动物营养学报    2019, Vol. 31 Issue (8): 3456-3462    PDF    
共轭亚油酸降低脂肪沉积的分子机制研究进展
伏春燕 , 张燕 , 魏祥法 , 刘雪兰     
山东省农业科学院家禽研究所, 济南 250023
摘要: 共轭亚油酸(CLA)因在降低体脂沉积中的生物学功能而成为近年来的研究热点。研究显示,CLA对机体脂肪代谢的调控机制具有复杂性,胞内钙离子、G蛋白偶联受体和炎症反应等通路均可介导CLA对脂肪细胞分化、凋亡、脂质合成的调控作用。本文将综述介导CLA调控脂肪代谢的通路及其相关机制,旨在为进一步的CLA介导的抗肥胖机制研究提供参考。
关键词: 共轭亚油酸    脂肪沉积    分子机制    信号通路    
Advances in Molecular Mechanisms of Conjugated Linoleic Acid-Reduced Fat Deposition
FU Chunyan , ZHANG Yan , WEI Xiangfa , LIU Xuelan     
Poultry Institute, Shandong Academy of Agricultural Science, Ji'nan 250023, China
Abstract: Conjugated linoleic acid (CLA) has been widely studied for its biological functions in reducing body fat deposition in recent years. It showed that the mechanism of CLA in reducing fat deposition is complex. And several signaling pathways mediated the regulation of CLA in adipocyte adipogenesis, apoptosis and lipogenesis, such as the intracellular calcium pathways, G protein-coupled receptors pathways and inflammatory signaling. This review examined the pathways and mechanisms of CLA in mediating lipid metabolism, and aims at providing more evidences for further studies in mediating CLA's antiobesity mechanism.
Key words: conjugated linoleic acid    fat deposition    molecular mechanism    signaling pathway    

共轭亚油酸(conjugated linoleic acid, CLA)是一类含有共轭双键亚油酸的位置、几何异构体的统称,属于长链多不饱和脂肪酸。目前CLA家族中已鉴定出有28种同分异构体,其中,以顺9, 反11-CLA(cis9, trans11-CLA,c9, t11-CLA)和反10, 顺12-CLA(trans10, cis12-CLA, t10, c12-CLA)为发挥生理调控功能的最主要的2种异构体。CLA具有抗癌、抗动脉粥样硬化、抗氧化、提高免疫等多种功能[1]。因在降低体脂沉积中的生物学作用,CLA被作为一类重要的生物活性物质,得到了广泛研究。研究显示,饲粮添加CLA能显著降低猪皮下脂肪的沉积[2],增加肌内脂肪的沉积[3]。此外,在育肥期母猪的饲粮中添加CLA,对于改善仔猪体况也有积极作用[4]。饲粮来源的CLA可以沉积到肉鸡的脂肪组织中,并通过抑制成脂分化关键调控因子的活性,减小脂肪细胞体积,从而导致肉鸡腹脂沉积降低[5]。在2005年,Cherian等[6]就发现,在肉种鸡饲粮中添加CLA降低了子代雏鸡胴体的体脂含量,表明母源性CLA也可以调控子代肉鸡脂肪代谢过程。

脂肪组织不仅是机体的能量贮存场所,也是重要的内分泌器官,且代谢功能活跃。脂肪代谢过程受多种因素影响,从而导致其调控机制的复杂性。深入探究CLA在降低脂肪沉积中的分子机制,对于生产中降低脂肪的过量沉积、减少饲料损失、提高生产效益,以及临床上肥胖症、糖尿病等代谢紊乱相关疾病的治疗,均具有重要意义。本文将就CLA调控脂肪代谢的相关机制的研究进展进行综述。

1 CLA在机体内的代谢途径

瘤胃微生物可通过发酵作用利用亚油酸、亚麻酸等合成CLA,并沉积入反刍动物的乳脂及肉制品中,成为天然CLA的主要来源[7]。而饲粮来源的CLA可被胰脂酶水解为游离态CLA,以混合乳糜微粒的形式运送至肠绒毛处,经易化作用吸收入肠黏膜细胞,再以乳糜微粒的形式逸出,经乳糜管、淋巴系统、胸导管、血液循环等途径运输至各组织进行代谢或沉积[8]。研究显示,CLA可沉积入大脑、肝脏、肾脏、心脏、脾脏、骨骼肌和脂肪组织中[9-12],而其沉积量也与细胞的类型有关[13]。由于CLA具有抗肥胖的功能,其在脂肪组织中的沉积和对脂肪代谢的调控机制,得到了广泛的研究,而CLA抗脂肪沉积的具体分子机制尚不明确。研究显示,在主要的2种CLA异构体中,t10, c12-CLA是发挥抗肥胖功能的主要异构体[14]

2 CLA降低脂肪沉积的分子机制 2.1 CLA抑制成脂分化进程

对成脂分化进程和脂肪合成的抑制,是CLA降低脂肪沉积的重要机制。饲喂CLA可引起脂肪组织中与成脂分化、脂质合成相关的基因表达或活性的下调。研究显示,t10, c12-CLA沉积入脂肪组织中进行β-氧化[15],通过下调脂肪细胞决定和分化因子1、过氧化物酶增殖子激活受体(peroxisome proliferator activated receptor, PPAR)γ活性而促进硬脂酰辅酶A去饱和酶-1(stearoyl-CoA desaturase-1, SCD-1)的表达,抑制成脂和生脂过程[16-17],且t10, c12-CLA对PPARγ活性的抑制呈剂量依赖性[18]。在小鼠和人的脂肪组织中,t10, c12-CLA通过上调肉毒碱棕榈酰基转移酶-1(carnitine palmityl transferase-1, CPT-1)、PPARαPPARδ等基因的表达,促进脂肪酸氧化,降低脂肪沉积[19]。在牛原代脂肪细胞中的研究显示,t10, c12-CLA抑制了SCD-1、乙酰辅酶A羧化酶1和脂肪酸合成酶的表达,增加了激素敏感脂酶受体和CPT-1基因的表达,促进了脂肪分解和氧化,减少了脂肪沉积[20]

已知,成脂分化过程受高度复杂且精密的转录级联网络调控,其中最为核心的调控因子是PPARγ。核受体PPARγ是脂肪细胞成脂分化的关键且必需的转录调控因子,可刺激下游脂蛋白酯酶、围脂滴蛋白、脂肪酸结合蛋白4、脂肪细胞脂肪酸结合蛋白2及胰岛素介导的葡萄糖转运蛋白4等一系列基因的表达,提高细胞的成脂分化能力,加速脂滴的沉积[21]。而PPARγ的缺失将导致细胞成脂分化的终止[22-23]。大量研究均显示,CLA抑制脂肪沉积功能的发挥与PPARγ基因的表达或活性的降低有关[5, 24-26]。而PPARγ的转录活性也受上游多种激酶、磷酸酶的直接调控,因而也导致了CLA调控脂肪代谢的分子机制具有复杂性。

2.2 CLA促进能量代谢

根据脂肪细胞结构和功能的差异,通常将脂肪组织分为以储能为主的白色脂肪组织(white adipose tissue, WAT)和以产热为主的棕色脂肪组织(brown adipose tissue, BAT)。BAT细胞中含有丰富的线粒体,并可特异性表达解偶联蛋白(uncoupling protein, UCP),参与能量代谢[27]。米色脂肪细胞是WAT受到外界刺激后产生的一种具有类似BAT功能的细胞,用以提高脂肪组织的散热能力。WAT棕化就是WAT中米色脂肪细胞数量增加的结果[28-29]

CLA抗肥胖效应的发挥与组织的产热或能量消耗增加有关。研究显示,CLA处理显著促进了小鼠WAT中UCP-1、CPT-1b、环氧合酶-2(cyclooxygenase-2, COX-2)等基因的表达,诱导了WAT棕化[12]。激活BAT中自适应性产热、促进脂肪酸氧化也是t10, c12-CLA降低体脂沉积的一种机制[12, 30-31]。研究发现,饲粮中添加0.5%的CLA上调了小鼠腹膜后脂肪中UCP-1和UCP-2基因的表达,引起机体能量代谢的增加[32]t10, c12-CLA促进了人脂肪细胞中COX-2基因的表达和前列腺素(prostaglandin, PG)的合成,并诱导了WAT中棕色样脂肪细胞的产生,表明CLA介导的WAT棕化与炎症反应有关[33-35]。但Shen等[31]的研究发现,在肥胖小鼠的WAT中,抑制COX-2基因表达后,仅影响了t10, c12-CLA刺激的炎症基因表达的上调,而对t10, c12-CLA介导的脂肪代谢和棕化标志基因的表达没有显著影响,表明t10, c12-CLA对能量代谢的调控作用不依赖于炎症信号通路。

而CLA诱导WAT适应性产热,与BAT减少导致机体的体温防御机制受到损伤有关。研究显示,饲喂CLA混合物(含0.12% t10, c12-CLA和0.61% c9, t11-CLA)引起了小鼠机体BAT沉积和氧消耗量的减少[12, 36]。给肥胖的雄性小鼠连续3周饲喂含t10, c12-CLA(0.1%)饲粮,损害了机体的体温防御能力[12, 36],表明t10, c12-CLA对体脂沉积特别是BAT沉积的降低引起了WAT的棕化,用以弥补BAT减少引起的能量供应不足[25]

2.3 CLA激活炎症信号通路

脂肪组织不仅是机体的储能器官,也是重要的内分泌器官。除分泌脂联素、瘦素等脂肪细胞因子外,脂肪组织在应激下可分泌白细胞介素6(interleukin-6, IL-6)、肿瘤坏死因子-α(tumor necrosis factor-α, TNF-α)、干扰素-γ(interferon-γ, IFN-γ)等多种促炎因子,调控机体的炎症反应,并在抑制细胞成脂分化、介导脂肪细胞去脂化中发挥作用[37-38]。研究显示,饲粮添加0.2%或0.6% CLA异构体混合剂可促进小鼠WAT中单核细胞趋化蛋白-1(monocyte chemoattractant protein-1, MCP-1)、IL-6、TNF-α等炎症标志基因的表达,且该效应与t10, c12-CLA的添加比例有关[12]。膳食中补充t10, c12-CLA可升高人炎症性前列腺素的水平,且上调了新分化的人脂肪细胞中COX-2(与PG合成有关的酶)基因的表达,并促进前列腺素F(prostaglandin F,PGF)的分泌[14, 39-40]。PGF可以通过上调丝裂原活化蛋白激酶(mitogen activated protein kinases,MAPKs)通路活性而介导PPARγ磷酸化,也能诱导促炎转录因子(如核转录因子-κB)表达而抑制PPARγ的活性,从而干扰细胞成脂分化进程。此外,PGF激活缺氧诱导因子-1而降低PPARγ、CCAAT增强子结合蛋白α的表达[41]。相反,c9, t11-CLA具有抗炎和生脂的效应,并可提高小鼠的胰岛素敏感性[42-43]

2.4 CLA激活钙离子通路

胞内钙离子([Ca2+]i)平衡是活细胞重要的生理基础,也是激活细胞增殖、分化和代谢过程重要的第二信使[44]。胞内[Ca2+]i平衡受多种激酶的调控,并通过介导相关激酶的活性,参与多种细胞代谢过程。研究显示,CLA降低脂肪沉积的过程伴随胞内内质网释放钙离子的增加。MAPKs通路活性受胞内[Ca2+]i及其上游的磷脂酶C(phospholipase C, PLC)、二酰甘油激酶(diacylglycerol kinase, DGK)的调控。在人脂肪细胞中,胞内[Ca2+]i信号通路激活后,通过上调细胞外信号调节激酶(extracellular signal-regulated kinase, ERK)1/2、c-Jun氨基端激酶磷酸化蛋白活性而抑制PPARγ的表达,促进脂解和脂肪酸氧化进程,介导t10, c12-CLA去脂化[15, 45-46]。但t10, c12-CLA的这种去脂化机制,在PLC、DGK抑制剂处理后发生了逆转[47-48],表明t10, c12-CLA通过胞内[Ca2+]i通路调控脂肪代谢的过程受PLC、DGK活性的影响。

2.5 CLA诱导细胞凋亡

细胞凋亡是指为了维持细胞稳态,细胞主动结束生命进程的过程,受多种基因的激活、表达的调控。以小鼠或3T3-L1细胞为模型的研究显示,t10, c12-CLA或CLA的异构体混合剂均可诱导脂肪细胞发生凋亡[32, 49]。在高脂饲粮中添加1.5% CLA提高了小鼠Bcl-2相关X蛋白(Bcl-2 associated protein, Bax)与B细胞淋巴瘤基因-2(B cell lymphoma 2, Bcl-2)的比率(分别为线粒体凋亡通路中的诱导因子和抑制因子)[50]。TNF-α是有效的细胞凋亡诱导因子,也在脂肪细胞功能的发挥中起关键作用[51]。在饲粮中添加1%CLA混合物饲喂C57BL/6J小鼠后上调了WAT中TNF-α的表达,诱导了细胞凋亡[52]t10, c12-CLA处理促进了小鼠TNF-α的表达和分泌[53-54]。此外,综合应激反应(integrated stress response, ISR)的激活也可诱导细胞凋亡[41]。研究显示,t10, c12-CLA促进了小鼠和3T3-L1细胞中ISR有关基因的表达,如转录因子3、C/EP同源蛋白(C/EBP homologous protein, CHOP)以及生长停滞和DNA损伤诱导蛋白34等,而在CLA诱导脂肪细胞ISR活化之前,会先促进IL-6、白细胞介素-8(interleukin-8, IL-8)等炎症基因的表达[55]。在小鼠乳腺癌细胞中,t10, c12-CLA通过诱导CHOP的表达和内质网应激而促进凋亡进程[56-57]。因此,CLA可通过内质网应激和ISR反应诱导细胞凋亡,具体的作用机制则受CLA的处理剂量、异构体的添加种类或剂量不同的影响[41, 57]。研究显示,t10, c12-CLA调控脂肪细胞凋亡的分子机制与ω-3亚油酸、二十二碳六烯酸(DHA)相似[58]

2.6 CLA激活G蛋白偶联受体(G protein-coupled receptors, GPRs)信号通路

GPRs家族基因的表达与细胞代谢相关调控通路的活性紧密相关。激活GPRs可刺激下游一系列信号通路的表达,如激活PLC和DGK,产生二酰基甘油和三磷酸肌醇,促进内质网释放[Ca2+]i;此外,还可激活环磷酸腺苷介导的脂肪分解,诱导炎症反应的发生[25]。在GPRs家族中,GPR41和GPR120可在WAT中表达,而GPR43和GPR84在脂肪细胞中表达丰富[59]。研究显示,百日咳毒素(GPR-Gi/o偶联抑制剂)处理抑制了t10, c12-CLA介导的丝裂原活化蛋白激酶和ERK1/2的磷酸化,抑制了葡萄糖的摄取[60]t10, c12-CLA处理的人原代脂肪细胞中,GPRC5AGPR56的表达量分别升高了5倍、4倍,而GPR120的表达量降低了60%[61],与GPRs信号通路有关的膜蛋白(如PLCγ1、PLCδ4、DGKδ、DGKγ等)的表达量也显著升高[47-48, 61]。此外,CLA异构体混合剂通过激活特异的GPRs而降低啮齿动物WAT内的脂肪酸转运[62]。但是目前,有关CLA经GPRs信号通路调控脂肪代谢的具体分子机制还不明确,仍需深入研究。

t10, c12-CLA降低体脂沉积的潜在分子机制如图 1所示。

t10, c12-CLA:反10, 顺12-CLA trans10, cis12-CLA;GPRs:G蛋白偶联受体G protein-coupled receptors;PLC:磷脂酶C phospholipase C;PIP2:磷脂酰肌醇-4, 5-二磷酸phosphatidylinositol 4, 5-biphosphate;DAG:二酰甘油diglyceride;IP3:三磷酸肌醇inositol 1,4,5-triphosphate;DGK:二酰甘油激酶diacylglycerol kinase;CaMKⅡ:钙/钙调素依赖性蛋白激酶Ⅱ Ca2+/calmodulin-dependent protein kinase Ⅱ;ERK:细胞外信号调节激酶extracellular signal-regulated kinase;JNK:c-Jun氨基末端激酶c-Jun N-terminal kinase;PPARγ:过氧化物酶增殖子激活受体γ peroxisome proliferator activated receptor γ;endoplasmic reticulum:内质网;Adipogenesis:脂肪形成;Lipogenesis:脂肪生成。 图 1 t10, c12-CLA降低体脂沉积的潜在分子机制 Fig. 1 Potential molecular mechanisms of t10, c12-CLA reducing body fat deposition
3 小结与展望

过量的脂肪沉积,不仅造成饲料资源的浪费和动物生产效益的降低,还会增加畜禽、人等患代谢紊乱相关疾病的风险。CLA在降低体脂沉积、抗肥胖中发挥着重要的生理调控作用,研究CLA发挥该生理作用的分子机制,对于促进CLA在医学、畜牧业中的合理应用,改善人体健康以及畜牧养殖效益等都具有深远的意义。近年来,许多学者均对CLA降低体脂沉积的分子机制进行了研究,但由于动物模型、细胞类型或者状态的不同,不同研究所得结论并不一致,也使得我们对该机制的认识不明确。充分利用分子生物学技术,深入揭示CLA调控脂肪代谢的规律及作用机理,依然是今后的研究热点。

参考文献
[1]
王美艳. 共轭亚油酸在畜牧生产中的研究和应用[J]. 广东饲料, 2019(1): 29-32. DOI:10.3969/j.issn.1005-8613.2019.01.008
[2]
MEADUS W J, MACINNIS R, DUGAN M E R. Prolonged dietary treatment with conjugated linoleic acid stimulates porcine muscle peroxisome proliferator activated receptor gamma and glutamine-fructose aminotransferase gene expression in vivo[J]. Journal of Molecular Endocrinology, 2002, 28(2): 79-86.
[3]
CORDERO G, ISABEL B, MENOYO D, et al. Dietary CLA alters intramuscular fat and fatty acid composition of pig skeletal muscle and subcutaneous adipose tissue[J]. Meat Science, 2010, 85(2): 235-239. DOI:10.1016/j.meatsci.2010.01.004
[4]
BEE G. Dietary conjugated linoleic acid consumption during pregnancy and lactation influences growth and tissue composition in weaned pigs[J]. The Journal of Nutrition, 2000, 130(12): 2981-2989. DOI:10.1093/jn/130.12.2981
[5]
RAMIAH S K, MENG G Y, SHEAU WEI T, et al. Dietary conjugated linoleic acid supplementation leads to downregulation of PPAR transcription in broiler chickens and reduction of adipocyte cellularity[J]. PPAR Research, 2014, 2014: 137652.
[6]
CHERIAN G, AI W, GOEGER M P. Maternal dietary conjugated linoleic acid alters hepatic triacylglycerol and tissue fatty acids in hatched chicks[J]. Lipids, 2005, 40(2): 131-136. DOI:10.1007/s11745-005-1367-3
[7]
BU D P, WANG J Q, DHIMAN T R, et al. Effectiveness of oils rich in linoleic and linolenic acids to enhance conjugated linoleic acid in milk from dairy cows[J]. Journal of Dairy Science, 2007, 90(2): 998-1007. DOI:10.3168/jds.S0022-0302(07)71585-0
[8]
杨凤. 动物营养学[M]. 2版. 北京: 中国农业出版社, 2001.
[9]
SARTORIUS T, DRESCHER A, PANSE M, et al. Mice lacking free fatty acid receptor 1(GPR40/FFAR1) are protected against conjugated linoleic acid-induced fatty liver but develop inflammation and insulin resistance in the brain[J]. Cellular Physiology and Biochemistry, 2015, 35(6): 2272-2284. DOI:10.1159/000374031
[10]
YUAN G F, SINCLAIR A J, SUN H Y, et al. Fatty acid composition in tissues of mice fed diets containing conjugated linolenic acid and conjugated linoleic acid[J]. Journal of Food Lipids, 2009, 16(2): 148-163. DOI:10.1111/j.1745-4522.2009.01138.x
[11]
CZAUDERNA M, KOWALCZYK J, KORNILUK K. Effect of dietary conjugated linoleic acid and selenized yeast on the concentration of fatty acids and minerals in rats[J]. Archives of Animal Nutrition, 2007, 61(2): 135-150. DOI:10.1080/17450390701204004
[12]
SHEN W, CHUANG C C, MARTINEZ K, et al. Conjugated linoleic acid reduces adiposity and increases markers of browning and inflammation in white adipose tissue of mice[J]. Journal of Lipid Research, 2013, 54(4): 909-922. DOI:10.1194/jlr.M030924
[13]
SUBBAIAH P V, SIRCAR D, AIZEZI B, et al. Differential effects of conjugated linoleic acid isomers on the biophysical and biochemical properties of model membranes[J]. Biochimica et Biophysica Acta:Biomembranes, 2010, 1798(3): 506-514. DOI:10.1016/j.bbamem.2009.11.020
[14]
KENNEDY A, OVERMAN A, LAPOINT K, et al. Conjugated linoleic acid-mediated inflammation and insulin resistance in human adipocytes are attenuated by resveratrol[J]. Journal of Lipid Research, 2009, 50(2): 225-232. DOI:10.1194/jlr.M800258-JLR200
[15]
MARTIN J C, GRÉGOIRE S, SIESS M H, et al. Effects of conjugated linoleic acid isomers on lipid-metabolizing enzymes in male rats[J]. Lipids, 2000, 35(1): 91-98. DOI:10.1007/s11745-000-0499-9
[16]
KENNEDY A, CHUNG S, LAPOINT K, et al. Trans-10, cis-12 conjugated linoleic acid antagonizes ligand-dependent PPARγ activity in primary cultures of human adipocytes[J]. The Journal of Nutrition, 2008, 138(3): 455-461. DOI:10.1093/jn/138.3.455
[17]
OBSEN T, FAERGEMAN N J, CHUNG S, et al. Trans-10, cis-12 conjugated linoleic acid decreases de novo lipid synthesis in human adipocytes[J]. The Journal of nutritional biochemistry, 2012, 23(6): 580-590. DOI:10.1016/j.jnutbio.2011.02.014
[18]
BRANDEBOURG T D, HU C Y. Isomer-specific regulation of differentiating pig preadipocytes by conjugated linoleic acids[J]. Journal of Animal Science, 2005, 83(9): 2096-2105. DOI:10.2527/2005.8392096x
[19]
DEN HARTIGH L J, WANG S R, GOODSPEED L, et al. Metabolically distinct weight loss by 10, 12 CLA and caloric restriction highlight the importance of subcutaneous white adipose tissue for glucose homeostasis in mice[J]. PLoS One, 2017, 12(2): e0172912. DOI:10.1371/journal.pone.0172912
[20]
KADEGOWDA A K G, BURNS T A, PRATT S L, et al. Inhibition of stearoyl-CoA desaturase 1 reduces lipogenesis in primary bovine adipocytes[J]. Lipids, 2013, 48(10): 967-976. DOI:10.1007/s11745-013-3823-1
[21]
陈犹白, 陈聪慧, ZHANG Q X, 等. 脂肪干细胞分离、纯化和保存:研究进展与未来方向[J]. 中国组织工程研究, 2016, 20(10): 1508-1520. DOI:10.3969/j.issn.2095-4344.2016.10.020
[22]
ONG W K, SUGⅡ S. Adipose-derived stem cells:fatty potentials for therapy[J]. The International Journal of Biochemistry & Cell Biology, 2013, 45(6): 1083-1086.
[23]
CHOI S K, PARK S, JANG S, et al. Cascade regulation of PPARγ2 and C/EBPα signaling pathways by celastrol impairs adipocyte differentiation and stimulates lipolysis in 3T3-L1 adipocytes[J]. Metabolism, 2016, 65(5): 646-654. DOI:10.1016/j.metabol.2016.01.009
[24]
MILLER J R, SIRIPURKPONG P, HAWES J, et al. The trans-10, cis-12 isomer of conjugated linoleic acid decreases adiponectin assembly by PPARγ-dependent and PPARγ-independent mechanisms[J]. Journal of Lipid Research, 2008, 49(3): 550-562. DOI:10.1194/jlr.M700275-JLR200
[25]
SHEN W, MCINTOSH M K. Nutrient regulation:conjugated linoleic acid's inflammatory and browning properties in adipose tissue[J]. Annual Review of Nutrition, 2016, 36: 183-210. DOI:10.1146/annurev-nutr-071715-050924
[26]
LAVANDERA J, GERSTNER C D, SAÍN J, et al. Maternal conjugated linoleic acid modulates TAG metabolism in adult rat offspring[J]. British Journal of Nutrition, 2017, 118(11): 906-913. DOI:10.1017/S0007114517003002
[27]
BUSIELLO R A, SAVARESE S, LOMBARDI A. Mitochondrial uncoupling proteins and energy metabolism[J]. Frontiers in Physiology, 2015, 6: 36.
[28]
WU J, BOSTRÖM P, SPARKS L M, et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human[J]. Cell, 2012, 150(2): 366-376. DOI:10.1016/j.cell.2012.05.016
[29]
WALDÉN T B, HANSEN I R, TIMMONS J A, et al. Recruited vs.nonrecruited molecular signatures of brown, "brite, "and white adipose tissues[J]. American Journal of Physiology:Endocrinology and Metabolism, 2012, 302(1): E19-E31. DOI:10.1152/ajpendo.00249.2011
[30]
WENDEL A A, PURUSHOTHAM A, LIU L F, et al. Conjugated linoleic acid induces uncoupling protein 1 in white adipose tissue of ob/ob mice[J]. Lipids, 2009, 44(11): 975-982. DOI:10.1007/s11745-009-3348-9
[31]
SHEN W, BALDWIN J, COLLINS B, et al. Low level of trans-10, cis-12 conjugated linoleic acid decreases adiposity and increases browning independent of inflammatory signaling in overweight Sv129 mice[J]. The Journal of Nutritional Biochemistry, 2015, 26(6): 616-625. DOI:10.1016/j.jnutbio.2014.12.016
[32]
LAROSA P C, MINER J, XIA Y N, et al. Trans-10, cis-12 conjugated linoleic acid causes inflammation and delipidation of white adipose tissue in mice:a microarray and histological analysis[J]. Physiological Genomics, 2006, 27(3): 282-294. DOI:10.1152/physiolgenomics.00076.2006
[33]
MARTINEZ K, KENNEDY A, WEST T, et al. Trans-10, cis-12-conjugated linoleic acid instigates inflammation in human adipocytes compared with preadipocytes[J]. Journal of Biological Chemistry, 2010, 285(23): 17701-17712. DOI:10.1074/jbc.M109.043976
[34]
VEGIOPOULOS A, MÜLLER-DECKER K, STRZODA D, et al. Cyclooxygenase-2 controls energy homeostasis in mice by de novo recruitment of brown adipocytes[J]. Science, 2010, 328(5982): 1158-1161. DOI:10.1126/science.1186034
[35]
MADSEN L, PEDERSEN L M, LILLEFOSSE H H, et al. UCP1 induction during recruitment of brown adipocytes in white adipose tissue is dependent on cyclooxygenase activity[J]. PLoS One, 2010, 5(6): e11391. DOI:10.1371/journal.pone.0011391
[36]
STOUT M B.Differential metabolic effects in white and brown adipose tissue by conjugated linoleic acid elicit lipodystrophy-associated hepatic insulin resistance[D]. Ph.D Thesis.Ohio: The Ohio State University, 2011.
[37]
SIMONS P J, VAN DEN PANGAART P S, AERTS J M F G, et al. Pro-inflammatory delipidizing cytokines reduce adiponectin secretion from human adipocytes without affecting adiponectin oligomerization[J]. Journal of Endocrinology, 2007, 192(2): 289-299. DOI:10.1677/JOE-06-0047
[38]
POULOS S P, HAUSMAN D B, HAUSMAN G J. The development and endocrine functions of adipose tissue[J]. Molecular and Cellular Endocrinology, 2010, 323(1): 20-34. DOI:10.1016/j.mce.2009.12.011
[39]
KANG K, LIU W, ALBRIGHT K J, et al. Trans-10, cis-12 CLA inhibits differentiation of 3T3-L1 adipocytes and decreases PPARγ expression[J]. Biochemical and Biophysical Research Communications, 2003, 303(3): 795-799. DOI:10.1016/S0006-291X(03)00413-3
[40]
STECK S E, CHALECKI A M, MILLER P, et al. Conjugated linoleic acid supplementation for twelve weeks increases lean body mass in obese humans[J]. The Journal of Nutrition, 2007, 137(5): 1188-1193. DOI:10.1093/jn/137.5.1188
[41]
KENNEDY A, MARTINEZ K, SCHMIDT S, et al. Antiobesity mechanisms of action of conjugated linoleic acid[J]. The Journal of Nutritional Biochemistry, 2010, 21(3): 171-179. DOI:10.1016/j.jnutbio.2009.08.003
[42]
MOLONEY F, TOOMEY S, NOONE E, et al. Antidiabetic effects of cis-9, trans-11-conjugated linoleic acid may be mediated via anti-inflammatory effects in white adipose tissue[J]. Diabetes, 2007, 56(3): 574-582. DOI:10.2337/db06-0384
[43]
HALADE G V, RAHMAN M M, FERNANDES G. Differential effects of conjugated linoleic acid isomers in insulin-resistant female C57Bl/6J mice[J]. The Journal of Nutritional Biochemistry, 2010, 21(4): 332-337. DOI:10.1016/j.jnutbio.2009.01.006
[44]
BRAVO-SAGUA R, MATTAR P, DÍAZ X, et al. Calcium sensing receptor as a novel mediator of adipose tissue dysfunction:mechanisms and potential clinical implications[J]. Frontiers in Physiology, 2016, 7: 395.
[45]
BROWN J M, SANDBERG BOYSEN M, JENSEN S S, et al. Isomer-specific regulation of metabolism and PPARγ signaling by CLA in human preadipocytes[J]. Journal of Lipid Research, 2003, 44(7): 1287-1300. DOI:10.1194/jlr.M300001-JLR200
[46]
CHUNG S, BROWN J M, PROVO J N, et al. Conjugated linoleic acid promotes human adipocyte insulin resistance through NFκB-dependent cytokine production[J]. Journal of Biological Chemistry, 2005, 280(46): 38445-38456. DOI:10.1074/jbc.M508159200
[47]
SHEN W, MARTINEZ K, CHUANG C C, et al. The phospholipase C inhibitor U73122 attenuates trans-10, cis-12 conjugated linoleic acid-mediated inflammatory signaling and insulin resistance in human adipocytes[J]. The Journal of Nutrition, 2013, 143(5): 584-590. DOI:10.3945/jn.112.173161
[48]
MARTINEZ K, SHYAMASUNDAR S, KENNEDY A, et al. Diacylglycerol kinase inhibitor R59022 attenuates conjugated linoleic acid-mediated inflammation in human adipocytes[J]. Journal of Lipid Research, 2013, 54(3): 662-670. DOI:10.1194/jlr.M031211
[49]
MOON H S, LEE H G, SEO J H, et al. Down-regulation of PPARγ2-induced adipogenesis by PEGylated conjugated linoleic acid as the pro-drug:attenuation of lipid accumulation and reduction of apoptosis[J]. Archives of Biochemistry and Biophysics, 2006, 456(1): 19-29. DOI:10.1016/j.abb.2006.10.002
[50]
LIU L F, PURUSHOTHAM A, WENDEL A A, et al. Combined effects of rosiglitazone and conjugated linoleic acid on adiposity, insulin sensitivity, and hepatic steatosis in high-fat-fed mice[J]. American Journal of Physiology:Gastrointestinal and Liver Physiology, 2007, 292(6): G1671-G1682. DOI:10.1152/ajpgi.00523.2006
[51]
CAWTHORN W P, HEYD F, HEGYI K, et al. Tumour necrosis factor-α inhibits adipogenesis via a β-catenin/TCF4(TCF7L2)-dependent pathway[J]. Cell Death and Differentiation, 2007, 14(7): 1361-1373. DOI:10.1038/sj.cdd.4402127
[52]
TSUBOYAMA-KASAOKA N, TAKAHASHI M, TANEMURA K, et al. Conjugated linoleic acid supplementation reduces adipose tissue by apoptosis and develops lipodystrophy in mice[J]. Diabetes, 2000, 49(9): 1534-1542. DOI:10.2337/diabetes.49.9.1534
[53]
HOUSE R L, CASSADY J P, EISEN E J, et al. Conjugated linoleic acid evokes de-lipidation through the regulation of genes controlling lipid metabolism in adipose and liver tissue[J]. Obesity Reviews, 2005, 6(3): 247-258. DOI:10.1111/j.1467-789X.2005.00198.x
[54]
POIRIER H, NIOT I, CLÉMENT L, et al. Development of conjugated linoleic acid (CLA)-mediated lipoatrophic syndrome in the mouse[J]. Biochimie, 2005, 87(1): 73-79. DOI:10.1016/j.biochi.2004.11.006
[55]
LAROSA P C, RIETHOVEN J J M, CHEN H, et al. Trans-10, cis-12 conjugated linoleic acid activates the integrated stress response pathway in adipocytes[J]. Physiological Genomics, 2007, 31(3): 544-553. DOI:10.1152/physiolgenomics.00156.2007
[56]
OU L H, WU Y, IP C, et al. Apoptosis induced by t10, c12-conjugated linoleic acid is mediated by an atypical endoplasmic reticulum stress response[J]. Journal of Lipid Research, 2008, 49(5): 985-994. DOI:10.1194/jlr.M700465-JLR200
[57]
IP M M, MASSO-WELCH P A, SHOEMAKER S F, et al. Conjugated linoleic acid inhibits proliferation and induces apoptosis of normal rat mammary epithelial cells in primary culture[J]. Experimental Cell Research, 1999, 250(1): 22-34. DOI:10.1006/excr.1999.4499
[58]
MEADUS J, VAHMANI P, DUFF P, et al. CLA isomer t10, c12 induce oxidation and apoptosis in 3t3 adipocyte cells in a similar effect as omega-3 linolenic acid and DHA[J]. Functional Foods in Health & Disease, 2017, 7(2): 149-167.
[59]
MILLIGAN G, ULVEN T, MURDOCH H, et al. G-protein-coupled receptors for free fatty acids:nutritional and therapeutic targets[J]. British Journal of Nutrition, 2014, 111(Suppl.1): S3-S7.
[60]
BROWN J M, BOYSEN M S, CHUNG S, et al. Conjugated linoleic acid induces human adipocyte delipidation:autocrine/paracrine regulation of MEK/ERK signaling by adipocytokines[J]. Journal of Biological Chemistry, 2004, 279(25): 26735-26747. DOI:10.1074/jbc.M401766200
[61]
REARDON M, GOBERN S, MARTINEZ K, et al. Oleic acid attenuates trans-10, cis-12 conjugated linoleic acid-mediated inflammatory gene expression in human adipocytes[J]. Lipids, 2012, 47(11): 1043-1051. DOI:10.1007/s11745-012-3711-0
[62]
SAUER L A, DAUCHY R T, BLASK D E, et al. Conjugated linoleic acid isomers and trans fatty acids inhibit fatty acid transport in hepatoma 7288CTC and inguinal fat pads in Buffalo rats[J]. The Journal of Nutrition, 2004, 134(8): 1989-1997. DOI:10.1093/jn/134.8.1989