反刍动物养殖是我国畜牧业中除猪禽养殖以外主要的增长动力点,但是气候变化可通过不同的途径对畜体发生作用,特别是环境高温导致的热应激会对反刍动物瘤胃结构和功能造成负面影响,进而影响其生产和健康,给养殖业造成经济损失。本文就热应激对反刍动物采食量、瘤胃结构和功能、瘤胃内环境(包括pH、挥发性脂肪酸浓度、氨态氮浓度、菌群结构等)及甲烷产生进行综述,系统全面地阐述热应激对反刍动物瘤胃的影响。
1 热应激对反刍动物采食量和饲粮养分消化率的影响外界环境温度升高引起的反刍动物热应激,首先表现为食欲降低、采食量减少[1-5]。环境温度超过26 ℃时,奶牛采食量会随着温度升高而下降,在40 ℃时,采食量可能会下降40%[6],而不耐热的奶牛会基本停止采食[1];热应激条件下奶山羊采食量会下降22%~35%[7-8];水牛小母牛会下降8%~10%[9]。此外,持续的热应激会加重采食量下降的幅度。采食量的下降,直接影响动物健康并导致动物生产性能的下降。
食后增热(也称体增热)是反刍动物产热的重要来源,因此在热应激条件下,动物采食量的下降是减少高温环境中产热量的一条途径[10]。当环境温度升高时,机体散热会加强,皮肤表面血管舒张、充血,进而导致消化道内血流量不足,影响营养物质的吸收速度,使消化道内充盈,易导致胃的紧张度升高,从而抑制采食。热负荷增加会降低养分吸收,营养摄入量会减少到干物质采食量(DMI)的约30%[6, 11]。除此之外,有研究表明,高温环境会减少动物甲状腺激素的释放,而甲状腺激素具有促进消化道蠕动、缩短食糜流通时间的作用,因此,甲状腺激素分泌的减少,会降低动物胃肠道蠕动频率,使食糜过胃肠时间延长,导致动物肠胃长时间处于充盈状态,通过胃壁伸张感受器作用于丘脑厌食中枢,负反馈抑制采食[12]。同时,高温也会通过对下丘脑的食欲中枢产生直接负面影响而降低食欲,减少采食量[12-13]。
消化的动态特征的改变也被认为是热应激影响动物采食的一种可能机制,热应激引起的采食量下降,会导致消化道运动和瘤胃收缩减少,降低食糜的流通速率,增加胃肠道充盈度和食糜停留时间,进而提高动物在热应激条件下饲粮养分的消化率[14-18]。尽管有报道称饲粮养分(特别是纤维成分)消化率与环境温度之间存在正相关关系[19],但高温对奶牛[20]和山羊[19]饲粮养分消化率的影响不大。也有研究报道,长期处于热应激状态下的绵羊,其饲粮干物质消化率会随温度升高而降低[21]。Collier等[22]也发现,热应激时随环境温度升高奶牛DMI降低,瘤胃发酵模式发生改变,引起瘤胃消化不良,饲料的利用率降低[22],最终导致生产性能的下降。长期处于热应激时,动物体摄入水分增多,使瘤胃内容物稀释,瘤胃细菌活动减少,瘤胃蠕动减慢,唾液产生减少,这些因素可能是导致饲粮养分消化率变化的主要原因[23]。
2 热应激对瘤胃乳头形态和瘤胃运动的影响瘤胃上皮细胞有一些重要的生理功能,包括营养物质吸收和运输、短链脂肪酸代谢和屏障保护作用。研究表明,热应激增加幼畜(羔羊和犊牛)瘤胃乳头高度,降低瘤胃乳头顶宽,但对乳头表面积和肌层厚度没有显著影响[24-25]。早前也有研究表明,热应激会增加反刍动物精饲料的采食量,其中淀粉摄入量的加大使得动物的瘤胃乳头高度有所增加[10, 24-26],并对瘤胃乳头上皮的角质层(由角状细胞组成的外层,并作为瘤胃环境和较低活力层之间的物理保护屏障)有一定程度的损伤。
热应激下,动物会消耗更少的粗饲料,这不仅降低了瘤胃蠕动和反刍,还通过唾液量的降低改变消化模式并降低了DMI,进而影响机体的健康[27-28]。在热应激下,动物的胃肠道食糜的通过速度比在热中性环境时慢,这导致了采食量、瘤胃活动和蠕动降低[29]。这可能是因为热应激下瘤胃上皮的血液流动受到抑制,进而减少了反刍。此外,热应激过程中动物脑垂体可能会通过减少生长激素和甲状腺激素的分泌对基础代谢产生影响,进而改变瘤胃功能[30]。Mishra等[31]在热应激奶牛瘤胃液中测量到较高浓度的乳酸和较低的pH,这意味着在热应激期间高的乳酸浓度和较低的pH可能会抑制瘤胃运动。也有研究表明,black Bedouin山羊[32]、水牛[33]和埃及水牛[34]在热应激状态下瘤胃的体积和食糜含水量会增加,从而提高了它作为机体水库的能力,以抵消热应激对瘤胃蠕动的影响[29]。
3 热应激对瘤胃内环境指标的影响 3.1 pH瘤胃液pH是动物自身的一项生理指标,对维持瘤胃内环境稳态起重要作用,一般维持在5.8~6.8,瘤胃能够正常发酵。热应激条件下,瘤胃液pH通常会有所降低[22-23, 31],并且容易产生酸中毒。有研究表明,热应激导致奶牛采食量和牧草与精饲料比率下降,进而使反刍减少,唾液产生量和唾液碳酸氢根(HCO3-)含量减少;热应激也会导致奶牛呼吸频率、喘息流涎显著升髙,减少瘤胃可用的唾液量;此外,热应激奶牛呼吸频率增加导致二氧化碳(CO2)呼出量增加,诱发血液CO2含量降低,肾脏分泌HCO3-增多,唾液中HCO3-分泌量降低,进入瘤胃以维持瘤胃健康的HCO3-的量也随之降低,瘤胃液pH下降,使得热应激奶牛更容易发生亚急性和急性瘤胃酸中毒[10, 35]。还有研究认为,奶牛进食行为的变化也可能导致瘤胃酸中毒,在热中性条件下的奶牛通常每天进食12~15餐,但在热应激期间每天减少3~5餐的进食频率,并伴随着单次较多的采食,因此在采食后会产生更多的酸。此外,奶牛一般会在热应激后的第2天过食,最终会导致瘤胃酸中毒[36]。
也有研究得出相反的结果,例如,有研究发现,热应激期间泌乳奶牛会消耗更少的粗饲料并增加饮水量,导致瘤胃液pH从5.82增加到6.03[37];湿热应激状态下,藏绵羊和山羊瘤胃液pH也会随之升高[38]。总之,热应激会影响瘤胃液pH,而瘤胃内微生物对于瘤胃内环境极为敏感,瘤胃液pH的改变会直接影响瘤胃微生物的正常生理活动,引起动物体消化障碍,进而影响反刍动物的瘤胃功能和健康状况。
3.2 挥发性脂肪酸瘤胃微生物能够利用饲料中的碳水化合物,经发酵产生以乙酸、丙酸、丁酸和戊酸等为代表的挥发性脂肪酸,瘤胃挥发性脂肪酸产量是反映瘤胃对于饲料利用能力的重要指标之一。瘤胃中乙酸的浓度与粗饲料采食量紧密相关[39],当饲粮中纤维素和半纤维素比例较高时,发酵产生的乙酸比例较高;饲粮中淀粉比例提高时,发酵产生的丙酸比例升高,因此,乙酸与丙酸的比值是衡量瘤胃发酵模式的重要指标。由于热应激会打破瘤胃微生态的平衡性,从而对瘤胃挥发性脂肪酸产量也有着显著影响。
热应激会减少瘤胃内挥发性脂肪酸的总产量[40-42]。Nonaka等[40]报道,热应激可显著减少奶牛瘤胃乙酸的产生,使乙酸与丙酸的比值显著下降,丙酸和丁酸的产量随着瘤胃功能的改变有所增加。Salles等[43]与King等[44]的研究结果表明,高的瘤胃温度会降低总挥发性脂肪酸浓度,但是不影响挥发性脂肪酸的摩尔比例。Kelley等[41]研究表明,高温时,奶牛瘤胃液乙酸、丙酸和丁酸浓度均降低,同时乙酸与丙酸的比值升高。Collier等[22]研究发现,随环境温度升高,奶牛瘤胃挥发性脂肪酸的产生量减少,乙酸与丙酸的比值增加。张灿[38]研究发现,湿热应激能降低藏绵羊和山羊瘤胃液乙酸、丙酸、丁酸及总挥发性脂肪酸浓度,使山羊瘤胃液乙酸与丙酸的比值显著升高,发酵模式由丙酸型发酵转变为乙酸型发酵。而Niles等[45]发现,热应激时奶牛瘤胃液总挥发性脂肪酸浓度下降,乙酸比例降低,丙酸比例稍增加,乙酸与丙酸的比值下降。Uyeno等[46]对热应激条件下生长犊牛的采食行为观察发现,在自由采食的条件下,粗饲料采食量降低的幅度显著高于精饲料,从而导致其瘤胃液乙酸浓度降低。
这些变化可能是由于粗饲料摄入量减少使瘤胃发酵底物浓度减少[41],降低饲粮中能量的利用率[47],影响瘤胃内微生物的发酵作用,并且微生物种群变化引起发酵模式变化[46],进而降低瘤胃内挥发性脂肪酸浓度。Niles等[45]与Schneider等[48]发现,热应激会降低瘤胃收缩的幅度和频率,并增加网状瘤胃的活动性,进而导致瘤胃内挥发性脂肪酸浓度下降。也有研究表明,在热应激和热中性环境中保持饲粮摄入量不变的情况下,与热中性环境中的母牛相比,热应激母牛的瘤胃液稀释率和固体消化道通过率降低导致总挥发性脂肪酸浓度减少。但是Kelley等[41]观察到,热应激降低了牛瘤胃内挥发性脂肪酸的浓度,这种反应不会引起与热应激相关的网状瘤胃运动的抑制。此外,由于高温使更多的血流分布到机体外周以增强散热,而减少了输送到胃肠道的血流量,所以挥发性脂肪酸被更低效地吸收,导致瘤胃内总挥发性脂肪酸浓度的增加[31]。
另有研究表明,热应激对瘤胃内挥发性脂肪酸总产量及其各组分如乙酸、丙酸、丁酸比例以及乙酸与丙酸的比值均没有显著影响[43]。此外,也有研究显示,热应激条件下奶牛瘤胃内挥发性脂肪酸总产量与非热应激时相比差异不显著,而乙酸的产量显著下降,丙酸和戊酸的产量无显著差异,并且乙酸与丙酸的比值显著降低[40]。
热应激对反刍动物瘤胃内挥发性脂肪酸浓度产生不同影响的原因可能与动物种类、动物年龄及遭受热应激程度等的不同有关。不同于单胃动物,挥发性脂肪酸是反刍动物能量供给的主要来源,热应激对于瘤胃挥发性脂肪酸产量有着不利影响,生产实践中必须采取有效措施减少动物热应激的发生,从而避免挥发性脂肪酸的损失。
3.3 氨态氮反刍动物瘤胃内氨态氮浓度能够准确地反映瘤胃壁吸收氨(NH3)和瘤胃细菌利用NH3后通过肝脏门静脉进入肠肝循环代谢之间的平衡关系,并且瘤胃内氨态氮浓度能直接反映反刍动物对于氮的利用情况,这很大程度上能够反映瘤胃内发酵状况。
有研究表明,热应激影响瘤胃壁对氨态氮的吸收,进而提高奶牛、奶山羊瘤胃液氨态氮浓度[31]。湿热应激会导致藏绵羊瘤胃对氮的利用率降低,使得瘤胃内微生物蛋白的合成受到抑制,进而导致瘤胃液氨态氮浓度升高,微生物蛋白浓度降低,蛋白质消化率也随之降低[38]。
相反,一些研究发现,热应激会使奶牛瘤胃液氨态氮浓度降低[47]。也有研究表明,热应激前后,山羊、奶牛瘤胃氨态氮产量并没有显著变化,但能显著降低不同泌乳阶段奶牛瘤胃液氨态氮浓度[48]。
3.4 微生物反刍动物与其瘤胃微生物之间处于互利共生且相互制约的关系,反刍动物为瘤胃微生物提供生长环境,食入的饲草饲料和瘤胃内代谢产物成为微生物生长需要的养分,微生物会将反刍动物不能消化的部分饲草料进行发酵,生成反刍动物能够吸收利用的物质。瘤胃微生物对温度要求较严格,在39.0~39.5 ℃时最活跃,高于此温度对瘤胃发酵不利[49]。
有研究表明,在热应激条件下,绵羊和奶牛瘤胃内纤维分解菌的数量显著下降,奶牛C. coccoides-E. rectule和牛链球菌的数量显著上升,绵羊和山羊瘤胃内淀粉分解菌数量减少,奶牛内淀粉分解菌数量上升;但奶牛瘤胃中主要的纤维素分解菌产琥珀酸丝状杆菌和黄化瘤胃球菌的数量几乎不受温度和湿度等环境因素的影响,普雷沃氏菌的数量则在热应激条件下相对减少[42, 50-51]。并且,热应激对不同阶段的奶牛瘤胃微生物数量的影响幅度不同[52-53]。瘤胃微生物数量的改变可能是由于热应激下动物体采食量、饮水量、生理状态(如呼吸、脉搏加快,体温上升)改变引起的[42, 46]。
热应激下,奶牛瘤胃内乳酸浓度升高,但是瘤胃内乳酸脱氢酶活性并无显著变化且活性较低,说明瘤胃内乳酸浓度的升高并不是由糖酵解途径增强导致的,因此推测热应激引起瘤胃菌群发生变化是由乳酸产生菌的数量升高引起的,这与闵力[54]的研究结果一致。研究发现,中度热应激会导致奶牛瘤胃中链球菌属(Strepfococcus)和螺旋体属(Treponema)的数量显著升高[36],犊牛瘤胃中丝状杆菌的数量显著降低,产乳酸的链球菌的数量升高[46]。链球菌属是瘤胃中主要的乳酸产生菌[55-56],链球菌属的大量增殖导致瘤胃发酵产生的乳酸量增加,同时引起乳酸菌属(Lactobacilli)数量的增多,产生更多的乳酸[57]。此外,瘤胃内微生物对于乳酸的利用下降也会使得乳酸大量积累[55],导致瘤胃pH降低,并且瘤胃液中挥发性脂肪酸浓度降低,这表明Strepfococcus和Lactobacilli数量的增加可能与瘤胃酸中毒具有关联性[58-60]。螺旋体属主要参与可溶性纤维的分解[61],占瘤胃总细菌的1.05%~3.05%,与饲粮中精饲料的分解相关[62]。螺旋体属仅存在于饲喂高精料饲粮动物的瘤胃中,且Fernando等[63]研究不同比例精饲料对肉牛瘤胃菌群的影响时发现饲喂高精料饲粮要比饲喂牧草时瘤胃中螺旋体门(Spirochaetes)的数量要多。在前文中提到过热应激会影响反刍动物精、粗饲料的采食比例,因此推测瘤胃菌群结构的改变可能与机体适应饲粮中高比例的精饲料相关。
4 热应激对甲烷产生的影响甲烷是由饲料和粪肥中的碳水化合物进行厌氧发酵形成的。瘤胃液pH、挥发性脂肪酸、饲料类型、采食量、动物种类和环境应激都会影响反刍动物甲烷的产生。甲烷产生的最佳pH为7.0~7.2,产气可在6.6~7.6的pH范围内发生,超出这个范围,纤维降解酶的活性会降低[64-65]。通常情况下,甲烷由2种产甲烷菌产生,包括缓慢生长的产甲烷菌和快速生长的产甲烷菌。在瘤胃中,由于瘤胃内容物停留时间太短、不能建立缓慢生长的物种,甲烷主要通过快速生长的产甲烷菌生成。
Ngwabie等[66]研究表明,环境温度升高导致奶牛活动量减少,从而显著减少了甲烷的日排放量。还有研究表明,甲烷产量与DMI相关[67]。Yadav等[68]研究了不同热暴露对甲烷排放的影响,结果发现,与25和30 ℃相比,在35 ℃下暴露使每千克DMI的甲烷排放量减少,但甲烷排放量在40 ℃时增加。这可能是由于35 ℃时饲粮有较高的消化率,因此有更多的有机物可供微生物转化成甲烷。而在40 ℃时甲烷排放量增加,可能是因为有机物消化率降低以及产生甲烷的微生物和其他微生物发酵的转变所致。King等[44]研究也发现在较高的瘤胃温度期间甲烷排放量增加。
5 小结总之,热应激会对反刍动物采食量、瘤胃生理、瘤胃发酵特性、瘤胃菌群结构及甲烷产生造成影响,进而影响反刍动物的健康,最终导致其生产性能下降。因此,研究热应激对反刍动物瘤胃内环境发酵具体的影响机制,以探求缓解热应激对瘤胃影响的措施具有重要意义。目前,热应激对反刍动物的影响均集中在对生理指标、生化指标及瘤胃发酵等基础的研究上,对热应激调控机制较全面的探讨尚不多见,今后应更深入研究热应激对反刍动物瘤胃的影响机制,进而有针对性地开发研究缓解热应激的调控措施,最终将热应激对反刍动物生产造成的损失降到最低。
[1] |
AL-SAIADY M Y, AL-SHAIKH M A, AL-MUFARREJ S I, et al. Effect of chelated chromium supplementation on lactation performance and blood parameters of Holstein cows under heat stress[J]. Animal Feed Science and Technology, 2004, 117(3/4): 223-233. |
[2] |
BAUMGARD L H, WHEELOCK J B, O'BRIEN M D, et al.The differential effects of heat stress vs.underfeeding on production and post-absorptive nutrient partitioning[C]//Proceedings of the 22nd Annual Southwest Nutrition and Management Conference.Tucson: The University of Arizona, 2007.
|
[3] |
O'BRIEN M D, RHOADS R P, SANDERS S R, et al. Metabolic adaptations to heat stress in growing cattle[J]. Domestic Animal Endocrinology, 2010, 38(2): 86-94. DOI:10.1016/j.domaniend.2009.08.005 |
[4] |
WANG J P, BU D P, WANG J Q, et al. Effect of saturated fatty acid supplementation on production and metabolism indices in heat-stressed mid-lactation dairy cows[J]. Journal of Dairy Science, 2010, 93(9): 4121-4127. DOI:10.3168/jds.2009-2635 |
[5] |
YADAV B, SINGH G, VERMA A K, et al. Impact of heat stress on rumen functions[J]. Veterinary World, 2013, 6(12): 992-996. DOI:10.14202/vetworld.2013.992-996 |
[6] |
RHOADS R P, BAUMGARD L H, SUAGEE J K, et al. Nutritional interventions to alleviate the negative consequences of heat stress[J]. Advances in Nutrition, 2013, 4(3): 267-276. DOI:10.3945/an.112.003376 |
[7] |
HAMZAOUI S, SALAMA A A K, CAJA G, et al. Milk production losses in early lactating dairy goats under heat stress[J]. Journal of Dairy Science, 2012, 95(2): 672-673. |
[8] |
SALAMA A A K, CAJA G, HAMZAOUI S, et al. Different levels of response to heat stress in dairy goats[J]. Small Ruminant Research, 2014, 121(1): 73-79. DOI:10.1016/j.smallrumres.2013.11.021 |
[9] |
HOODA O K, SINGH S. Effect of thermal stress on feed intake, plasma enzymes and blood bio-chemicals in buffalo heifers[J]. Indian Journal of Animal Nutrition, 2010, 27(2): 122-127. |
[10] |
KADZERE C T, MURPHY M R, SILANIKOVE N, et al. Heat stress in lactating dairy cows:a review[J]. Livestock Production Science, 2002, 77(1): 59-91. DOI:10.1016/S0301-6226(01)00330-X |
[11] |
WHEELOCK J B, RHOADS R P, VANBAALE M J, et al. Effects of heat stress on energetic metabolism in lactating Holstein cows[J]. Journal of Dairy Science, 2010, 93(2): 644-655. DOI:10.3168/jds.2009-2295 |
[12] |
WESTRA R, HUDSON R J. Digestive function of wapiti calves[J]. The Journal of Wildlife Management, 1981, 45(1): 148-155. DOI:10.2307/3807883 |
[13] |
DIKMEN S, USTUNER H, ORMAN A. The effect of body weight on some welfare indicators in feedlot cattle in a hot environment[J]. International Journal of Biometeorology, 2012, 56(2): 297-303. DOI:10.1007/s00484-011-0433-6 |
[14] |
DAVIS A V, MERILAN C P. Effect of constant environmental temperatures and relative humidities on feed digestion for lactating Holstein cows[J]. Journal of Dairy Science, 1960, 43: 871. |
[15] |
CHRISTOPHERSON R J, KENNEDY P M. Effect of the thermal environment on digestion in ruminants[J]. Canadian Journal of Animal Science, 1983, 63(3): 477-496. DOI:10.4141/cjas83-058 |
[16] |
SANCHEZ W K, MCGUIRE M A, BEEDE D K. Macromineral nutrition by heat stress interactions in dairy cattle:review and original research[J]. Journal of Dairy Science, 1994, 77(7): 2051-2079. DOI:10.3168/jds.S0022-0302(94)77150-2 |
[17] |
KIM K H, KIM D H, OH Y K, et al. Productivity and energy partition of late lactation dairy cows during heat exposure[J]. Animal Science Journal, 2010, 81(1): 58-62. DOI:10.1111/j.1740-0929.2009.00711.x |
[18] |
SOUFIANE H, SALAMA A A K, CAJA G, et al. Physiological and nutritional changes of dairy goats for maintaining milk yield during extreme heat stress conditions at late lactation[J]. Journal of Dairy Science, 2013, 93(1): 570. |
[19] |
LU C D. Effects of heat stress on goat production[J]. Small Ruminant Research, 1989, 2(2): 151-162. DOI:10.1016/0921-4488(89)90040-0 |
[20] |
MCDOWELL R E, HOOVEN N W, CAMOENS J K. Effect of climate on performance of Holsteins in first lactation[J]. Journal of Dairy Science, 1976, 59(5): 965-971. DOI:10.3168/jds.S0022-0302(76)84305-6 |
[21] |
BHATTACHARYA A N, HUSSAIN F. Intake and utilization of nutrients in sheep fed different levels of roughage under heat stress[J]. Journal of Animal Science, 1974, 38(4): 877-886. DOI:10.2527/jas1974.384877x |
[22] |
COLLIER R J, BEEDE D K, THATCHER W W, et al. Influences of environment and its modification on dairy animal health and production[J]. Journal of Dairy Science, 1982, 65(11): 2213-2227. DOI:10.3168/jds.S0022-0302(82)82484-3 |
[23] |
BERNABUCCI U, LACETERA N, DANIELI P P, et al. Influence of different periods of exposure to hot environment on rumen function and diet digestibility in sheep[J]. International Journal of Biometeorology, 2009, 53(5): 387-395. DOI:10.1007/s00484-009-0223-6 |
[24] |
ODONGO N E, ALZAHAL O, LINDINGER M I, et al. Effects of mild heat stress and grain challenge on acid-base balance and rumen tissue histology in lambs[J]. Journal of Animal Science, 2006, 84(2): 447-455. DOI:10.2527/2006.842447x |
[25] |
YAZDI M H, MIRZAEI-ALAMOUTI H R, AMANLOU H, et al. Effects of heat stress on metabolism, digestibility, and rumen epithelial characteristics in growing Holstein calves[J]. Journal of Animal Science, 2016, 94(1): 77-89. DOI:10.2527/jas.2015-9364 |
[26] |
ZITNAN R, KUHLA S, NÜRNBERG K, et al. Influence of the diet on the morphology of ruminal and intestinal mucosa and on intestinal carbohydrate levels in cattle[J]. Veterinární Medicína, 2003, 48(7): 177-182. |
[27] |
NARDONE A, RONCHI B, LACETERA N, et al. Effects of climate changes on animal production and sustainability of livestock systems[J]. Livestock Science, 2010, 130(1/2/3): 57-69. |
[28] |
SORIANI N, PANELLA G, CALAMARI L. Rumination time during the summer season and its relationships with metabolic conditions and milk production[J]. Journal of Dairy Science, 2013, 96(8): 5082-5094. DOI:10.3168/jds.2013-6620 |
[29] |
SILANIKOVE N. Effects of water scarcity and hot environment on appetite and digestion in ruminants:a review[J]. Livestock Production Science, 1992, 30(3): 175-194. DOI:10.1016/S0301-6226(06)80009-6 |
[30] |
BEEDE D K, COLLIER R J. Potential nutritional strategies for intensively managed cattle during thermal stress[J]. Journal of Animal Science, 1986, 62: 543-554. DOI:10.2527/jas1986.622543x |
[31] |
MISHRA M, MARTZ F A, STANLEY R W, et al. Effect of diet and ambient temperature-humidity on ruminal pH, oxidation reduction potential, ammonia and lactic acid in lactating cows[J]. Journal of Animal Science, 1970, 30(6): 1023-1028. DOI:10.2527/jas1970.3061023x |
[32] |
SILANIKOVE N. Effect of dehydration on feed intake and dry matter digestibility in desert (black Bedouin) and non-desert (Swiss Saanen) goats fed on lucerne hay[J]. Comparative Biochemistry and Physiology Part A:Physiology, 1985, 80(3): 449-452. DOI:10.1016/0300-9629(85)90066-0 |
[33] |
KORDE J P, JADHAO S V, VARSHNEY V P, et al. Longterm effects of heat exposure on nutrient digestibility and digesta flow rate in buffalo calves[J]. Buffalo Bulletin, 2006, 22(1): 25-32. |
[34] |
MARAI I F M, HAEEB A A M. Buffalo's biological functions as affected by heat stress-a review[J]. Livestock Science, 2010, 127(2/3): 89-109. |
[35] |
BAUMGARD L H, WHEELOCK J B, SHWARTZ G, et al.Effects of heat stress on nutritional requirements of lactating dairy cattle[C]//Proceedings of the 5th Annual Arizona Dairy Production Conference.Arizona: The University of Arizona, 2006: 8-16.
|
[36] |
BERNABUCCI U, LACETERA N, BAUMGARD L H, et al. Metabolic and hormonal acclimation to heat stress in domesticated ruminants[J]. Animal, 2010, 4(7): 1167-1183. DOI:10.1017/S175173111000090X |
[37] |
HALL M B.Heat stress alters ruminal fermentation and digesta characteristics, and behavior in lactating dairy cattle[C]//Proceeding of 11th International Symposium on Ruminant Physiology.The Netherlands: Wageningen Academic Publication, 2009: 204.
|
[38] |
张灿.湿热应激对藏绵羊和山羊生产性能、瘤胃发酵及血液生化指标影响的比较研究[D].硕士学位论文.雅安: 四川农业大学, 2016.
|
[39] |
SUTTON J D, DHANOA M S, MORANT S V, et al. Rates of production of acetate, propionate, and butyrate in the rumen of lactating dairy cows given normal and low-roughage diets[J]. Journal of Dairy Science, 2003, 86(11): 3620-3633. DOI:10.3168/jds.S0022-0302(03)73968-X |
[40] |
NONAKA I, TAKUSARI N, TAJIMA K, et al. Effects of high environmental temperatures on physiological and nutritional status of prepubertal Holstein heifers[J]. Livestock Science, 2008, 113(1): 14-23. DOI:10.1016/j.livsci.2007.02.010 |
[41] |
KELLEY R O, MARTZ F A, JOHNSON H D. Effect of environmental temperature on ruminal volatile fatty acid levels with controlled feed intake[J]. Journal of Dairy Science, 1967, 50(4): 531-533. DOI:10.3168/jds.S0022-0302(67)87460-5 |
[42] |
TAJIMA K, NONAKA I, HIGUCHI K, et al. Influence of high temperature and humidity on rumen bacterial diversity in Holstein heifers[J]. Anaerobe, 2007, 13(2): 57-64. DOI:10.1016/j.anaerobe.2006.12.001 |
[43] |
SALLES M S V, ZANETTI M A, SALLES F A, et al. Changes in ruminal fermentation and mineral serum level in animals kept in high temperature environments[J]. Revista Brasileira de Zootecnia, 2010, 39(4): 883-890. DOI:10.1590/S1516-35982010000400025 |
[44] |
KING C C, DSCHAAK C M, EUN J S, et al. Quantitative analysis of microbial fermentation under normal or high ruminal temperature in continuous cultures[J]. The Professional Animal Scientist, 2011, 27(4): 319-327. DOI:10.15232/S1080-7446(15)30495-2 |
[45] |
NILES M A, COLLIER R J, CROOM W J Jr. Effects of heat stress on rumen and plasma metabolite and plasma hormone concentrations of Holstein cows[J]. Journal of Animal Science, 1980, 51(Suppl.1): 152. |
[46] |
UYENO Y, SEKIGUCHI Y, TAJIMA K, et al. An rRNA-based analysis for evaluating the effect of heat stress on the rumen microbial composition of Holstein heifers[J]. Anaerobe, 2010, 16(1): 27-33. DOI:10.1016/j.anaerobe.2009.04.006 |
[47] |
温雅俐, 高民, 何钦, 等. 热应激对不同泌乳阶段奶牛瘤胃内环境发酵指标的影响[J]. 畜牧与饲料科学, 2011, 32(9/10): 68-71. |
[48] |
SCHNEIDER P L, BEEDE D K, WILCOX C J. Nycterohemeral patterns of acid-base status, mineral concentrations and digestive function of lactating cows in natural or chamber heat stress environments[J]. Journal of Animal Science, 1988, 66(1): 112-125. DOI:10.2527/jas1988.661112x |
[49] |
廖晓霞, 叶均安. 泌乳奶牛热应激研究进展[J]. 中国饲料, 2005(19): 21-23. |
[50] |
TAJIMA K, AMINOV R I, NAGAMINE T, et al. Diet-dependent shifts in the bacterial population of the rumen revealed with real-time PCR[J]. Applied and Environmental Microbiology, 2001, 67(6): 2766-2774. DOI:10.1128/AEM.67.6.2766-2774.2001 |
[51] |
KOCHERGINSKAYA S A, AMINOV R I, WHITE B A. Analysis of the rumen bacterial diversity under two different diet conditions using denaturing gradient gel electrophoresis, random sequencing, and statistical ecology approaches[J]. Anaerobe, 2001, 7(3): 119-134. DOI:10.1006/anae.2001.0378 |
[52] |
王建平, 王加启, 卜登攀, 等. 热应激对奶牛瘤胃纤维分解菌的影响[J]. 农业生物技术学报, 2010, 18(2): 302-307. DOI:10.3969/j.issn.1674-7968.2010.02.016 |
[53] |
李旦, 王加启, 卜登攀, 等. 应用Real-time PCR方法测定瘤胃液功能菌群数量[J]. 农业生物技术学报, 2008, 16(5): 787-791. DOI:10.3969/j.issn.1674-7968.2008.05.011 |
[54] |
闵力.基于生理代谢、蛋白组学和菌群多样性解析热应激对泌乳奶牛的影响[D].博士学位论文.北京: 中国农业大学, 2017. http://cdmd.cnki.com.cn/Article/CDMD-10019-1017157047.htm
|
[55] |
NAGARAJA T G, TITGEMEYER E C. Ruminal acidosis in beef cattle:the current microbiological and nutritional outlook[J]. Journal of Dairy Science, 2007, 90(Suppl.1): E17-E38. |
[56] |
CALSAMIGLIA S, BLANCH M, FERRET A, et al. Is subacute ruminal acidosis a pH related problem? Causes and tools for its control[J]. Animal Feed Science and Technology, 2012, 172(1/2): 42-50. |
[57] |
KRAUSE K M, OETZEL G R. Understanding and preventing subacute ruminal acidosis in dairy herds:a review[J]. Animal Feed Science and Technology, 2006, 126(3/4): 215-236. |
[58] |
BAUMGARD L H, RHOADS R P. Effects of heat stress on postabsorptive metabolism and energetics[J]. Annual Review of Animal Biosciences, 2013, 1: 311-337. DOI:10.1146/annurev-animal-031412-103644 |
[59] |
PETRI R M, SCHWAIGER T, PENNER G B, et al. Characterization of the core rumen microbiome in cattle during transition from forage to concentrate as well as during and after an acidotic challenge[J]. PLoS One, 2013, E8(12): e83424. |
[60] |
WANG X X, LI X B, ZHAO C X, et al. Correlation between composition of the bacterial community and concentration of volatile fatty acids in the rumen during the transition period and ketosis in dairy cows[J]. Applied and Environmental Microbiology, 2012, 78(7): 2386-2392. DOI:10.1128/AEM.07545-11 |
[61] |
KOBAYASHI Y. Inclusion of novel bacteria in rumen microbiology:need for basic and applied science[J]. Animal Science Journal, 2006, 77(4): 375-385. DOI:10.1111/j.1740-0929.2006.00362.x |
[62] |
LIU J, WANG J K, ZHU W, et al. Monitoring the rumen pectinolytic bacteria Treponema saccharophilum using real-time PCR[J]. FEMS Microbiology Ecology, 2014, 87(3): 576-585. |
[63] |
FERNANDO S C, PURVIS Ⅱ H T, NAJAR F Z, et al. Rumen microbial population dynamics during adaptation to a high-grain diet[J]. Applied and Environmental Microbiology, 2010, 76(22): 7482-7490. DOI:10.1128/AEM.00388-10 |
[64] |
MORVAY Y, BANNINK A, FRANCE J, et al. Evaluation of models to predict the stoichiometry of volatile fatty acid profiles in rumen fluid of lactating Holstein cows[J]. Journal of Dairy Science, 2011, 94(6): 3063-3080. DOI:10.3168/jds.2010-3995 |
[65] |
DIJKSTRA J, ELLIS J L, KEBREAB E, et al. Ruminal pH regulation and nutritional consequences of low pH[J]. Animal Feed Science and Technology, 2012, 172(1/2): 22-33. |
[66] |
NGWABIE N M, JEPPSSON K H, GUSTAFSSON G, et al. Effects of animal activity and air temperature on methane and ammonia emissions from a naturally ventilated building for dairy cows[J]. Atmospheric Environment, 2011, 45(37): 6760-6768. DOI:10.1016/j.atmosenv.2011.08.027 |
[67] |
RAMIN M, HUHTANEN P. Development of non-linear models for predicting enteric methane production[J]. Acta Agriculturae Scandinavica, Section A:Animal Science, 2012, 62(4): 254-258. DOI:10.1080/09064702.2013.765908 |
[68] |
YADAV B, SINGH G, WANKAR A, et al.Effect of thermal stress on Methane emission in crossbred cattle[C]//Proceedings of the Ⅷth Biennial Conference of ANAC and Symposium on Animal Nutrition Research Strategies for Food Security.[S.l.]: [s.n.], 2012: 144.
|