2. 华南农业大学动物科学学院, 广州 510640
2. College of Animal Science, South China Agricultural University, Guangzhou 510640, China
肠道上皮是隔离外界环境的第1道防线,大量肠道微生物定植于肠道上皮细胞的黏液外层,以便于促进消化吸收和调节黏膜免疫系统的发育与功能。断奶应激会破坏仔猪肠道微生态稳态,导致肠道屏障功能受损,从而引起仔猪腹泻和生长停滞。饲料添加剂抗生素在预防断奶仔猪腹泻和促进仔猪生长等方面发挥重要的作用,然而长期不规范使用抗生素导致药物残留及抗生素耐药等负面问题日益凸显。随着全面禁止在猪饲料中添加抗生素政策的落实,开发有益的饲用抗生素替代品是畜牧业亟待解决的问题。烟酸是一种重要的B族维生素成员,主要作为饲料添加剂。近年来的研究表明,饲粮中添加烟酸有助于提高断奶仔猪的生产性能及减少仔猪腹泻[1-3]。此外,已有的研究发现显示,烟酸还能够抑制炎症反应及调节肠道健康[4]。因此,借鉴烟酸在人体疾病及小鼠等动物模型中的应用,本文阐述了烟酸调节肠道黏膜屏障功能的分子机制,为其在断奶仔猪生产中更广泛、更好地应用提供科学的理论依据。
1 烟酸及其代谢产物 1.1 烟酸的研究进展烟酸也称为维生素B3,是一种水溶性维生素,主要通过胃肠道黏膜吸收。除了体外添加烟酸,动物体内还可通过犬尿氨酸途径将多余的色氨酸转化为烟酸[5]。烟酸是细胞代谢辅酶烟酰胺腺嘌呤二核苷酸(NAD+)和烟酰胺腺嘌呤二核酸磷(NADP+)的前体,它在机体内以NAD+或NADP+形式参与脂质代谢、呼吸氧化反应和糖类无氧分解等细胞过程,并在细胞能量代谢方面发挥重要作用。近年来,烟酸在调控炎症反应、调节肠道稳态及维持肠道健康状态等方面受到国内外的广泛关注。在人类疾病研究过程中发现添加烟酸可缓解单核细胞介导的炎症反应[6-7],并降低M1型巨噬细胞的数量[8]。烟酸还可通过下调核转录因子-κB(NF-κB)的信号,缓解败血症引起的肺部炎症反应和提高患者的生存率[9]。Feng等[10]研究发现,添加烟酸可下调肿瘤坏死因子-α(TNF-α)、白细胞介素-8(IL-8)、γ-干扰素(IFN-γ)及白细胞介素-1β(IL-1β)等促炎因子的表达量及增强草鱼肠道黏膜屏障功能的完整性。此外,Salem等[11]的研究表明,烟酸降低葡聚糖硫酸钠(DSS)诱导结肠炎小鼠的炎症因子髓过氧化物酶(MPO)和TNF-α的表达及改善病态的血管生成,从而实现改善结肠炎疾病。
1.2 烟酸在动物体内的代谢产物烟酸具有多重的生物活性,在动物体内转化为辅酶NAD+,NAD+随后可被磷酸化形成NADP+[12]。烟酸在动物体内主要以NAD+形式参与机体代谢,其在生物氧化过程中以氢和电子的传递体参与糖类、脂肪和蛋白质的代谢转化及能量释放。除此之外,NAD+还作为去乙酰化酶、核糖聚合酶(PAR)和CD38等反应酶的底物。沉默信息调节因子2相关酶1(SIRTl)是一种NAD+依赖的组蛋白去乙酰化酶,它在细胞分化、细胞代谢、细胞凋亡、DNA修复及抑制炎症等过程起到十分重要的作用[13]。NAD+调节SIRT1介导的去乙酰化作用,而蛋白质去乙酰化有助于转录因子和代谢酶调节线粒体氧化功能和增强细胞在应激条件下的存活率[14-15]。饲粮中添加烟酸,可增加NAD+的浓度,有利于改善应激条件下线粒体的功能及预防食物或年龄等因素引起的代谢疾病[16-18]。
2 烟酸调节肠道黏膜屏障功能的分子机制 2.1 烟酸直接结合G蛋白偶联受体109A(GPR109A)调节肠道健康GPR109A是介导烟酸、丁酸和羟基丁酸等物质生物学效应的重要受体[19],其广泛表达于淋巴细胞、脂肪细胞、单核细胞、巨噬细胞、树突状细胞及肠道上皮细胞[20]。近年来的研究表明,GPR109A与配体结合后,能够调节微生物代谢物、抑制肠道炎症及维持肠道黏膜屏障功能完整性[21-25]。GPR109A作为烟酸的重要受体,能够保护小鼠抵抗三硝基苯磺酸(TNBS)诱导的肠道炎症反应,而敲除GPR109A后,烟酸无法发挥其保护作用[11]。Singh等[22]发现烟酸结合GPR109A后,促进小鼠树突状细胞和巨噬细胞产生抗炎因子白细胞介素-10(IL-10),进而诱导调节性T细胞产生和抑制辅助性T细胞(Th)17,同时烟酸通过GPR109A受体提高肠道上皮细胞白细胞介素-18(IL-18)的表达,从而促进肠道黏膜屏障损伤修复。作为降低肠道通透性及肠道炎症反应、提高肠道屏障完整性的重要受体,GPR109A还与肠道微生物的多样性和稳定性存在密切的联系[26]。Bhatt等[27]研究发现,GPR109A有效限制肠道微生物诱导白细胞介素-23(IL-23)的产生,抑制了IL-23介导的肠道炎症疾病。然而,尚未有研究报道烟酸是否直接结合GPR109A调控断奶仔猪肠道健康。
2.2 烟酸通过其代谢产物NAD+调节能量代谢信号改善肠道黏膜屏障功能能量代谢是细胞最基本、最重要的活动之一。研究表明,多种信号通路调控能量代谢平衡,其中单磷酸腺苷依赖的蛋白激酶(AMPK)信号通路和雷帕霉素靶蛋白(mTOR)信号通路被广泛研究。近年来的研究显示,SIRT1在细胞能量代谢过程也扮演重要角色。研究表明,在能量水平较低的条件下,烟酸可通过SIRT1、AMPK及mTOR等能量代谢信号通路,降低肠道上皮细胞促炎症因子的表达,而提高肠道上皮细胞紧密连接蛋白的表达,从而促进肠道黏膜屏障功能损伤修复。
SIRT1广泛表达于小肠和结肠等肠上皮细胞。作为细胞超灵敏的能量传感器,SIRT1作为NAD+依赖的组蛋白去乙酰化酶,可以通过调控细胞核内转录因子的去乙酰化进行调节能量代谢及缓解应激反应,在细胞增殖、衰老、凋亡、炎症和能量代谢等方面发挥重要作用[28-29]。研究表明,烟酸通过SIRT1抑制脂多糖(LPS)诱导巨噬细胞分泌TNF-α、白细胞介素-6(IL-6)及一氧化氮(NO)[30],同时烟酸调控NF-κB和MAPK信号通路抑制角质上皮细胞IL-8的产生[31]。作为重要的脱乙酰基酶,SIRT1能够调控组蛋白和非组蛋白的去乙酰化。已有报道发现SIRT1调节p65蛋白去乙酰化从而促进NF-κB泛素化,并抑制NF-κB及其下游目标基因的转录[32-34]。大量研究表明,炎症反应、机体新陈代谢及线粒体生物三者能形成密切的关系网,而SIRT1在这个关系网中扮演重要调节作用。细胞核SIRT1调动免疫细胞进行糖酵解及脂肪氧化反应,为机体对抗炎症提供能量[35]。此外,SIRT1还可以刺激肠道干细胞生长[36]及上调紧密连接蛋白的表达量[37],从而增强肠道屏障功能。肠道上皮平衡依赖于肠道上皮细胞、肠道共生菌及肠道免疫细胞三者之间的相互作用,如果此平衡被打破将会引起肠道紊乱。研究表明,肠道微生物通过代谢物调控细胞线粒体的能量,肠道微生物代谢产物胆汁酸通过调节与脂质、碳水化合物代谢有关的基因,例如胆汁酸受体(FXR)影响肠道线粒体的能量代谢[38],而FXR是SIRT1的目标去乙酰化分子[39]。肠上皮细胞缺乏SIRT1导致胆汁酸浓度的升高,随之抑制肠道革兰氏阳性菌(乳酸菌等益生菌)的繁殖生长,而对革兰氏阴性菌(大肠杆菌或沙门氏菌等病原菌)没有太大的影响,从而改变肠道菌群结构,导致肠道紊乱,引起肠炎病[40]。Wellman等[41]研究表明,肠道上皮细胞的SIRT1通过调节胆汁酸的浓度影响肠道菌群组成,从而加强肠道屏障功能。
当肠道黏膜细胞处于饥饿的状态时,AMPK信号被激活,随之关闭消耗ATP的合成代谢途径,并同时启动产生ATP的分解代谢途径。作为细胞能量调节器,AMPK能够刺激NAD+合成酶(NAMPT)生成,提高NAD+的浓度从而加强SIRT1的去乙酰化作用,促进SIRT1下游目的蛋白的去乙酰化[42],抑制慢性炎症反应[33, 43-44];同时,SIRT1的浓度同样影响AMPK的活化[45]。Nin等[46]的研究也发现,SIRT1迅速被活化的情况下有助于进一步激活细胞核内AMPK。研究表明,AMPK和SIRT1不能与雷帕霉素靶蛋白复合物1(mTORC1)在同一种细胞中同时被激活。mTORC1信号通常在细胞能量水平充足的条件下被激活,而AMPK和SIRT1一般是在细胞能量水平比较低的情况下被活化,能量限制会降低mTORC1的表达量而上调AMPK和SIRT1的表达量[47-48]。然而,最近的研究表明,在能量限制时,肠道干细胞的mTORC1的表达量上调了,促进了肠道干细胞蛋白质的合成及增加肠道干细胞的数量;此外,此研究显示能量水平不足会降低肠道潘氏细胞中mTORC1的表达了而上调此细胞环腺苷二磷酸核糖(cADPR)的表达量,进而激活肠道干细胞钙离子(Ca2+)信号通路,Ca2+信号通路的活化有助于AMPK磷酸化;活化的AMPK促进NAD+的合成,上调SIRT1的表达,SIRT1的活化有利于核糖体蛋白S6激酶(S6K1)的去乙酰化,从而促进肠道干细胞中mTORC1的磷酸化;饲粮中添加烟酸可增加机体内的NAD+浓度,增强肠道干细胞SIRT1的活性,从而上调肠道干细胞mTORC1的表达量,实现促进肠道干细胞的增殖[36]。
3 小结仔猪在断奶时,通常会产生大量炎症因子,引起肠道上皮细胞凋亡和紧密连接结构紊乱,损伤肠道屏障功能;同时,断奶应激引起仔猪采食量降低,导致出现肠道黏膜供能不足,损害肠道屏障功能。已有研究表明,烟酸改善了断奶仔猪生长性能,但是,尚未阐明烟酸调控断奶仔猪肠道健康的机制。本文借鉴人和其他研究的动物模型阐述了烟酸调控肠道屏障功能,为烟酸调控断奶应激仔猪肠道黏膜损伤修复提供理论依据,然而,还需要进一步验证烟酸改善肠道黏膜屏障功能究竟是直接结合GPR109A还是通过其代谢产物NAD+调节能量代谢通路进而发挥作用,或者这2条通路同时发挥作用。
[1] |
IVERS D J, VEUM T L. Effect of graded levels of niacin supplementation of a semipurified diet on energy and nitrogen balance, growth performance, diarrhea occurrence, and niacin metabolite excretion by growing swine[J]. Journal of Animal Science, 2012, 90(1): 282-288. |
[2] |
REAL D E, NELSSEN J L, TOKACH R D, et al. Influence of dietary niacin on starter pig performance[J]. Kansas Agricultural Experiment Station Research Reports, 2001(10): 67-69. |
[3] |
REAL D E, NELSSEN J L, TOKACH M D, et al. Effects of increasing dietary niacin on weanling pig performance[J]. The Professional Animal Scientist, 2004, 20(4): 353-357. |
[4] |
JEONG K Y, SUH G J, KWON W Y, et al. The therapeutic effect and mechanism of niacin on acute lung injury in a rat model of hemorrhagic shock:down-regulation of the reactive oxygen species-dependent nuclear factor κB pathway[J]. Journal of Trauma and Acute Care Surgery, 2015, 79(2): 247-255. DOI:10.1097/TA.0000000000000761 |
[5] |
HOLMAN W I M, DE LANGE D J. Significance of tryptophane in human nicotinic acid metabolism[J]. Nature, 1950, 165(4186): 112-113. DOI:10.1038/165112a0 |
[6] |
DIGBY J E, MARTINEZ F, JEFFERSON A, et al. Anti-inflammatory effects of nicotinic acid in human monocytes are mediated by GPR109A dependent mechanisms[J]. Arteriosclerosis Thrombosis and Vascular Biology, 2012, 32(3): 669-676. DOI:10.1161/ATVBAHA.111.241836 |
[7] |
CHAI J T, DIGBY J E, RUPARELIA N, et al. Nicotinic acid receptor GPR109A is down-regulated in human macrophage-derived foam cells[J]. PLoS One, 2013, 8(5): e62934. DOI:10.1371/journal.pone.0062934 |
[8] |
LIPSZYC P S, CREMASCHI G A, ZUBILETE M Z, et al. Niacin modulates pro-inflammatory cytokine secretion.A potential mechanism involved in its anti-atherosclerotic effect[J]. The Open Cardiovascular Medicine Journal, 2013, 7(1): 90-98. DOI:10.2174/1874192401307010090 |
[9] |
KWON W Y, SUH G J, KIM K S, et al. Niacin attenuates lung inflammation and improves survival during sepsis by downregulating the nuclear factor-κB pathway[J]. Critical Care Medicine, 2011, 39(2): 328-334. DOI:10.1097/CCM.0b013e3181feeae4 |
[10] |
FENG L, LI S Q, JIANG W D, et al. Deficiency of dietary niacin impaired intestinal mucosal immune function via regulating intestinal NF-κB, Nrf2 and MLCK signaling pathways in young grass carp (Ctenopharyngodon idella)[J]. Fish & Shellfish Immunology, 2016, 49: 177-193. |
[11] |
SALEM H, WADIE W. Effect of niacin on inflammation and angiogenesis in a murine model of ulcerative colitis[J]. Scientific Reports, 2017, 7: 7139. DOI:10.1038/s41598-017-07280-y |
[12] |
KIRKLAND J B. Niacin requirements for genomic stability[J]. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 2012, 733(1/2): 14-20. |
[13] |
CANTÓ C, MENZIES K J, AUWERX J. NAD+ metabolism and the control of energy homeostasis—a balancing act between mitochondria and the nucleus[J]. Cell Metabolism, 2015, 22(1): 31-53. DOI:10.1016/j.cmet.2015.05.023 |
[14] |
HUANG J Y, HIRSCHEY M D, SHIMAZU T, et al. Mitochondrial sirtuins[J]. Biochimica et Biophysica Acta:Proteins and Proteomics, 2010, 1804(8): 1645-1651. DOI:10.1016/j.bbapap.2009.12.021 |
[15] |
WISE A, FOORD S M, FRASER N J, et al. Molecular identification of high and low affinity receptors for nicotinic acid[J]. Journal of Biological Chemistry, 2003, 278(11): 9869-9874. DOI:10.1074/jbc.M210695200 |
[16] |
CERUTTI R, PIRINEN E, LAMPERTI C, et al. NAD+-dependent activation of Sirt1 corrects the phenotype in a mouse model of mitochondrial disease[J]. Cell Metabolism, 2014, 19(6): 1042-1049. DOI:10.1016/j.cmet.2014.04.001 |
[17] |
CANTO C, HOUTKOOPER R H, PIRINEN E, et al. The NAD+ precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity[J]. Cell Metabolism, 2012, 15(6): 838-847. |
[18] |
GOMES A P, PRICE N L, LING A J Y, et al. Declining NAD+ induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging[J]. Cell, 2012, 155(7): 1624-1638. |
[19] |
TAGGART A K P, KERO J, GAN X, et al. (D)-β-hydroxybutyrate inhibits adipocyte lipolysis via the nicotinic acid receptor PUMA-G[J]. Journal of Biological Chemistry, 2005, 280(29): 26649-26652. DOI:10.1074/jbc.C500213200 |
[20] |
LUKASOVA M, MALAVAL C, GILLE A, et al. Nicotinic acid inhibits progression of atherosclerosis in mice through its receptor GPR109A expressed by immune cells[J]. Journal of Clinical Investigation, 2011, 121(3): 1163-1173. DOI:10.1172/JCI41651 |
[21] |
MACIA L, TAN J, VIEIRA A T, et al. Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome[J]. Nature Communications, 2015, 6: 6734. |
[22] |
SINGH N, GURAV A, SIVAPRAKASAM S, et al. Activation of GPR109A, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis[J]. Immunity, 2014, 40(1): 128-139. DOI:10.1016/j.immuni.2013.12.007 |
[23] |
HANSON J, GILLE A, ZWYKIEL S, et al. Nicotinic acid- and monomethyl fumarate-induced flushing involves GPR109A expressed by keratinocytes and COX-2-dependent prostanoid formation in mice[J]. Journal of Clinical Investigation, 2010, 120(8): 2910-2919. DOI:10.1172/JCI42273 |
[24] |
ZANDI-NEJAD K, TAKAKURA A, JUREWICZ M, et al. The role of HCA2 (GPR109A) in regulating macrophage function[J]. The FASEB Journal, 2013, 27(11): 4366-4374. |
[25] |
ZHOU E S, LI Y M, YAO M J, et al. Niacin attenuates the production of pro-inflammatory cytokines in LPS-induced mouse alveolar macrophages by HCA2 dependent mechanisms[J]. International Immunopharmacology, 2014, 23(1): 121-126. |
[26] |
CHEN G X, HUANG B P, FU S W, et al. G protein-coupled receptor 109A and host microbiota modulate intestinal epithelial integrity during sepsis[J]. Frontiers in Immunology, 2018, 9: 2079. DOI:10.3389/fimmu.2018.02079 |
[27] |
BHATT B, ZENG P, ZHU H B, et al. Gpr109a Limits microbiota-induced IL-23 production to constrain ILC3-mediated colonic inflammation[J]. The Journal of Immunology, 2018, 200(8): 2905-2914. DOI:10.4049/jimmunol.1701625 |
[28] |
GUARENTE L. Calorie restriction and sirtuins revisited[J]. Genes & Development, 2013, 27(19): 2072-2085. |
[29] |
YANG H Y, ZHANG W, PAN H, et al. SIRT1 activators suppress inflammatory responses through promotion of p65 deacetylation and inhibition of NF-κB activity[J]. PLos One, 2012, 7(9): e46364. |
[30] |
BIEDROŃ R, CISZEK M, TOKARCZYK M, et al. 1-Methylnicotinamide and nicotinamide:two related anti-inflammatory agents that differentially affect the functions of activated macrophages[J]. Archivum Immunologiae et Therapiae Experimentalis, 2008, 56(2): 127-134. DOI:10.1007/s00005-008-0009-2 |
[31] |
GRANGE P A, RAINGEAUD J, CALVEZ V, et al. Nicotinamide inhibits Propionibacterium acnes-induced IL-8 production in keratinocytes through the NF-κB and MAPK pathways[J]. Journal of Dermatological Science, 2009, 56(2): 106-112. DOI:10.1016/j.jdermsci.2009.08.001 |
[32] |
YEUNG F, HOBERG J E, RAMSEY C S, et al. Modulation of NF-κB-dependent transcription and cell survival by the SIRT1 deacetylase[J]. The EMBO Journal, 2004, 23(12): 2369-2380. DOI:10.1038/sj.emboj.7600244 |
[33] |
CARUSO R, MARAFINI I, FRANZÈ E, et al. Defective expression of SIRT1 contributes to sustain inflammatory pathways in the gut[J]. Mucosal Immunology, 2014, 7(6): 1467-1479. DOI:10.1038/mi.2014.35 |
[34] |
XIE X, ZHANG X M, ZHANG L. Negative regulation of inflammation by SIRT1[J]. Pharmacological Research, 2013, 67(1): 60-67. |
[35] |
LIU T F, VACHHARAJANI V T, YOZA B K, et al. NAD+-dependent sirtuin 1 and 6 proteins coordinate a switch from glucose to fatty acid oxidation during the acute inflammatory response[J]. The Journal of Biological Chemistry, 2012, 287(31): 25758-25769. DOI:10.1074/jbc.M112.362343 |
[36] |
IGARASHI M, GUARENTE L. mTORC1 and SIRT1 cooperate to foster expansion of gut adult stem cells during calorie restriction[J]. Cell, 2016, 166(2): 436-450. |
[37] |
MA Y H, XU C, WANG W S, et al. Role of SIRT1 in the protection of intestinal epithelial barrier under hypoxia and its mechanism[J]. Chinese Journal of Gastrointestinal Surgery, 2014, 17(6): 602-606. |
[38] |
NIE Y F, HU J, YAN X H. Cross-talk between bile acids and intestinal microbiota in host metabolism and health[J]. Journal of Zhejiang University:Science B, 2015, 16(6): 436-446. DOI:10.1631/jzus.B1400327 |
[39] |
KUIPERS F, BLOKS V W, GROEN A K. Beyond intestinal soap-bile acids in metabolic control[J]. Nature Reviews Endocrinology, 2014, 10(8): 488-498. |
[40] |
RIDLON J M, KANG D J, HYLEMON P B, et al. Bile acids and the gut microbiome[J]. Current Opinion in Gastroenterology, 2014, 30(3): 332-338. DOI:10.1097/MOG.0000000000000057 |
[41] |
WELLMAN A S, METUKURI M R, KAZGAN N, et al. Intestinal epithelial sirtuin 1 regulates intestinal inflammation during aging in mice by altering the intestinal microbiota[J]. Gastroenterology, 2017, 153(3): 772-786. DOI:10.1053/j.gastro.2017.05.022 |
[42] |
CANTO C, GERHART-HINES Z, FEIGE J N, et al. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity[J]. Nature, 2009, 458(7241): 1056-1060. DOI:10.1038/nature07813 |
[43] |
IMAI S I, GUARENTE L. NAD+ and sirtuins in aging and disease[J]. Trends in Cell Biology, 2014, 24(8): 464-471. DOI:10.1016/j.tcb.2014.04.002 |
[44] |
WEI W C, WANG L, ZHOU K, et al. Rhapontin ameliorates colonic epithelial dysfunction in experimental colitis through SIRT1 signaling[J]. International Immunopharmacology, 2017, 42: 185-194. DOI:10.1016/j.intimp.2016.11.024 |
[45] |
PRICE N L, GOMES A P, LING A J, et al. SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function[J]. Cell Metabolism, 2012, 15(5): 675-690. |
[46] |
NIN V, ESCANDE C, CHINI C C, et al. Role of deleted in breast cancer 1 (DBC1) protein in SIRT1 deacetylase activation induced by protein kinase A and AMP-activated protein kinase[J]. Journal of Biological Chemistry, 2012, 287(28): 23489-23501. DOI:10.1074/jbc.M112.365874 |
[47] |
BRAIDY N, JAYASENA T, POLJAK A, et al. Sirtuins in cognitive ageing and Alzheimer's disease[J]. Current Opinion in Psychiatry, 2012, 25(3): 226-230. DOI:10.1097/YCO.0b013e32835112c1 |
[48] |
GHOSH H S, MCBURNEY M, ROBBINS P D. SIRT1 negatively regulates the mammalian target of rapamycin[J]. PLoS One, 2010, 5(2): e9199. DOI:10.1371/journal.pone.0009199 |