动物营养学报    2019, Vol. 31 Issue (10): 4434-4441    PDF    
反刍动物肝脏糖异生及营养调控
朱雯 , 任春环 , 张彦 , 张子军     
安徽农业大学动物科技学院, 合肥 230036
摘要: 葡萄糖是哺乳动物主要的供能物质,在机体代谢中具有十分重要的作用。反刍动物体内葡萄糖的生成主要来源于肝脏糖异生。磷脂酰肌醇3-激酶/蛋白激酶B-叉头框转录因子1(PI3K/Akt-FoxO1)、腺苷酸活化蛋白激酶(AMPK)以及哺乳动物雷帕霉素靶蛋白(mTOR)等重要通路/信号因子与肝脏糖异生密切相关,且营养物质底物、酶和激素等在反刍动物肝脏糖异生过程中发挥着重要的调控作用。因此,本文综述了反刍动物肝脏糖异生的过程、调节机制及营养调控措施,为改善反刍动物健康、生长与生产性能提供参考依据。
关键词: 糖异生    基因表达    酶活    营养调控    反刍动物    肝脏    
Mechanisms of Hepatic Gluconeogenesis and Nutritional Regulation in Ruminants
ZHU Wen , REN Chunhuan , ZHANG Yan , ZHANG Zijun     
College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
Abstract: Glucose is the main energy substrate, which plays an important role in mammalian metabolism. Ruminants have a large reliance on gluconeogenesis in terms of meeting the glucose requirement, and liver comprises mainly of the total gluconeogenesis capacity. Important pathways/signal factors including phosphatidylinositol 3 kinase/protein kinase B-forkhead box protein O1(PI3K/Akt-FoxO1), AMP-activated protein kinase (AMPK), and mammalian target of rapamycin (mTOR) are closely related to the hepatic gluconeogenesis, and nutrition substrates, enzyme activity, and hormone play an important role in regulation of hepatic gluconeogenesis in ruminants. Therefore, the mechanism of hepatic gluconeogenesis as well as the influence of nutritional regulations were summarized in this article, in order to provide the basic knowledge and reference for improvement of ruminant health, growth and production performance.
Key words: gluconeogenesis    gene expression    enzyme activity    nutritional regulation    ruminant    liver    

葡萄糖作为体内重要的营养单糖,是动物体内唯一可以通过血浆和细胞循环于全身的碳水化合物,作为能量载体它参与哺乳动物所有类型细胞(如脑细胞、中枢神经、肾髓质和乳腺组织)能量的代谢与合成途径[1-3]。肝脏糖异生可为反刍动物提供多达80%以上的葡萄糖需要量,因此,肝脏糖异生在反刍动物营养代谢中具有极其重要的地位[4]。尤其是围产期母畜,由于能量摄入的减少而需求增加,机体处于能量负平衡状态,易产生产后代谢病,提高糖异生活动增加葡萄糖的供给可有效缓解能量负平衡[5]。因此,调节反刍动物糖异生是改善反刍动物健康、生长与生产性能的有效手段。反刍动物糖异生的前体物主要有丙酸、甘油、氨基酸和乳酸,营养物质底物、酶和激素等可以共同调节反刍动物肝脏糖异生活动,但其影响机制不尽相同[6]。因此,本文将围绕反刍动物糖异生机制与影响因素进行阐述,对反刍动物健康、生长与生产性能的提高具有重要的指导意义。

1 反刍动物肝脏糖异生

反刍动物体内葡萄糖的生成主要来源于肝脏的糖异生作用[4],且提高肝脏糖异生是增加奶牛产奶量的有效途径[7]。反刍动物糖异生主要指血液通过门静脉循环系统运输至肝脏的丙酸或氨基酸,在各种酶的作用下合成葡萄糖的过程[8](图 1)。它的基本过程为:丙酸首先被肝细胞吸收,在丙酰辅酶A羧化酶的催化下形成甲基丙二酰辅酶A,然后在甲基丙二酰辅酶A异构酶的作用下形成琥珀酰辅酶A,进入三羧酸循环形成草酰乙酸,后者又被磷酸烯醇式丙酮酸羧激酶(phosphoenolpyruvate carboxykinase,PEPCK)催化形成磷酸烯醇式丙酮酸,经一系列反应生成葡萄糖-6-磷酸,继而在葡萄糖-6-磷酸酶(glucose-6-phosphatase,G6PC)水解作用下生成葡萄糖。整个糖异生过程中G6PC、PEPCK和磷酸烯醇式丙酮酸羧化酶(phosphoenolpyruvate carboxylase,PC)是糖异生途径的限速酶,其活性大小反映了机体葡萄糖异生作用的程度[9]

G6PC:葡萄糖-6-磷酸酶glucose-6-phosphatase;FBP:果糖1,6二磷酸酶1 fructose-1, 6-bisphospha 1;MCM:甲基丙二酰辅酶A异构酶methylmalonyl CoA isomerase;PCoAC:丙酰辅酶A羧化酶propionyl CoA carboxylase;TCA:三羧酸循环tricarboxylic acid cycle;PEPCK:磷酸烯醇式丙酮酸phosphoenolpyruvic acid;PC:磷酸烯醇式丙酮酸羧化酶phosphoenolpyruvate carboxylase。 图 1 反刍动物肝脏糖异生过程 Fig. 1 Process of hepatic gluconeogenesis in ruminants[4]
2 哺乳动物肝脏糖异生的调节信号通路/信号因子 2.1 磷脂酰肌醇3-激酶/蛋白激酶B-叉头框转录因子1(PI3K/Akt-FoxO1)通路

胰岛素在机体的葡萄糖代谢过程中发挥着重要的调控作用,可抑制糖异生,已有研究表明,多个特定通路参与胰岛素信号转导,PI3K/Akt通路因其在胰岛素敏感性调节中发挥了独特的作用而备受关注[10]。FoxO1是叉头框蛋白家族的一员,具有高度保守的DNA结构域,广泛存在于动物机体的肝脏、肾脏、肌肉和脂肪中,是PI3K/Akt的下游信号分子[11]。研究发现,小鼠肝脏FoxO1的长期激活可导致一系列糖异生相关基因表达,使血液中葡萄糖含量增加[12]FoxO1基因敲除小鼠的肝脏糖异生活力减少约50%,并且维持正常空腹血糖的功能受损[13]。究其原因,FoxO1在肝脏中可通过结合糖异生的关键酶G6PCPEPCK基因启动子IRE序列,调节肝脏糖异生功能,进而调控机体血液葡萄糖含量[14]。在体外培养人的肝细胞研究发现,lncRNA19可增加FoxO1的表达,进而增加糖异生[15];Tribbles同源蛋白1通过抑制FoxO1的转录活性,进而下调G6PCPEPCK的mRNA表达水平,抑制糖异生[16]。上述研究表明,FoxO1的表达水平与小鼠和人肝细胞糖异生呈正相关。胰岛素在糖代谢的过程中起到核心的调控作用[17-18]。当胰岛素含量降低时,FoxO1转录因子可与胰岛素受体底物(insulin receptor substrate,IRS)结合,使PEPCKG6PC转录水平增加,从而使糖异生作用增加[13];胰岛素含量升高时,可使PI3K/Akt磷酸化,进而磷酸化其下游基因FoxO1,促使FoxO1蛋白从细胞核中向细胞浆转运,从而达到对糖异生关键酶基因表达的抑制作用[19]。反刍动物研究发现,母羊向胎儿供给的葡萄糖减少时,胎儿肝脏FoxO1、PEPCK1、G6PC和果糖1,6二磷酸酶1(fructose-1, 6-bisphospha 1,FBP1)的mRNA表达量均上调,糖异生功能增强[20];限饲条件下(60%能量需要),奶牛肝脏FBP1和PC表达量增加的同时伴随着FoxO1表达量的增加[21]。Kinoshita等[22]发现,FoxO1参与泌乳中期奶牛肝脏糖异生调节,且调节作用会被胰岛素诱导的FoxO1磷酸化抑制。因此,反刍动物肝脏糖异生同样受胰岛素通路PI3K/Akt的调节,且FoxO1是潜在的重要靶基因。

2.2 腺苷酸活化蛋白激酶(AMPK)信号通路

AMPK是生物体内的一种丝氨酸/苏氨酸蛋白激酶,是体内的“能量感受器”,在多种代谢反应中均有参与,已成为研究糖代谢的重要靶点[23]。AMPK的活性受到AMP/ATP的限制,当细胞发生缺氧、营养缺乏、电子呼吸链或柠檬酸循环被阻断等情况时,AMP/ATP增大,AMPK的苏氨酸172位被磷酸化激活[24],继而磷酸化cAMP效应元件结合蛋白(cAMP response element binding protein,CHREB),CHREB作为转录因子控制着下游诸多基因的表达,进而调控糖异生[25];另有研究认为,AMPK的激活诱导了肝脏细胞中孤儿核受体的表达,而孤儿核受体可影响肝细胞核因子4α和FoxO1的转录活性,从而抑制G6PCPEPCK的表达,调控糖异生[26]。在肝脏糖代谢中,通过在正常或者胰岛素抵抗的Zuker大鼠中注射AMPK激活剂可抑制肝脏糖异生,从而降低血液中葡萄糖的含量;原代培养的肝细胞通过二甲双胍处理激活AMPK可抑制葡萄糖的生成[27],这些均表明了AMPK在肝脏糖代谢中发挥的重要作用。胰高血糖素通过活化AMPK,激活转录因子cAMP效应结合元件蛋白,使PEPCKG6PC表达增加,促进肝脏糖异生[28];目前关于AMPK信号通路在反刍动物肝脏糖异生调控中的作用仅有少量报道,如向妊娠后期母羊灌注氨基酸,可通过抑制AMPK的活性,增加PEPCK的表达水平,促进胎羊肝脏糖异生[29],提示AMPK在反刍动物肝脏糖异生中起重要作用,但还需要进一步研究证明。

2.3 哺乳动物雷帕霉素靶蛋白(mTOR)通路

mTOR是一类丝氨酸/苏氨酸激酶,属于PI3K蛋白激酶类家族之一,可通过营养及细胞因子等多种信号通路,参与信号识别、信号转导、细胞生长、增殖分裂以及细胞代谢等多种生物学过程[30-31]。细胞内存在mTORC1和mTORC2 2种不同的复合体。mTORC1的下游效应因子主要是核糖体S6激酶1(ribosomal S6 kinase 1,S6K1)和真核起始因子4E结合蛋白1(4E binding protein,4EBP1);mTORC2下游效应因子为一系列细胞骨架调控因子,主要与部分磷酸肌醇依赖蛋白激酶有关,如蛋白激酶B(Akt)、血清糖皮质激素以及诱导蛋白激酶1等[32]。mTORC1和mTORC2均可被胰岛素及胰岛素生长因子-1激活,另mTORC1还可以被营养物质(如氨基酸、胆碱及单糖),氧及细胞能量状态激活[33]。上游信号分子氨基酸可通过影响mTORC1下游信号分子S6K1和4EBP1等底物的磷酸化,进而调控糖异生(图 2)[31]。反刍动物研究已经证实,蛋氨酸和亮氨酸可通过激活mTOR通路调控胎牛和犊牛的肝脏糖异生[34-35]

Rag:人重组激活基因human recombination activating gene;IRS:胰岛素受体底物insulin receptor substrate;PI3K:磷脂酰肌醇3-激酶phosphatidylinositol 3-kinase;TSC1/2:结节性脑硬化复合物1/2 tuberous sclerosis complex 1/2;mTOR:哺乳动物雷帕霉素靶蛋白mammalian target of rapamycin;SREBP1:胆固醇调节元件结合蛋白1 cholesterol regulatory element binding protein;S6K:核糖体S6激酶1 ribosomal S6 kinase 1;Akt:蛋白激酶B protein kinase;FoxO1:叉头框转录因子1 forkhead frame transcription factor 1;PEPCK:磷酸烯醇式丙酮酸羧激酶phosphoenolpyruvate carboxykinase;G6PC:葡萄糖-6-磷酸酶glucose-6-phosphatase。 图 2 mTOR通路调控肝脏糖异生过程 Fig. 2 Regulation of hepatic gluconeogenesis by mTOR[32]

上述表明,哺乳动物肝脏糖异生受体内胰岛素/胰高血糖素水平、能量水平以及营养物质含量的调节,其调节信号通路/信号因子有所不同。然而,调节信号通路/信号因子最终均是通过调节肝脏糖异生关键酶基因PEPCKG6PCPC的表达,进而调控肝脏糖异生。

3 反刍动物糖异生的营养调控措施 3.1 提高糖异生底物生成量

与单胃动物不同,反刍动物瘤胃发酵产生的丙酸是其肝脏糖异生的主要前体物,可为糖异生提供60%以上的碳源[36],因此,丙酸的供给量对肝脏糖异生具有重要的影响。反刍动物肝脏糖异生的功能与丙酸的供给量呈显著正相关[37]。刘威[38]通过向山羊瘤胃灌注1.2 g/kg BW的丙酸,发现山羊血液葡萄糖含量显著升高。向奶牛灌注160.4 g (1.68 mol)丙酸,可促进犊牛和泌乳中期奶牛肝脏糖异生[39];体外培养犊牛肝细胞添加2.5 μmol/L丙酸可促进肝细胞糖异生[40],以上研究结果表明丙酸可促进糖原异生。丙酸作为瘤胃发酵生成挥发性脂肪酸的主要组成成分之一,其生成量受饲粮影响较大。Bougouin等[41]研究报道,淀粉型饲粮瘤胃发酵丙酸生成量较纤维型饲粮多,提高了奶产量。体外研究发现,当使用玉米青贮替代红三叶草青贮时,瘤胃发酵丙酸的生成量显著上升[42]。Wang等[43]通过奶牛试验研究报道,饲喂苜蓿组饲粮奶牛瘤胃丙酸含量和血液中葡萄糖含量显著高于饲喂低值秸秆组奶牛,推测饲喂苜蓿的奶牛可能由于增加丙酸的供应进而增加了肝脏葡萄糖的异生。莫能菌素可调控瘤胃发酵类型,增加丙酸的生成,向围产期奶牛饲粮中添加300 g/d的莫能菌素,发现瘤胃发酵丙酸生成增加,促进肝脏糖异生[44]。植物挥发油也可调控瘤胃发酵类型,Khiaosa-Ard等[45]对发表的28篇文章、共涉及34个试验和97种饲粮组成的文献进行荟萃发现,植物挥发油可促进瘤胃呈丙酸型发酵,且在肉牛上的效果优于小型反刍动物。

氨基酸是肝脏糖异生的前体物之一,可为糖异生提供11%~16%的碳源[4],且怀孕后80 d至整个孕期的胎牛肝脏糖异生与成年反刍动物不同,其主要利用氨基酸(如丙氨酸)和乳酸作为糖异生底物,而对丙酸的利用效率比较低[46]。怀孕后期补饲蛋氨酸可增加胎牛肝脏糖异生功能[34]。在犊牛每升奶中补饲1.435 g亮氨酸可促进犊牛肝脏糖异生,增加机体血液葡萄糖含量[35]

3.2 提高糖异生酶活性

图 1所示,甲基丙二酰辅酶A异构酶在丙酸转化成草酰乙酸的过程中起重要作用,维生素B12是甲基丙二酰辅酶A异构酶的构成部分,可以催化甲基丙二酰辅酶A转化成琥珀酰辅酶A,后者进一步转化成琥珀酰进入三羧酸循环[47]。生物素是糖异生过程中的几种关键酶(乙酰辅酶A羧化酶、丙酰辅酶A羧化酶和PC)的辅酶因子。因此,维生素B12和生物素在肝脏糖异生的过程中均具有重要的调控作用[48]。Peters等[49]研究报道,给母羊补充维生素B12可促进丙酸糖异生;向奶牛补充维生素B12也可促进糖异生,增加产奶量[50]。在奶牛中补充20 g/(d·头)生物素可促进糖异生,增加奶产量[51]。且生物素和植物挥发油在促进肝脏糖异生方面具有协同效应,两者同时补充可有效促进奶牛肝脏糖异生,增加奶产量[52];虽生物素和维生素B12均可促进泌乳早期奶牛肝脏糖异生,提升奶产量,但两者没有叠加效应[53]

3.3 提高关键基因的表达

糖异生过程中,G6PC、PEPCK和PC是糖异生途径的限速酶,其活性大小反映了机体葡萄糖异生作用的程度,且关键酶基因的mRNA表达水平可反映其酶活性[9]。因此,可通过提高关键酶基因mRNA的表达水平进而促进糖异生。胰岛素可限制PEPCKPC的表达,从而抑制糖异生过程;而胰高血糖素则可以促进糖异生关键酶基因的表达,增加非糖物质到葡萄糖的异生作用[17-18]。体外研究发现,丙酸可通过调节肝脏线粒体中PEPCK启动子来促进PEPCK的基因表达[40]。王炳[54]通过奶牛试验研究报道,饲喂稻草饲粮奶牛肝脏细胞线粒体的PEPCKPC的mRNA表达水平相比较于饲喂苜蓿饲粮的奶牛显著降低,意味着稻草组饲粮肝脏糖异生活动减弱,这可能是由于瘤胃发酵丙酸生成量的降低导致。

烟酸是反刍动物体内重要的B族维生素之一。研究发现,烟酸通过PI3K/Akt-FoxO1通路激活FoxO1蛋白活性,调节G6P和PEPCK活性,进而调控围产期绵羊糖异生[55];Kinoshita等[22]通过奶牛试验研究报道,烟酸可激活FoxO1蛋白活性,调节G6PC和PEPCK活性,进而调控泌乳中期奶牛糖异生,但是对泌乳早期奶牛糖异生却没有显著影响。这可能是由于围产期奶牛机体代谢具有特殊性和复杂性。因此,建立围产期肝细胞体外培养模型,研究其糖异生的调控机理与手段,可为调节肝脏糖异生提供有力的科学支撑。

通过调节肝脏糖异生功能促进糖异生,保证充足的葡萄糖供应是减少围产期奶牛能量负平衡和代谢疾病的有效手段。White等[56]研究发现,用甘油替代玉米可以提高奶牛肝脏中PEPCK的表达,表明饲粮不同能量来源可以调控肝脏基因表达。奶牛干奶期的饲喂方式会对围产期奶牛的泌乳和糖代谢产生重要的影响。围产前期禁食或无碳水化合物的饲粮可诱导产后肝内PEPCK基因的表达,从而促进糖异生,然而高碳水化合物饲粮则会控制PEPCK基因的表达。因此,产前适当的低能摄入可上调PCPEPCK的mRNA表达水平,增强肝糖异生能力,有助于缓解产后泌乳消耗大量葡萄糖所造成的能量负平衡和营养应激[57]

4 小结

葡萄糖是哺乳动物主要供能物质,参与机体多种代谢。肝脏糖异生葡萄糖可满足反刍动物维持生长与生产80%以上的葡萄糖需要量,可见肝脏糖异生在反刍动物糖代谢中具有极其重要的地位。因此,研究反刍动物肝脏糖异生机制及营养调控至关重要。到目前为止,关于反刍动物肝脏糖异生已取得一定的研究进展,已清楚PI3K/Akt-FoxO1、AMPK以及mTOR等重要通路/信号因子与肝脏糖异生密切相关,糖异生底物、关键酶和激素等在反刍动物肝脏糖异生过程中发挥着重要的调控作用,且糖异生底物主要通过调节糖异生关键酶PEPCKG6PCPC基因表达调控糖异生,但有关营养底物如何调控糖异生关键基因的表达进而调控糖异生仍存在较大的认知空洞。另外,围产期反刍母畜,由于机体代谢的特殊性和复杂性,如何通过调控糖异生改善其健康状况仍需更加深入的研究。总之,还需要更多的研究来探究反刍动物肝脏糖异生的调节机制,最终为改善反刍动物健康、生长与生产性能提供理论支持,实现反刍动物的健康高效养殖。

参考文献
[1]
CÁRDENAS M L, CORNISH-BOWDEN A, URETA T. Evolution and regulatory role of the hexokinases[J]. Biochimica et Biophysica Acta:Molecular Cell Research, 1998, 1401(3): 242-264. DOI:10.1016/S0167-4889(97)00150-X
[2]
CANKAYA M, HERNANDEZ A M, CIFTCI M, et al. An analysis of expression patterns of genes encoding proteins with catalytic activities[J]. BMC Genomics, 2007, 8: 232. DOI:10.1186/1471-2164-8-232
[3]
MAYES P A, BENDER D A.Gluconeogenesis and control of blood glucose[M]//MURRAY R K, GRANNER D K, MAYES P A, et al.Harper's biochemistry.24th ed.Stamford, CT: Appleton & Lange, 1996: 194-204.
[4]
ASCHENBACH J R, KRISTENSEN N B, DONKIN S S, et al. Gluconeogenesis in dairy cows:the secret of making sweet milk from sour dough[J]. IUBMB Life, 2010, 62(12): 869-877. DOI:10.1002/iub.400
[5]
GRUMMER R R. Impact of changes in organic nutrient metabolism on feeding the transition dairy cow[J]. Journal of Animal Science, 1995, 73(9): 2820-2833. DOI:10.2527/1995.7392820x
[6]
BERGMAN E N. Glucose metabolism in ruminants as related to hypoglycemia and ketosis[J]. Cornell Veterinarian, 1973, 63(3): 341-382.
[7]
KARCHER E L, PICKETT M M, VARGA G A, et al. Effect of dietary carbohydrate and monensin on expression of gluconeogenic enzymes in liver of transition dairy cows[J]. Journal of Animal Science, 2007, 85(3): 690-699. DOI:10.2527/jas.2006-369
[8]
ARMENTANO L E. Ruminant hepatic metabolism of volatile fatty acids, lactate and pyruvate[J]. The Journal of Nutrition, 1992, 122(Suppl.3): 838-842.
[9]
AGCA C, GREENFIELD R B, HARTWELL J R, et al. Cloning and characterization of bovine cytosolic and mitochondrial PEPCK during transition to lactation[J]. Physiological Genomics, 2002, 11(2): 53-63. DOI:10.1152/physiolgenomics.00108.2001
[10]
邢燕, 关育红, 张金, 等. 肝脏组织磷脂酰肌醇3-激酶/蛋白激酶B信号通路参与降低胎儿生长受限大鼠的胰岛素敏感性[J]. 中华围产医学杂志, 2012, 15(12): 743-749. DOI:10.3760/cma.j.issn.1007-9408.2012.12.008
[11]
CARTER M E, BRUNET A. FoxO transcription factors[J]. Current Biology, 2007, 17(4): R113-R114. DOI:10.1016/j.cub.2007.01.008
[12]
ZHANG W W, PATIL S, CHAUHAN B, et al. FoxO1 regulates multiple metabolic pathways in the liver:effects on gluconeogenic, glycolytic, and lipogenic gene expression[J]. The Journal of Biological Chemistry, 2006, 281(15): 10105-10117. DOI:10.1074/jbc.M600272200
[13]
KAMAGATE A, KIM D H, ZHANG T, et al. FoxO1 links hepatic insulin action to endoplasmic reticulum stress[J]. Endocrinology, 2010, 151(8): 3521-3535. DOI:10.1210/en.2009-1306
[14]
CHOI S, YOON H, OH K S, et al. Widespread effects of nicotinic acid on gene expression in insulin-sensitive tissues:implications for unwanted effects of nicotinic acid treatment[J]. Metabolism, 2011, 60(1): 134-144. DOI:10.1016/j.metabol.2010.02.013
[15]
GOYAL N, TIWARY S, KESHARWANI D, et al. Long non-coding RNA H19 inhibition promotes hyperglycemia in mice by upregulating hepatic FoxO1 levels and promoting gluconeogenesis[J]. Journal of Molecular Medicine, 2019, 97(1): 115-126. DOI:10.1007/s00109-018-1718-6
[16]
TSUZUKI K, ITOH Y, INOUE Y, et al. TRB1 negatively regulates gluconeogenesis by suppressing the transcriptional activity of FoxO1[J]. FEBS Letters, 2019, 593(3): 369-380. DOI:10.1002/1873-3468.13314
[17]
CATON P W, NAYUNI N K, KIESWICH J, et al. Metformin suppresses hepatic gluconeogenesis through induction of SIRT1 and GCN5[J]. Journal of Endocrinology, 2010, 205(1): 97-106. DOI:10.1677/JOE-09-0345
[18]
DASHTY M. A quick look at biochemistry:carbohydrate metabolism[J]. Clinical Biochemistry, 2013, 46(15): 1339-1352. DOI:10.1016/j.clinbiochem.2013.04.027
[19]
CHI Y J, MENG Y H, WANG J P, et al. FAM3B (PANDER) functions as a co-activator of FOXO1 to promote gluconeogenesis in hepatocytes[J]. Journal of Cellular and Molecular Medicine, 2019, 23(3): 1746-1758. DOI:10.1111/jcmm.14073
[20]
THORN S R, SEKAR S M, LAVEZZI J R, et al. A physiological increase in insulin suppresses gluconeogenic gene activation in fetal sheep with sustained hypoglycemia[J]. American Journal of Physiology:Regulatory, Integrative and Comparative Physiology, 2012, 303(8): R861-R869. DOI:10.1152/ajpregu.00331.2012
[21]
GRALA T M, KAY J K, PHYN C V C, et al. Reducing milking frequency during nutrient restriction has no effect on the hepatic transcriptome of lactating dairy cattle[J]. Physiological Genomics, 2013, 45(23): 1157-1167. DOI:10.1152/physiolgenomics.00134.2013
[22]
KINOSHITA A, LOCHER L, TIENKEN R, et al. Associations between Forkhead Box O1 (FoxO1) expression and indicators of hepatic glucose production in transition dairy cows supplemented with dietary nicotinic acid[J]. PLoS One, 2016, 11(1): e0146670. DOI:10.1371/journal.pone.0146670
[23]
KIM Y D, PARK K G, LEE Y S, et al. Metformin inhibits hepatic gluconeogenesis through AMP-activated protein kinase-dependent regulation of the orphan nuclear receptor SHP[J]. Diabetes, 2008, 57(2): 306-314. DOI:10.2337/db07-0381
[24]
CARLING D. The AMP-activated protein kinase cascade-a unifying system for energy control[J]. Trends in Biochemical Sciences, 2004, 29(1): 18-24. DOI:10.1016/j.tibs.2003.11.005
[25]
JIANG S J, DONG H, LI J B, et al. Berberine inhibits hepatic gluconeogenesis via the LKB1-AMPK-TORC2 signaling pathway in streptozotocin-induced diabetic rats[J]. World Journal of Gastroenterology, 2015, 21(25): 7777-7785. DOI:10.3748/wjg.v21.i25.7777
[26]
CHUNG H T. SHP gains citizenship of the AMPK kingdom[J]. Cellular and Molecular Immunology, 2011, 8(6): 450-452. DOI:10.1038/cmi.2011.39
[27]
SHAW R J, LAMIA K A, VASQUEZ D, et al. The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin[J]. Science, 2005, 310(5754): 1642-1646. DOI:10.1126/science.1120781
[28]
CHEN H, ZHANG L, LI X W, et al. Adiponectin activates the AMPK signaling pathway to regulate lipid metabolism in bovine hepatocytes[J]. The Journal of Steroid Biochemistry and Molecular Biology, 2013, 138: 445-454. DOI:10.1016/j.jsbmb.2013.08.013
[29]
BROWN L D, KOHN J R, ROZANCE P J, et al. Exogenous amino acids suppress glucose oxidation and potentiate hepatic glucose production in late gestation fetal sheep[J]. American Journal of Physiology:Regulatory, Integrative and Comparative Physiology, 2017, 312(5): R654-R663. DOI:10.1152/ajpregu.00502.2016
[30]
STADLBAUER K, BRUNMAIR B, SZÖCS Z, et al. The effects of amino acids on glucose metabolism of isolated rat skeletal muscle are independent of insulin and the mTOR/S6K pathway[J]. American Journal of Physiology-Endocrinology and Metabolism, 2009, 297(3): E785-E792. DOI:10.1152/ajpendo.00061.2009
[31]
LAPLANTE M, SABATINI D M. mTORC1 activates SREBP-1c and uncouples lipogenesis from gluconeogenesis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(8): 3281-3282. DOI:10.1073/pnas.1000323107
[32]
SABATINI D M. Twenty-five years of mTOR:uncovering the link from nutrients to growth[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(45): 11818-11825. DOI:10.1073/pnas.1716173114
[33]
CASTELLANO B M, THELEN A M, MOLDAVSKI O, et al. Lysosomal cholesterol activates mTORC1 via an SLC38A9-niemann-pick C1 signaling complex[J]. Science, 2017, 355(6331): 1306-1311. DOI:10.1126/science.aag1417
[34]
XU T, ALHARTHI A S M, BATISTEL F, et al. Hepatic phosphorylation status of serine/threonine kinase 1, mammalian target of rapamycin signaling proteins, and growth rate in Holstein heifer calves in response to maternal supply of methionine[J]. Journal of Dairy Science, 2018, 101(9): 8476-8491. DOI:10.3168/jds.2018-14378
[35]
ZHENG C, YAO J H, GUO L, et al. Leucine-induced promotion of post-absorptive EAA utilization and hepatic gluconeogenesis contributes to protein synthesis in skeletal muscle of dairy calves[J]. Journal of Animal Physiology and Animal Nutrition, 2019, 103(3): 705-712. DOI:10.1111/jpn.13072
[36]
LARSEN M, KRISTENSEN N B. Precursors for liver gluconeogenesis in periparturient dairy cows[J]. Animal, 2013, 7(10): 1640-1650. DOI:10.1017/S1751731113001171
[37]
OBA M, ALLEN M S. Extent of hypophagia caused by propionate infusion is related to plasma glucose concentration in lactating dairy cows[J]. The Journal of Nutrition, 2003, 133(4): 1105-1112. DOI:10.1093/jn/133.4.1105
[38]
刘威.丙酸对山羊血液理化指标、真胃组织结构及相关基因表达的影响[D].硕士学位论文.扬州: 扬州大学, 2016. http://cdmd.cnki.com.cn/Article/CDMD-11117-1016284550.htm
[39]
ZHANG Q, KOSER S L, BEQUETTE B J, et al. Effect of propionate on mRNA expression of key genes for gluconeogenesis in liver of dairy cattle[J]. Journal of Dairy Science, 2015, 98(12): 8698-8709. DOI:10.3168/jds.2015-9590
[40]
ZHANG Q, KOSER S L, DONKIN S S. Propionate induces mRNA expression of gluconeogenic genes in bovine calf hepatocytes[J]. Journal of Dairy Science, 2016, 99(5): 3908-3915. DOI:10.3168/jds.2015-10312
[41]
BOUGOUIN A, FERLAY A, DOREAU M, et al. Effects of carbohydrate type or bicarbonate addition to grass silage-based diets on enteric methane emissions and milk fatty acid composition in dairy cows[J]. Journal of Dairy Science, 2018, 101(7): 6085-6097. DOI:10.3168/jds.2017-14041
[42]
CASTRO-MONTOYA J, WITZIG M, RAHMAN M, et al. In vitro rumen fermentation, microbial protein synthesis and composition of microbial community of total mixed rations replacing maize silage with red clover silage[J]. Journal of Animal Physiology and Animal Nutrition, 2018, 102(6): 1450-1463. DOI:10.1111/jpn.12970
[43]
WANG B, MAO S Y, YANG H J, et al. Effects of alfalfa and cereal straw as a forage source on nutrient digestibility and lactation performance in lactating dairy cows[J]. Journal of Dairy Science, 2014, 97(12): 7706-7715. DOI:10.3168/jds.2014-7961
[44]
MARKANTONATOS X, VARGA G A. Effects of monensin on glucose metabolism in transition dairy cows[J]. Journal of Dairy Science, 2017, 100(11): 9020-9035. DOI:10.3168/jds.2016-12007
[45]
KHIAOSA-ARD R, ZEBELI Q. Meta-analysis of the effects of essential oils and their bioactive compounds on rumen fermentation characteristics and feed efficiency in ruminants[J]. Journal of Animal Science, 2013, 91(4): 1819-1830. DOI:10.2527/jas.2012-5691
[46]
PRIOR R L, SCOTT R A. Ontogeny of gluconeogenesis in the bovine fetus:influence of maternal dietary energy[J]. Developmental Biology, 1977, 58(2): 384-393. DOI:10.1016/0012-1606(77)90099-9
[47]
冯仰廉. 反刍动物营养学[M]. 北京: 科学出版社, 2004: 509-510.
[48]
WALDROP G L, HOLDEN H M, ST.MAURICE M. The enzymes of biotin dependent CO2 metabolism:what structures reveal about their reaction mechanisms[J]. Protein Science, 2012, 21(11): 1597-1619. DOI:10.1002/pro.2156
[49]
PETERS J P, ELLIOT J M. Effect of vitamin B12 status on performance of the lactating ewe and gluconeogenesis from propionate[J]. Journal of Dairy Science, 1983, 66(9): 1917-1925. DOI:10.3168/jds.S0022-0302(83)82030-X
[50]
ROLLIN E, BERGHAUS R D, RAPNICKI P, et al. The effect of injectable butaphosphan and cyanocobalamin on postpartum serum β-hydroxybutyrate, calcium, and phosphorus concentrations in dairy cattle[J]. Journal of Dairy Science, 2010, 93(3): 978-987. DOI:10.3168/jds.2009-2508
[51]
ZIMMERLY C A, WEISS W P. Effects of supplemental dietary biotin on performance of Holstein cows during early lactation[J]. Journal of Dairy Science, 2001, 84(2): 498-506. DOI:10.3168/jds.S0022-0302(01)74500-6
[52]
HAUSMANN J, DEINER C, IMMIG I, et al. Effects of combined supplementation with plant bioactive lipid compounds and biotin on ruminal fermentation, body condition and energy metabolism in transition dairy cows[J]. Animal Feed Science and Technology, 2017, 225: 27-37. DOI:10.1016/j.anifeedsci.2017.01.009
[53]
WANG D M, ZHANG B X, WANG J K, et al. Effect of dietary supplements of biotin, intramuscular injections of vitamin B12, or both on postpartum lactation performance in multiparous dairy cows[J]. Journal of Dairy Science, 2018, 101(9): 7851-7856. DOI:10.3168/jds.2018-14524
[54]
王炳.饲喂秸秆日粮奶牛泌乳性能低下的消化吸收与代谢机制研究[D].博士学位论文.杭州: 浙江大学, 2016.
[55]
茹婷.基于p53-SIRT6-Fox01轴下烟酸对围产期绵羊肝脏糖异生作用的影响研究[D].硕士学位论文.呼和浩特: 内蒙古农业大学, 2018: 4. http://cdmd.cnki.com.cn/Article/CDMD-10129-1018881892.htm
[56]
WHITE H M, CARVALHO E R, KOSER S L, et al. Short communication:regulation of hepatic gluconeogenic enzymes by dietary glycerol in transition dairy cows[J]. Journal of Dairy Science, 2016, 99(1): 812-817. DOI:10.3168/jds.2015-9953
[57]
李红梅.干奶期不同能量摄食对奶牛糖异生的影响[D].硕士学位论文.哈尔滨: 东北农业大学, 2006. http://cdmd.cnki.com.cn/Article/CDMD-10224-2006178501.htm