状腺肿大,降低畜禽的生长性能[41];4)抗营养因子如棉酚与氨基酸(Lys)的结合,进一步加剧了氨基酸不平衡性[38];5)饲粮的质构特性影响畜禽摄食量,如高含量的酵母使饲粮质地黏稠,不利于畜禽进食[33];6)菜籽粕中的芥子酸,酵母中高含量的尿素、硫酸铵等非蛋白氮[33],降低饲粮适口性,影响畜禽采食量;7)可能与高含量的RNA有关,酵母蛋白中RNA含量高达41%,危害畜禽机体健康[34]

棉籽粕、花生粕、活性干酵母显著影响畜禽胴体重、内脏重、屠宰率、腹脂率、皮下脂肪厚度等指标,尤其是腹脂率和皮下脂肪厚度(表 3),这可能与饲粮中的能量蛋白质比、氨基酸平衡性、脂肪水平有关[21-22, 26, 34]。活性干酵母饲粮中粗脂肪含量低,可显著降低羊羔皮下脂肪含量,同时,活性干酵母饲粮缺乏蛋氨酸和半胱氨酸,限制了产乙酸微生物的生长,进而减少脂肪的沉积[34]

菜籽粕、花生粕对肉品质的影响主要集中于脂肪酸组成方面(表 3)[17, 26]。相关研究表明,菜籽粕饲粮显著提高了猪肉单不饱和脂肪酸(MUFA)的含量,显著降低了多不饱和脂肪酸(PUFA)、饱和脂肪酸(SFA)的含量[17],这与菜籽粕的脂肪酸组成有关,菜籽粕中MUFA含量高于豆粕,而PUFA及SFA含量低于豆粕[42]。花生粕饲粮显著降低了公牛最长肌中豆蔻酸、棕榈酸的含量[26],显著降低了山羊肌肉中奇数链脂肪酸的含量[25],奇数链脂肪酸是由微生物利用丙酸、戊酸合成[43],表明花生粕可能影响了山羊胃肠道内微生物的组成。

蛋品质方面,葵花粕、蚕豆、脱脂黑水虻显著影响蛋黄颜色以及蛋壳强度、厚度(表 3)[28, 30, 37]。蚕豆饲粮显著降低蛋黄颜色,这可能和蚕豆中叶黄素的含量有关[30]。脱脂黑水虻可能通过提高蛋黄中γ-生育酚、叶黄素、β-胡萝卜素、总类胡萝卜素的含量提高蛋黄颜色[44]。蛋壳强度和厚度的提高可能是因为脱脂黑水虻高含量的纤维促进了盲肠发酵[45],降低了pH,提高了肠道对钙的吸收[46]

此外,如表 3所示,棉籽粕饲粮还显著降低了鹌鹑的血红蛋白水平,这与棉酚有关,棉酚与铁结合限制了血红蛋白的合成[20]。黄粉虫幼虫饲粮显著提高了肉鸡机体免疫力和抗病力[36],这可能与其所含几丁质有关,几丁质具有抑菌功能,并可作为益生元维持肠道菌群平衡[47]

3 解决豆粕替代品存在问题的技术措施及效果

豆粕替代品由于含有抗营养因子(如芥子油甙、芥子酸、芥子酸胆碱、异硫氰酸盐、丹宁酸、芥子碱、硫代葡萄糖苷、单宁、棉酚等)[16, 48-49]、毒素(如黄曲霉毒素)[50],以及存在粗纤维、RNA含量高[34],适口性差,氨基酸不平衡,消化酶活性低等问题,限制了在饲粮中的添加水平。目前,解决上述问题的方法主要有微生物发酵、添加外源氨基酸、添加外源酶等。

3.1 微生物发酵

发酵可提高替代品的添加水平,如菜籽粕发酵后在肉鸡饲粮中的添加水平可提高5%[15, 19],棉籽粕发酵后的添加水平可提高10%[21]。豆粕替代品经发酵处理后,可显著提高畜禽的生产性能、消化率,改善产品品质,提高机体免疫力(表 3)[18-19, 21, 24]。其原因如下:1)在发酵过程中,微生物通过分泌的蛋白质、氨基酸、酶结合或降解饲粮中的抗营养因子,有效降低异硫氰酸盐、游离棉酚、芥子油甙含量[51-52],降低了它们对机体的负面影响,并提高饲粮适口性和风味[53-54];2)发酵可改善豆粕替代品营养价值,微生物可将豆粕替代品中的粗纤维转化为菌体蛋白,降低粗纤维含量的同时提高粗蛋白质含量;3)微生物发酵提高饲粮低聚糖、维生素、氨基酸、小分子肽的含量[21, 55],这有利于肠道对营养物质的消化吸收[56],提高消化率[52];4)发酵提高了豆粕替代品中诸如抗氧化肽等多功能肽的含量,进而提高机体免疫[57];5)发酵提高了肠道中有益菌的数量,有利于维持肠道菌群平衡;6)发酵降低了抗营养因子对肠道形态的负面作用,提高了肠道健康水平[58-59];7)发酵饲粮富含乳酸菌,可降低脂肪酸合成限速酶乙酰辅酶A羧化酶活性,降低皮下脂肪含量[60];8)豆粕替代品经发酵处理可促进畜禽肌肉蛋白质代谢[61]

3.2 添加外源氨基酸或酶

豆粕替代品氨基酸不平衡限制了其添加水平,理想蛋白质模型亦在解决该问题方面发挥着重要作用。研究表明,在肉鸡饲粮[NRC(1994)理想蛋白质模型]中补充1.5%赖氨酸,可改善饲粮氨基酸平衡性,棉籽粕的添加水平可提高10%,且不影响肉鸡的生长性能[23]。另有研究表明,在肉鸡饲粮[NRC(1994)理想蛋白质模型]中补充0.15%的赖氨酸,可添加20%的棉籽粕且不影响肉鸡的生长性能[62]。此外,可通过添加外源酶提高豆粕替代品添加效果,如在肉鸡饲粮中添加木聚糖酶、蛋白酶、淀粉酶,葵花粕的添加水平可提高7.5%(前期)~10.0%(后期),且显著提高肉鸡的生长性能、胴体重、营养物质消化率[29]。肉鸡饲粮中添加8%的豆粕,并添加0.05%的α-半乳糖苷酶,有提高其体增重、降低料重比的趋势[63]

4 小结

豆粕是畜禽优质植物蛋白质,长久以来,饲粮中蛋白质的供应量高于动物所需,不仅造成资源浪费,也带来了环境压力;同时,随着市场和国际贸易政策的变化,豆粕供求矛盾日益突出。中国农业大学动物科技学院谯仕彦教授认为,以生猪为例,若生猪生产全程饲粮蛋白质水平由目前的16%降至14%,可减少豆粕用量近1 030万t,豆粕减量营养调控技术势在必行[64]。低蛋白质饲粮技术降低蛋白质水平有限,因此豆粕替代技术是豆粕减量营养调控技术的重点和热点,发酵工艺及高效添加剂(外源氨基酸及相关酶)的研发将成为解决豆粕替代技术存在问题的关键。同时,豆粕替代品的添加水平与替代品种类、动物品种、动物生长阶段的关系不明确,可作为未来研究方向之一。

参考文献
[1]
SUDARMAN A, JAYANTI A M, MUTIA R. Utilization of jack bean (Canavalia ensiformis) meal as a substitute for soybean meal in diet for broiler reared for 35 days[J]. Bulletin of Animal Science, 2018, 42(1): 8-14.
[2]
HADDAD S G. Bitter vetch grains as a substitute for soybean meal for growing lambs[J]. Livestock Science, 2006, 99(2/3): 221-225.
[3]
JEZIERNY D, MOSENTHIN R, BAUER E. The use of grain legumes as a protein source in pig nutrition:a review[J]. Animal Feed Science and Technology, 2010, 157(3/4): 111-128.
[4]
LI Y, CHEN L, ZHANG Y H, et al. Substitution of soybean meal with detoxified Jatropha curcas kernel meal:effects on performance, nutrient utilization, and meat edibility of growing pigs[J]. Asian-Australasian Journal of Animal Sciences, 2018, 31(6): 888-898. DOI:10.5713/ajas.17.0499
[5]
BRYDEN W L. Mycotoxin contamination of the feed supply chain:implications for animal productivity and feed security[J]. Animal Feed Science and Technology, 2012, 173(1/2): 134-158.
[6]
DOMINGO J L, BORDONABA J G. A literature review on the safety assessment of genetically modified plants[J]. Environment International, 2011, 37(4): 734-742. DOI:10.1016/j.envint.2011.01.003
[7]
CHUNG T K, BAKER D H. Ideal amino acid pattern for 10-kilogram pigs[J]. Journal of Animal Science, 1992, 70(10): 3102-3111. DOI:10.2527/1992.70103102x
[8]
WANG T C, FULLER M F. The optimum dietary amino acid pattern for growing pigs:1.Experiments by amino acid deletion[J]. British Journal of Nutrition, 1989, 62(1): 77-89. DOI:10.1079/BJN19890009
[9]
BAKER D H, HAN Y M. Ideal amino acid profile for chicks during the first three weeks posthatching[J]. Poultry Science, 1994, 73(9): 1441-1447. DOI:10.3382/ps.0731441
[10]
BREGENDAHL K, ROBERTS S A, KERR B, et al. Ideal ratios of isoleucine, methionine, methionine plus cystine, threonine, tryptophan, and valine relative to lysine for white leghorn-type laying hens of twenty-eight to thirty-four weeks of age[J]. Poultry Science, 2008, 87(4): 744-758. DOI:10.3382/ps.2007-00412
[11]
任冰, 武书庚, 计峰, 等. 理想氨基酸模式下低粗蛋白质饲粮对蛋鸡生产性能的影响[J]. 动物营养学报, 2012, 24(8): 1459-1468. DOI:10.3969/j.issn.1006-267x.2012.08.009
[12]
LORDELO M M, GASPAR A M, LE BELLEGO L, et al. Isoleucine and valine supplementation of a low-protein corn-wheat-soybean meal-based diet for piglets:growth performance and nitrogen balance[J]. Journal of Animal Science, 2008, 86(11): 2936-2941. DOI:10.2527/jas.2007-0222
[13]
FIGUEROA J L, LEWIS A J, MILLER P S, et al. Nitrogen metabolism and growth performance of gilts fed standard corn-soybean meal diets or low-crude protein, amino acid-supplemented diets[J]. Journal of Animal Science, 2002, 80(11): 2911-2919. DOI:10.2527/2002.80112911x
[14]
ALAGAWANY M, ATTIA A I, IBRAHIM Z A, et al. The effectiveness of dietary sunflower meal and exogenous enzyme on growth, digestive enzymes, carcass traits, and blood chemistry of broilers[J]. Environmental Science and Pollution Research, 2017, 24(13): 12319-12327. DOI:10.1007/s11356-017-8934-4
[15]
MILOŠEVIĆ N, STANAĆ EV V, PERIĆ L, et al. Use extruded rapeseed meal in the feed of broiler chickens[J]. Biotechnology in Animal Husbandry, 2011, 27(4): 1681-1687. DOI:10.2298/BAH1104681M
[16]
CHOI H B, JEONG J H, KIM D H, et al. Influence of rapeseed meal on growth performance, blood profiles, nutrient digestibility and economic benefit of growing-finishing pigs[J]. Asian-Australasian Journal of Animal Sciences, 2015, 28(9): 1345-1353. DOI:10.5713/ajas.14.0802
[17]
SKOUFOS I, TZORA A, GIANNENAS I, et al. Dietary inclusion of rapeseed meal as soybean meal substitute on growth performance, gut microbiota, oxidative stability and fatty acid profile in growing-fattening pigs[J]. Asian Journal of Animal and Veterinary Advances, 2016, 11(2): 89-97. DOI:10.3923/ajava.2016.89.97
[18]
XU F Z, LI L M, XU J P, et al. Effects of fermented rapeseed meal on growth performance and serum parameters in ducks[J]. Asian-Australasian Journal of Animal Sciences, 2011, 24(5): 678-684. DOI:10.5713/ajas.2011.10458
[19]
XU F Z, ZENG X G, DING X L. Effects of replacing soybean meal with fermented rapeseed meal on performance, serum biochemical variables and intestinal morphology of broilers[J]. Asian-Australasian Journal of Animal Sciences, 2012, 25(12): 1734-1741. DOI:10.5713/ajas.2012.12249
[20]
ERTURK M M, OZEN N, CELIK K. Effects of replacement of soybean meal by cottonseed meal on laying performance and haemoglobin levels in practical diets for breeder Japanese quail, Coturnix coturnix japonica[J]. Asian-Australasian Journal of Animal Sciences, 2004, 17(7): 980-983. DOI:10.5713/ajas.2004.980
[21]
JAZI V, BOLDAJI F, DASTAR B, et al. Effects of fermented cottonseed meal on the growth performance, gastrointestinal microflora population and small intestinal morphology in broiler chickens[J]. British Poultry Science, 2017, 58(4): 402-408. DOI:10.1080/00071668.2017.1315051
[22]
ATTANAYAKA P M G S K, PATHIRANA A P D G, PRIYANKARAGE N, et al. Effect of substitution of soybean meal with cottonseed meal on the performances of broiler chicken[J]. International Journal of Livestock Research, 2016, 6(3): 24-30. DOI:10.5455/ijlr.20160306102626
[23]
AZMAN M A, YILMAZ M. The growth performance of broiler chicks fed with diets containing cottonseed meal supplemented with lysine[J]. Revue de Médecine Vétérinaire, 2005, 156(2): 104-106.
[24]
TANG J W, SUN H, YAO X H, et al. Effects of replacement of soybean meal by fermented cottonseed meal on growth performance, serum biochemical parameters and immune function of yellow-feathered broilers[J]. Asian-Australasian Journal of Animal Sciences, 2012, 25(3): 393-400. DOI:10.5713/ajas.2011.11381
[25]
SILVA T M, DE MEDEIROS A N, OLIVEIRA R L, et al. Carcass traits and meat quality of crossbred Boer goats fed peanut cake as a substitute for soybean meal[J]. Journal of Animal Science, 2016, 94(7): 2992-3002. DOI:10.2527/jas.2016-0344
[26]
CORREIA B R, CARVALHO G G P, OLIVEIRA R L, et al. Production and quality of beef from young bulls fed diets supplemented with peanut cake[J]. Meat Science, 2016, 118: 157-163. DOI:10.1016/j.meatsci.2016.03.017
[27]
CERUTTI W G, VIEGAS J, BARBOSA A M, et al. Fatty acid profiles of milk and Minas frescal cheese from lactating grazed cows supplemented with peanut cake[J]. Journal of Dairy Research, 2016, 83(1): 42-49. DOI:10.1017/S0022029915000631
[28]
DE MORAIS OLIVEIRA V R, DE ARRUDA A M V, SILVA L N S, et al. Sunflower meal as a nutritional and economically viable substitute for soybean meal in diets for free-range laying hens[J]. Animal Feed Science and Technology, 2016, 220: 103-108. DOI:10.1016/j.anifeedsci.2016.07.015
[29]
ALAGAWANY M, ATTIA A, EL GAWAD IBRAHIM Z A, et al. The influences of feeding broilers on graded inclusion of sunflower meal with or without Avizyme on growth, protein and energy efficiency, carcass traits and nutrient digestibility[J]. Turkish Journal of Veterinary and Animal Sciences, 2017, 42(3): 168-176.
[30]
LAUDADIO V, TUFARELLI V. Treated fava bean (Vicia faba var.minor) as substitute for soybean meal in diet of early phase laying hens:egg-laying performance and egg quality[J]. Poultry Science, 2010, 89(10): 2299-2303. DOI:10.3382/ps.2010-00868
[31]
TUFARELLI V, KHAN R U, LAUDADIO V. Evaluating the suitability of field beans as a substitute for soybean meal in early-lactating dairy cow:production and metabolic responses[J]. Animal Science Journal, 2012, 83(2): 136-140. DOI:10.1111/j.1740-0929.2011.00934.x
[32]
FROIDMONT E, BARTIAUX-THILL N. Suitability of lupin and pea seeds as a substitute for soybean meal in high-producing dairy cow feed[J]. Animal Research, 2004, 55(6): 475-487.
[33]
CAMPOS A F, PEREIRA O G, RIBEIRO K G, et al. Impact of replacing soybean meal in beef cattle diets with inactive dry yeast, a sugarcane by-product of ethanol distilleries and sugar mills[J]. Animal Feed Science and Technology, 2014, 190: 38-46. DOI:10.1016/j.anifeedsci.2014.01.003
[34]
RUFINO L D A, PEREIRA O G, RIBEIRO K G, et al. Effect of substitution of soybean meal for inactive dry yeast on diet digestibility, lamb's growth and meat quality[J]. Small Ruminant Research, 2013, 111(1/2/3): 56-62.
[35]
ULLAH R, KHAN S, KHAN N A. Replacement of soybean meal with silkworm meal in the diets of white leghorn layers and effects on performance, apparent total tract digestibility, blood profile and egg quality[J]. International Journal of Veterinary Health Science and Research, 2017, 5(7): 200-207.
[36]
BOVERA F, PICCOLO G, GASCO L, et al. Yellow mealworm larvae (Tenebrio molitor, L.) as a possible alternative to soybean meal in broiler diets[J]. British Poultry Science, 2015, 56(5): 569-575.
[37]
MWANIKI Z, NEIJAT M, KIARIE E. Egg production and quality responses of adding up to 7.5% defatted black soldier fly larvae meal in a corn-soybean meal diet fed to Shaver White Leghorns from wk 19 to 27 of age[J]. Poultry Science, 2018, 98(8): 2829-2835.
[38]
NAGALAKSHMI D, RAMA RAO S V, PANDA A K. Cottonseed meal in poultry diets:a review[J]. The Journal of Poultry Science, 2007, 44(2): 119-134. DOI:10.2141/jpsa.44.119
[39]
倪海球, 杨玉娟, 于纪宾, 等. 挤压膨化加工对菜籽粕中抗营养因子含量及膨化菜籽粕对生长育肥猪生长性能的影响[J]. 动物营养学报, 2017, 29(7): 2295-2306. DOI:10.3969/j.issn.1006-267x.2017.07.012
[40]
LIU S F, SUN J, YU L N, et al. Extraction and Characterization of chitin from the beetle Holotrichia parallela motschulsky[J]. Molecules, 2012, 17(4): 4604-4611. DOI:10.3390/molecules17044604
[41]
MCNEILL L, BERNARD K, MACLEOD M G. Food intake, growth rate, food conversion and food choice in broilers fed on diets high in rapeseed meal and pea meal, with observations on sensory evaluation of the resulting poultry meat[J]. British Poultry Science, 2004, 45(4): 519-523. DOI:10.1080/00071660412331286235
[42]
KRACHT W, DÄNICKE S, KLUGE H, et al. Effect of dehulling of rapeseed on feed value and nutrient digestibility of rape products in pigs[J]. Archives of Animal Nutrition, 2004, 58(5): 389-404. DOI:10.1080/00039420400005018
[43]
ABUBAKR A, ALIMON A R, YAAKUB H, et al. Effect of feeding palm oil by-products based diets on muscle fatty acid composition in goats[J]. PLoS One, 2015, 10(3): e0119756. DOI:10.1371/journal.pone.0119756
[44]
SECCI G, BOVERA F, NIZZA S, et al. Quality of eggs from Lohmann brown classic laying hens fed black soldier fly meal as substitute for soya bean[J]. Animal, 2018, 12(10): 2191-2197. DOI:10.1017/S1751731117003603
[45]
KIARIE E, ROMERO L F, RAVINDRAN V. Growth performance, nutrient utilization, and digesta characteristics in broiler chickens fed corn or wheat diets without or with supplemental xylanase[J]. Poultry Science, 2014, 93(5): 1186-1196. DOI:10.3382/ps.2013-03715
[46]
METZLER-ZEBELI B U, HOODA S, MOSENTHIN R, et al. Bacterial fermentation affects net mineral flux in the large intestine of pigs fed diets with viscous and fermentable nonstarch polysaccharides[J]. Journal of Animal Science, 2010, 88(10): 3351-3362. DOI:10.2527/jas.2010-2906
[47]
KHOUSHAB F, YAMABHAI M. Chitin research revisited[J]. Marine Drugs, 2010, 8(7): 1988-2012. DOI:10.3390/md8071988
[48]
OKROUHLA M, STUPKA R, CITEK J, et al. The effect of replacing soybean meal with rapeseed meal on the production performance and meat chemical composition in pigs[J]. Research in Pig Breeding, 2012, 6(1): 36-39.
[49]
ELANGOVAN A V, VERMA S V S, SASTRY V R B, et al. Effect of feeding high glucosinolate rapeseed meal to laying Japanese quail[J]. Asian-Australasian Journal of Animal Sciences, 2001, 14(9): 1304-1307. DOI:10.5713/ajas.2001.1304
[50]
PESTI G M, BAKALLI R I, DRIVER J P, et al. Comparison of peanut meal and soybean meal as protein supplements for laying hens[J]. Poultry Science, 2003, 82(8): 1274-1280. DOI:10.1093/ps/82.8.1274
[51]
NIE C X, ZHANG W J, GE W X, et al. Effects of fermented cottonseed meal on the growth performance, apparent digestibility, carcass traits, and meat composition in yellow-feathered broilers[J]. Turkish Journal of Veterinary and Animal Sciences, 2015, 39: 350-356. DOI:10.3906/vet-1410-65
[52]
SUN H, TANG J W, YAO X H, et al. Improvement of the nutritional quality of cottonseed meal by Bacillus subtilis and the addition of papain[J]. International Journal of Agriculture and Biology, 2012, 14(4): 563-568.
[53]
VIG A P, WALIA A. Beneficial effects of Rhizopus oligosporus fermentation on reduction of glucosinolates, fibre and phytic acid in rapeseed (Brassica napus) meal[J]. Bioresource Technology, 2001, 78(3): 309-312. DOI:10.1016/S0960-8524(01)00030-X
[54]
TRIPATHI M K, MISHRA A S. Glucosinolates in animal nutrition:a review[J]. Animal Feed Science and Technology, 2007, 132(1/2): 1-27.
[55]
CHEN C C, SHIH Y C, CHIOU P W S, et al. Evaluating nutritional quality of single stage- and two stage-fermented soybean meal[J]. Asian-Australasian Journal of Animal Sciences, 2010, 23(5): 598-606. DOI:10.5713/ajas.2010.90341
[56]
SHI C Y, HE J, WANG J P, et al. Effects of Aspergillus niger fermented rapeseed meal on nutrient digestibility, growth performance and serum parameters in growing pigs[J]. Animal Science Journal, 2016, 87(4): 557-563. DOI:10.1111/asj.12457
[57]
FENG J, LIU X, XU Z R, et al. Effects of Aspergillus oryzae 3.042 fermented soybean meal on growth performance and plasma biochemical parameters in broilers[J]. Animal Feed Science and Technology, 2007, 134(3/4): 235-242.
[58]
SALEH A A, HAYASHI K, OHTSUKA A. Synergistic effect of feeding Aspergillus awamori and Saccharomyces cerevisiae on growth performance in broiler chickens; promotion of protein metabolism and modification of fatty acid profile in the muscle[J]. The Journal of Poultry Science, 2013, 50(3): 242-250. DOI:10.2141/jpsa.0120153
[59]
PATON A W, MORONA R, PATON J C. Designer probiotics for prevention of enteric infections[J]. Nature Reviews Microbiology, 2006, 4(3): 193-200. DOI:10.1038/nrmicro1349
[60]
NIBA A T, BEAL J D, KUDI A C, et al. Potential of bacterial fermentation as a biosafe method of improving feeds for pigs and poultry[J]. African Journal of Biotechnology, 2009, 8(9): 1758-1767.
[61]
SALEH A A, AMBER K, EL-MAGD M A, et al. Integrative effects of feeding Aspergillus awamori and fructooligosaccharide on growth performance and digestibility in broilers:promotion muscle protein metabolism[J]. BioMed Research International, 2014, 2014: 946859.
[62]
HASSANABADI A, HEIDARINIYA A, SHAHIR M H. Histological effects of cottonseed meal with and without ferrous sulfate and lysine in male broiler rations[J]. Journal of Animal and Veterinary Advances, 2009, 8(8): 1499-1502.
[63]
SIDOEUN B, 呙于明, 张炳坤, 等. 豆粕和棉粕日粮中添加α-半乳糖苷酶对肉仔鸡生长性能的影响[J]. 中国畜牧杂志, 2009, 45(15): 25-28, 64.
[64]
乔金亮.我国全面推广低蛋白质日粮饲料技术[N/OL].经济日报, 2018-08-31(3)[2018-12-01]http://paper.ce.cn/jjrb/html/2018-08/31/content_371382.htm.