动物营养学报    2020, Vol. 32 Issue (2): 691-705    PDF    
胍基乙酸对肉鸡的适用阶段及饲粮蛋氨酸配套强化效果研究
赵景鹏1 , 孙明发1 *, 李培勇1 , 张俊玲2 , 杨立彬2 , 林海1     
1. 山东农业大学动物科技学院, 山东省动物生物工程与疾病防治重点实验室, 泰安 271018;
2. 北京君德同创农牧科技股份有限公司, 北京 100085
摘要: 本研究基于生长性能和肉品质,评价胍基乙酸(GAA)对肉鸡的适用阶段和饲粮蛋氨酸(Met)配套强化效果。选取1日龄雄性爱拔益加肉仔鸡1 920只,随机分为16组,每组设6个重复,每个重复20只鸡。试验分前期(1~21日龄)和后期(22~42日龄)2个饲养阶段,1组为对照组,饲喂常规饲粮(Met水平前期为0.50%,后期为0.40%)。2~6组仅在前期设置Met或GAA处理,其中,2组只把饲粮Met的水平提高至0.65%;3~6组采用双因素完全随机设计,2个饲粮Met水平分别为0.50%和0.65%,2个GAA添加量分别为300和600 mg/kg。7~11组仅在后期设置Met或GAA处理,其中,7组只把饲粮Met水平提高至0.55%;8~11组采用双因素完全随机设计,2个饲粮Met水平分别为0.40%和0.55%,2个GAA添加量分别为400和800 mg/kg。12~16组在全期(1~42日龄)设置Met或GAA处理,前期和后期饲粮设置分别同2~6组和7~11组。试验期42 d。结果发现:1)与对照组相比,只在前期饲喂高剂量GAA并强化Met供应能够显著提高1~21日龄平均日增重和21日龄体重(P < 0.05),显著降低1~21日龄料重比(P < 0.05);仅在后期饲喂高剂量GAA能够显著提高22~42日龄平均日增重,显著降低22~42日龄料重比(P < 0.05),同时强化Met供应还可显著提高1~42日龄平均日增重及42日龄体重、胸肌指数(P < 0.05),显著降低22~42日龄和1~42日龄料重比及42日龄腹脂指数(P < 0.05);全期饲喂高剂量GAA能够提高22~42日龄和1~42日龄平均日增重及42日龄体重和胸肌指数(P < 0.05),显著降低22~42日龄和1~42日龄料重比及42日龄腹脂指数(P < 0.05),同时强化Met供应还可显著提高1~21日龄平均日增重和21日龄体重(P < 0.05),显著降低1~21日龄、22~42日龄和1~42日龄料重比(P < 0.05)。2)与对照组相比,全期单独强化饲粮Met或联合添加低剂量GAA可以显著降低42日龄胸肌、腿肌亮度(L*)值和剪切力(P < 0.05),提高红度(a*)值和24 h pH(pHu)(P < 0.05);单独饲喂GAA对肉品质无显著影响(P>0.05)。由此可见,当全程饲喂高剂量GAA时,无需额外补充Met就可使肉鸡终末体重和胴体质量达到最佳;若要阶段性使用GAA,宜在后期高剂量添加且同时补充Met。
关键词: 胍基乙酸    蛋氨酸    饲养阶段    生长性能    肉品质    肉鸡    
Appropriate Period of Guanidinoacetic Acid for Broiler Chickens and Effects of Dietary Methionine Fortification
ZHAO Jingpeng1 , SUN Mingfa1 *, LI Peiyong1 , ZHANG Junling2 , YANG Libin2 , LIN Hai1     
1. Shandong Key Laboratory of Animal Biotechnology and Disease Control, College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271018, China;
2. Beijing Gendone Agricultural Technology Co., Ltd., Beijing 100085, China
Abstract: A study was conducted to evaluate the appropriate period of guanidinoacetic acid (GAA) for broiler chickens and the effects of dietary methionine (Met) fortification, in terms of growth performance and meat quality. A total of 1 920 one-day-old male Arbor Acres broiler chickens were randomly allotted into 16 groups with 6 replicates per group and 20 birds per replicate. The experiment was divided into starter period (1 to 21 days of age) and later period (22 to 42 days of age). Chickens in group 1 served as the control group, and fed a normal diet (Met level in starter period was 0.50%, and in later period was 0.40%). Groups 2 to 6 were treated with Met or GAA only during the starter period, among them, dietary Met level increased to 0.65% in group 2, a completely randomized design with a 2×2 factorial arrangement was applied to groups 3 to 6, dietary Met levels were 0.50% and 0.65%, and GAA supplementation was 300 and 600 mg/kg. Groups 7 to 11 were treated with Met or GAA only during the later period; among them, dietary Met level increased to 0.55% in group 7, a completely randomized design with a 2×2 factorial arrangement was applied to groups 8 to 11, dietary Met levels were 0.40% and 0.55%, and GAA supplementation was 400 and 800 mg/kg. Groups 12 to 16 were treated with Met or GAA during the whole period (1 to 42 days of age); starter period and later period diets were identical to groups 2 to 6 and groups 7 to 11, respectively. The experiment lasted for 42 days. The results showed as follows:1) compared to the control group, feeding a high dose of GAA plus Met fortification only during the starter period could significantly increase the average daily gain during 1 to 21 days of age and body weight at 21 days of age (P < 0.05), and significantly decreased the ratio of feed to gain during 1 to 21 days of age (P < 0.05); feeding a high dose of GAA only during the later period could significantly increase the average daily gain during 22 to 42 days of age (P < 0.05), and significantly decreased the ratio of feed to gain during 22 to 42 days of age (P < 0.05), and the combination with Met fortification also significantly increased the average daily gain during 1 to 42 days of age and body weight and breast muscle index at 42 days of age (P < 0.05), and significantly decreased the ratio of feed to gain during 22 to 42 days of age and 1 to 42 days of age and abdominal fat index at 42 days of age (P < 0.05); feeding a high dose of GAA during the whole period could significantly increase the average daily gain during 22 to 42 days of age and 1 to 42 days of age and body weight and breast muscle index at 42 days of age (P < 0.05), significantly decreased the ratio of feed to gain during 22 to 42 days of age and 1 to 42 days of age and abdominal fat index at 42 days of age (P < 0.05), and the combination with Met fortification also significantly increased the average daily gain during 1 to 21 days of age and body weight at 21 days of age (P < 0.05), and significantly decreased the ratio of feed to gain during 1 to 21 days of age, 22 to 42 days of age and 1 to 42 days of age (P < 0.05). 2) Compared to the control group, feeding Met fortification alone or in combination with a low dose of GAA during the whole period could significantly decreased the brightness (L*) value and shear force in breast and thigh muscles at 42 days of age (P < 0.05), significantly increased the redness (a*) value and 24 h pH (pHu) (P < 0.05); feeding GAA alone had no influence on meat quality(P>0.05). In conclusion, the final body weight and carcass quality can achieve desirable results when broiler chickens are fed a high dose GAA diet throughout the whole period, without need of Met fortification. It is recommended to provide a high dose of GAA plus additional Met in the later period for short-term feeding.
Key words: guanidinoacetic acid    methionine    feeding period    growth performance    meat quality    broiler chickens    

在脊椎动物体内,胍基乙酸(GAA)是肌酸合成的直接前体[1-2]。在肾脏内,经L-精氨酸-甘氨酸脒基转移酶(AGAT)催化,GAA由L-精氨酸与甘氨酸反应形成[3]。通过血液循环,GAA被运输到肝脏,在N-甲基转移酶(GAMT)作用下,经甲基化生成肌酸[4]。借助钠-氯化物依赖性肌酸转运体(CrT),肌酸被逆浓度梯度摄取进入骨骼肌[5]。在腺苷二磷酸(ADP)与腺苷三磷酸(ATP)相互转化过程中,肌酸以磷酸肌酸的形式介导高能磷酸基团的转移,参与能量的急性动员与存储。在细胞内,肌酸与磷酸肌酸组成的穿梭系统将高能磷酸基团从线粒体转运到细胞质,在能量的产生和利用之间发挥桥梁作用[6-7]。每天,体内约有1.7%的肌酸不可避免地被降解为肌酐,随尿液排出[8]。因此,需要持续供应肌酸,以补偿损耗。

畜禽获取肌酸的途径有2条,要么从头内源合成,要么采食动物性蛋白质源。随着动物性蛋白质源饲料被逐步禁用,饲喂全植物蛋白质型饲粮的畜禽可能每天有约1/2的肌酸需求得不到满足,必须外源补充[9-10]。相比肌酸,GAA更稳定、更便宜、更适合用作饲料添加剂。它不仅在体内能够转化为肌酸,还可像补充肌酸那样节约饲粮中L-精氨酸[11]。肉鸡生长发育快,能量需求高,肌酸被视作半必需营养素。大量研究表明,在玉米-豆粕型饲粮中添加GAA可提高肉鸡日增重和胸肉率,降低料重比[12-13],但对肉品质无显著影响[14-15],甚至有减弱保水性的趋势[1],这与在猪上的研究报道[16]相悖。

GAA向肌酸转化,会消耗大量S-腺苷甲硫氨酸(SAM),极大程度地增加甲基需求[17-18],可能导致高同型半胱氨酸血症或蛋氨酸(Met)缺乏[19-20]。研究发现,GAA与甲基供体如甜菜碱、胆碱、叶酸或维生素B12联合添加,不影响肌肉肌酸含量和机体能量代谢系统,但降低血液同型半胱氨酸含量,改善Met循环[20-22]。目前,尚不知直接强化Met供应是否有助于提高GAA对肉鸡生产性能和肉品质的调控效果。肉鸡的生长规律是前期相对增重多,后期绝对增重大[23],故在不同饲养阶段,骨骼肌对肌酸的需求可能有所差别。由此提出的问题是,GAA在肉鸡饲粮中是应短期添加(在某一阶段)还是长期添加(养殖全程)?因此,本研究旨在评价GAA对肉鸡的适用阶段和饲粮Met配套强化效果,为家禽合理利用GAA提供新思路。

1 材料与方法 1.1 试验材料

试验用GAA由北京君德同创农牧科技股份有限公司提供,有效成分含量≥98%。饲料级DL-Met购自济南昌诺生物技术有限公司,纯度≥98.5%。

1.2 试验设计

选取体重相近的1日龄雄性爱拔益加(Arbor Acres)肉仔鸡1 920只,随机分为16组,每组6个重复,每个重复20只鸡。试验鸡采用叠层(3层,2重复/层)笼养方式,2笼(1.48 m×0.68 m)为1个重复,每笼饲养10只鸡。试验分前期(1~21日龄)和后期(22~42日龄)2个饲养阶段。1组为对照组,喂以常规饲粮(前期饲粮Met水平为0.50%,后期饲粮Met水平为0.40%,不添加GAA)。2~6组仅在前期设置Met或GAA处理,其中,2组只把饲粮Met水平提高至0.65%(不添加GAA);3~6组采用双因素完全随机设计,2个饲粮Met水平分别为0.50%和0.65%,2个GAA添加量分别为300和600 mg/kg。7~11组仅在后期设置Met或GAA处理,其中,7组只把饲粮Met水平提高至0.55%(不添加GAA);8~11组采用双因素完全随机设计,2个饲粮Met水平分别为0.40%和0.55%,2个GAA添加量分别为400和800 mg/kg。12~16组在全期(1~42日龄)设置Met或GAA处理,前期和后期饲粮设置分别同2~6组和7~11组。试验期42 d。试验动物分组见表 1。试验饲粮组成及营养水平见表 2

表 1 试验动物分组 Table 1 Grouping of experimental animals
表 2 试验饲粮组成及营养水平(饲喂基础) Table 2 Composition and nutrient levels of experimental diets (as-fed basis)  
1.3 试验动物与饲养管理

试验肉鸡购自山东大宝养殖加工有限责任公司,全程自由采食和饮水,按常规程序免疫接种,舍内温度、相对湿度和光照控制符合白羽肉鸡对环境的要求。

1.4 测定指标与方法 1.4.1 生长性能

在21和42日龄时,以重复为单位,对鸡群进行空腹称重并统计耗料量,以计算平均日采食量、平均日增重和料重比;同时记录死亡和淘汰数,以计算死淘率。

1.4.2 胴体组成

在21和42日龄时,每个重复随机选2只鸡(1只/笼,12只/组),称重,颈静脉放血处死,取胸肌、腿肌、腹脂、肝脏和肾脏,逐一称重,计算器官指数。

器官指数(%)=100×器官重/体重。

1.4.3 肉品质

在42日龄时,每个重复随机选2只鸡(1只/笼,12只/组),颈静脉放血处死,胴体置于4 ℃保存。

pH:45 min(pHi)和24 h(pHu)时,在右侧胸肌和腿肌各选择3个位置,用胴体肌肉pH直测仪(pH-STAR型,德国MATTHAUS公司)测定pH,取平均值。

滴水损失:4 h时,在左侧胸肌和腿肌,沿与肌纤维平行和垂直方向,切取2.0 cm×2.0 cm×1.0 cm肉块,称重,悬吊于塑料杯内(与杯壁无接触,肌纤维方向与重力一致),杯口用保鲜膜密封。于4 ℃放置48 h,再次称重,计算肉样滴水损失。

肉色:24 h时,在右侧胸肌和腿肌各选择3个位置,用色差仪(CR-10型,日本柯尼卡美能达控股公司)测定亮度(L*)、红度(a*)和黄度(b*),取平均值。

压榨失水率:24 h时,在右侧胸肌和腿肌,切取直径2.523 cm、厚度1.00 cm的圆形肉样。称重后夹在2层纱布间,上下各垫18层定性滤纸,置于YYW-2型应变控制式无侧限压力仪(上海乐傲试验仪器有限公司)平台上,加压至35 kg,保持5 min。再次称重,计算肉样压榨失水率。

蒸煮损失:24 h时,在右侧胸肌和腿肌,切取4.0 cm×2.0 cm×2.0 cm肉块,称重,置于自封袋中(排尽袋内空气),80 ℃下水浴10 min(保持袋口向上),冷却,再次称重,计算肉样蒸煮损失。

嫩度:测定蒸煮损失后,用直径1.27 cm的圆形取样器,顺肌纤维方向钻切肉样,分析剪切力(C-LM3型数显式嫩度仪,东北农业大学)。

1.5 统计分析

使用SAS 9.0软件中GLM程序对试验数据进行单因素方差分析(one-way ANOVA),平均值采用Tukey’s HSD法进行多重比较,P < 0.05表示差异显著。

2 结果 2.1 不同饲养阶段、饲粮蛋氨酸水平下补充胍基乙酸对肉鸡生长性能和胴体组成的影响

表 3表 4表 5所示,无论是在前期、后期还是从全期来看,GAA、Met补充阶段及添加水平对肉鸡平均日采食量均无显著影响(P>0.05)。与对照组相比,只在前期饲喂高剂量GAA并强化Met供应(6组)可以显著提高1~21日龄平均日增重和21日龄体重(P < 0.05),显著降低1~21日龄料重比(P < 0.05);仅在后期饲喂高剂量GAA(9组)能够显著提高22~42日龄平均日增重(P < 0.05),显著降低22~42日龄料重比(P < 0.05),同时强化Met供应(11组)还可显著提高1~42日龄平均日增重及42日龄体重、胸肌指数(P < 0.05),显著降低22~42日龄和1~42日龄料重比及42日龄腹脂指数(P < 0.05);全期饲喂高剂量GAA(14组)能够显著提高22~42日龄和1~42日龄平均日增重及42日龄体重和胸肌指数(P < 0.05),显著降低22~42日龄和1~42日龄料重比及42日龄腹脂指数(P < 0.05),同时强化Met供应(16组)还可显著提高1~21日龄平均日增重和21日龄体重(P < 0.05),显著降低1~21日龄、22~42日龄和1~42日龄料重比(P < 0.05)。仅饲喂低剂量GAA对肉鸡生长性能无显著影响(P>0.05),但如果全期补充并强化Met供应,可显著降低1~21日龄、22~42日龄和1~42日龄料重比(P < 0.05)。单独强化饲粮Met供应对肉鸡生长性能和胴体组成无显著影响(P>0.05),前期饲喂GAA或提高饲粮Met水平对21日龄肉鸡胴体组成无显著影响(P>0.05)。

表 3 不同饲养阶段、饲粮蛋氨酸水平下补充胍基乙酸对肉鸡生产性能的影响 Table 3 Effects of GAA supplementation at different rearing periods and dietary Met level on growth performance of broiler chickens
表 4 不同饲养阶段、饲粮蛋氨酸水平下补充胍基乙酸对21日龄肉鸡胴体组成的影响 Table 4 Effects of GAA supplementation at different rearing periods and dietary Met level on carcass composition of 21-day-old broiler chickens  
表 5 不同饲养阶段、饲粮蛋氨酸水平下补充胍基乙酸对42日龄肉鸡胴体组成的影响 Table 5 Effects of GAA supplementation at different rearing periods and dietary Met level on carcass composition of 42-day-old broiler chickens  
2.2 不同饲养阶段、饲粮蛋氨酸水平下补充胍基乙酸对肉鸡肉品质的影响

表 6表 7所示,GAA、Met补充阶段及添加水平对42日龄肉品质的影响在胸肌和腿肌间相似。与对照组相比,全期单独强化饲粮Met或联合添加低剂量GAA可以显著降低L*值和剪切力(P < 0.05),提高a*值和pHu(P < 0.05);单独饲喂GAA对肉品质无显著影响(P>0.05)。

表 6 在不同饲养阶段、饲粮蛋氨酸水平下补充胍基乙酸对42日龄肉鸡胸肌品质的影响 Table 6 Effects of GAA supplementation at different rearing periods and dietary Met level on breast meat quality of 42-day-old broiler chickens
表 7 在不同饲养阶段、饲粮蛋氨酸水平下补充胍基乙酸对42日龄肉鸡腿肌品质的影响 Table 7 Effects of GAA supplementation at different rearing periods and dietary Met level on thigh meat quality of 42-day-old broiler chickens
3 讨论

由肌酸和磷酸肌酸组成的ATP再生系统对维持正常的能量代谢至关重要[6-7],本试验以玉米、豆粕为主要原料配制全植物蛋白质型饲粮,建立肌酸缺乏模型,评价GAA的饲喂效果。无论是在前期、后期还是全期,单独饲喂低剂量GAA(前期300 mg/kg,后期400 mg/kg)对肉鸡各阶段生长性能和胴体组成均无显著影响。在以往有关GAA的正面报道中,其饲喂剂量多在600~1 200 mg/kg[1, 13]。可是,即使在前期单独饲喂高剂量GAA(600 mg/kg),本试验也未见各阶段生产性能和胴体组成的改善;而且,在后期单独饲喂高剂量GAA(800 mg/kg)也未像先前报道[24]的那样提高42日龄胸肌指数,降低腹脂指数。笔者认为,GAA的起效剂量与饲粮能量水平有关。例如,有研究显示,相比低能量水平饲粮(90%科宝公司推荐量),在高能量水平饲粮(95%和100%科宝公司推荐量)中补充GAA,可提高肉鸡饲料转化效率[25]。本试验基础饲粮代谢能水平(前期12.13 MJ/kg,后期12.55 MJ/kg)相对较低,可能削弱了肉鸡对GAA的反应敏感性。本试验发现,在后期单独饲喂高剂量GAA可以提高22~42日龄体增重和饲料转化效率,如果全期如此的话,还可提高1~42日龄体增重和42日龄胸肌指数,降低1~42日龄料重比和42日龄腹脂指数。由此提示,GAA最好全程高剂量饲喂,如果选择短期补充的话,在后期添加比在前期更有益。这不仅因为肌肉快速生长需要大量肌酸,还因为磷酸肌酸对心肌具有保护作用[6-7]。与先前报道[14-15]一致,在本试验中,单独饲喂GAA对肉品质无显著影响。尽管GAA可通过增加肌酸或磷酸肌酸含量提高直接可用的能量储备,延缓宰后糖酵解[26],但是,胍类化合物包括GAA会促进自由基的生成,还降低细胞的非酶抗氧化能力[27-28]。GAA对能量代谢的积极作用与引发氧化应激的负面效应相抵消,也许是其不影响肉质性状的原因。

Met是家禽玉米-豆粕型饲粮的第一限制性氨基酸,为机体提供活性甲基,参与蛋白质合成代谢[29-30]。有学者指出,饲粮Met水平较NRC(1994)推荐量增加10%~30%可提高肉鸡平均日增重和胸肌指数,减少腹脂沉积[31-32]。不过,本试验未见单独强化Met对生长性能和胴体组成的积极影响。这与Wen等[33]研究结果类似,提示基础饲粮Met水平已能满足肉鸡生长需要。全期单独强化Met提高肌肉pHu,可能与Met降低丙酮酸激酶活性,进而抑制糖酵解和乳酸积累有关[34]。全期单独强化Met降低肌肉剪切力,说明提高饲粮Met水平能改善嫩度,这可能是由于Met延缓肌肉pH下降速率、维持钙激活中性蛋白酶活性有关[35]。再者,全期单独强化Met可增加肌肉a*值,降低L*值。研究表明,肌肉a*、L*值与pHu分别呈正相关和负相关[36]。本试验未见在前期或后期单独增补Met对肉品质的益处,结合活体和屠体性能指标,适度强化Met对产肉性能影响不大,仅在长期或全程饲喂时对肉质性状有改良作用。

作为SAM的唯一前体,Met在GAA向肌酸转化过程中扮演重要角色。Lemme等[37]报道,只有当饲粮Met充足时,补充GAA(800 mg/kg)才可提高肉鸡饲料转化效率,暗示Met缺乏会抑制GAA功效(可能通过限制甲基化反应)。本试验进一步证实了这一点,无论在前期、后期还是全期添加,饲粮Met水平与GAA剂量对产肉性能都具有互作效应,提示今后有必要确定两者在各饲养阶段的最适配比。不过,在前期和全期,高剂量GAA与高水平Met联合添加相比前者单独处理的好处仅局限在1~21日龄,并不像在后期饲喂高剂量GAA时,强化Met可提升22~42日龄和1~42日龄生长性能,最终带来42日龄体重和胴体品质的改善。因此,以出栏体重和胴体组成为判据,高水平Met应在后期与高剂量GAA配套。

4 结论

① 对于肉鸡生长性能和胴体组成,GAA的起效剂量前期高于300 mg/kg,后期高于400 mg/kg。

② 基于出栏体重和胴体组成,当全期饲喂高剂量GAA(前期600 mg/kg,后期800 mg/kg)时,无需额外补充Met;当短期添加高剂量GAA时,最好选择在后期且同时强化饲粮Met。

③ 全期单独补充Met对肉品质有益。

参考文献
[1]
MICHIELS J, MAERTENS L, BUYSE J, et al. Supplementation of guanidinoacetic acid to broiler diets:effects on performance, carcass characteristics, meat quality, and energy metabolism[J]. Poultry Science, 2012, 91(2): 402-412. DOI:10.3382/ps.2011-01585
[2]
OSTOJIC S M, NIESS B, STOJANOVIC M, et al. Creatine metabolism and safety profiles after six-week oral guanidinoacetic acid administration in healthy humans[J]. International Journal of Medical Sciences, 2013, 10(2): 141-147. DOI:10.7150/ijms.5125
[3]
DILGER R N, BRYANT-ANGELONI K, PAYNE R L, et al. Dietary guanidino acetic acid is an efficacious replacement for arginine for young chicks[J]. Poultry Science, 2013, 92(1): 171-177. DOI:10.3382/ps.2012-02425
[4]
ABUDABOS A M, SALEH F, LEMME A, et al. The relationship between guanidino acetic acid and metabolisable energy level of diets on performance of broiler chickens[J]. Italian Journal of Animal Science, 2014, 13(3): 548-556.
[5]
LEMME A, RINGEL J, STERK A, et al.Supplemental guanidino acetic acid affects energy metabolism of broilers[C]//Proceedings of the 16th European Symposium on Poultry Nutrition.Strasbourg, France: World's Poultry Science Association, 2007.
[6]
NAIN S, LING B, ALCORN J, et al. Biochemical factors limiting myocardial energy in a chicken genotype selected for rapid growth[J]. Comparative Biochemistry and Physiology Part A:Molecular and Integrative Physiology, 2008, 149(1): 36-43. DOI:10.1016/j.cbpa.2007.10.001
[7]
BROSNAN J T, WIJEKOON E P, WARFORD-WOOLGAR L, et al. Creatine synthesis is a major metabolic process in neonatal piglets and has important implications for amino acid metabolism and methyl balance[J]. The Journal of Nutrition, 2009, 139(7): 1292-1297. DOI:10.3945/jn.109.105411
[8]
WYSS M, KADDURAH-DAOUK R. Creatine and creatinine metabolism[J]. Physiological Reviews, 2000, 80(3): 1107-1213. DOI:10.1152/physrev.2000.80.3.1107
[9]
LEMME A, RINGEL J, ROSTAGNO H S, et al.Supplemental guanidino acetic acid improved feed conversion, weight gain, and breast meat yield in male and female broilers[C]//Proceedings of 16th European Symposium on Poultry Nutrition.Strasbourg, France: World's Poultry Science Association, 2007.
[10]
STAHL C A, GREENWOOD M W, BERG E P. Growth parameters and carcass quality of broilers fed a corn-soybean diet supplemented with creatine monohydrate[J]. International Journal of Poultry Science, 2003, 2(6): 404-408. DOI:10.3923/ijps.2003.404.408
[11]
BAKER D H. Advances in protein-amino acid nutrition of poultry[J]. Amino Acids, 2009, 37(1): 29-41. DOI:10.1007/s00726-008-0198-3
[12]
RINGEL J, LEMME A, ARAUJO L F. The effect of supplemental guanidino acetic acid in Brazilian type broiler diets at summer conditions[J]. Poultry Science, 2008, 87(Suppl.1): 154.
[13]
RINGEL J, LEMME A, REDSHAW M S, et al. The effects of supplemental guanidino acetic acid as a precursor of creatine in vegetable broiler diets on performance and carcass parameters[J]. Poultry Science, 2008, 87(Suppl.1): 72.
[14]
CÓRDOVA-NOBOA H A, OVIEDO-RONDÓN E O, SARSOUR A H, et al. Performance, meat quality, and pectoral myopathies of broilers fed either corn or sorghum based diets supplemented with guanidinoacetic acid[J]. Poultry Science, 2018, 97(7): 2479-2493. DOI:10.3382/ps/pey096
[15]
CÓRDOVA-NOBOA H A, OVIEDO-RONDÓN E O, SARSOUR A H, et al. Effect of guanidinoacetic acid supplementation on live performance, meat quality, pectoral myopathies and blood parameters of male broilers fed corn-based diets with or without poultry by-products[J]. Poultry Science, 2018, 97(7): 2494-2505. DOI:10.3382/ps/pey097
[16]
LIU Y, LI J L, LI Y J, et al. Effects of dietary supplementation of guanidinoacetic acid and combination of guanidinoacetic acid and betaine on postmortem glycolysis and meat quality of finishing pigs[J]. Animal Feed Science and Technology, 2015, 2015: 82-89.
[17]
STEAD L M, AU K P, JACOBS R L, et al. Methylation demand and homocysteine metabolism:effects of dietary provision of creatine and guanidinoacetate[J]. American Journal of Physiology:Endocrinology and Metabolism, 2001, 281(5): E1095-E1100. DOI:10.1152/ajpendo.2001.281.5.E1095
[18]
STEAD L M, BROSNAN J T, BROSNAN M E, et al. Is it time to reevaluate methyl balance in humans?[J]. American Journal of Clinical Nutrition, 2006, 83(1): 5-10. DOI:10.1093/ajcn/83.1.5
[19]
OHUCHI S, MATSUMOTO Y, MORITA T, et al. High-casein diet suppresses guanidinoacetic acid-induced hyperhomocysteinemia and potentiates the hypohomocysteinemic effect of serine in rats[J]. Bioscience, Biotechnology, and Biochemistry, 2008, 72(12): 3258-3264. DOI:10.1271/bbb.80543
[20]
SETOUE M, OHUCHI S, MORITA T, et al. Hyperhomocysteinemia induced by guanidinoacetic acid is effectively suppressed by choline and betaine in rats[J]. Bioscience, Biotechnology, and Biochemistry, 2008, 72(7): 1696-1703. DOI:10.1271/bbb.70791
[21]
EFSA (European Food Safety Authority). Scientific Opinion of the Panel on Additives and Products or Substances Used in Animal Feed on a request of the European Commission on the safety and efficacy of CreAminoTM (guanidinoacetic acid) as feed additive for chickens for fattening[J]. The EFSA Journal, 2009, 988: 1-30.
[22]
OSTOJIC S M, NIESS B, STOJANOVIC M, et al. Co-administration of methyl donors along with guanidinoacetic acid reduces the incidence of hyperhomocysteinaemia compared with guanidinoacetic acid administration alone[J]. British Journal of Nutrition, 2013, 110(5): 865-870. DOI:10.1017/S0007114512005879
[23]
SCHEUERMANN G N, BILGILI S F, HESS J B, et al. Breast muscle development in commercial broiler chickens[J]. Poultry Science, 2003, 82(10): 1648-1658. DOI:10.1093/ps/82.10.1648
[24]
METWALLY A E, IBRAHIM D, KHATER S I. Effects of supplementing broiler diets with CreAMINO® on broiler performance, carcass traits and the expression of muscle growth related genes[J]. Research Opinions in Animal & Veterinary Sciences, 2015, 5(11): 435-442.
[25]
MOUSAVI S N, AFSAR A, LOTFOLLAHIAN H. Effects of guanidinoacetic acid supplementation to broiler diets with varying energy contents[J]. The Journal of Applied Poultry Research, 2013, 22(1): 47-54. DOI:10.3382/japr.2012-00575
[26]
YOUNG J F, LARSEN L B, MALMENDAL A, et al. Creatine-induced activation of antioxidative defence in myotube cultures revealed by explorative NMR-based metabonomics and proteomics[J]. Journal of the International Society of Sports Nutrition, 2010, 7: 9. DOI:10.1186/1550-2783-7-9
[27]
HIRAMATSU M. A role for guanidino compounds in the brain[J]. Molecular and Cellular Biochemistry, 2003, 244(1/2): 57-62. DOI:10.1023/A:1022491419813
[28]
ZUGNO A I, STEFANELLO F M, SCHERER E B S, et al. Guanidinoacetate decreases antioxidant defenses and total protein sulfhydryl content in striatum of rats[J]. Neurochemical Research, 33(9): 1804-1810. DOI:10.1007/s11064-008-9636-6
[29]
NUKREAW R, BUNCHASAK C, MARKVICHITR K, et al. Effects of methionine supplementation in low-protein diets and subsequent re-feeding on growth performance, liver and serum lipid profile, body composition and carcass quality of broiler chickens at 42 days of age[J]. The Journal of Poultry Science, 2011, 48(4): 229-238. DOI:10.2141/jpsa.010064
[30]
CHEN Y P, CHEN X, ZHANG H, et al. Effects of dietary concentrations of methionine on growth performance and oxidative status of broiler chickens with different hatching weight[J]. British Poultry Science, 2013, 54(4): 531-537. DOI:10.1080/00071668.2013.809402
[31]
ESTEVE-GARCIA E, MACK S. The effect of DL-methionine and betaine on growth performance and carcass characteristics in broilers[J]. Animal Feed Science and Technology, 2000, 87(1/2): 85-93.
[32]
AHMED M E, ABBAS T E. Effects of dietary levels of methionine on broiler performance and carcass characteristics[J]. International Journal of Poultry Science, 2011, 10(2): 147-151. DOI:10.3923/ijps.2011.147.151
[33]
WEN C, JIANG X Y, DING L R, et al. Effects of dietary methionine on growth performance, meat quality and oxidative status of breast muscle in fast- and slow-growing broilers[J]. Poultry Science, 2017, 96(6): 1707-1714. DOI:10.3382/ps/pew432
[34]
CORZO A, KIDD M T, DOZIER Ⅲ W A, et al. Protein expression of pectoralis major muscle in chickens in response to dietary methionine status[J]. British Journal of Nutrition, 95(4): 703-708. DOI:10.1079/BJN20051716
[35]
潘道东, 孟岳成. 畜产食品工艺学[M]. 北京: 科学出版社, 2013: 45-51.
[36]
戴四发, 闻爱友, 王立克, 等. 肉仔鸡肌肉色泽与品质相关性研究[J]. 中国农业大学学报, 2007, 12(1): 61-64. DOI:10.3321/j.issn:1007-4333.2007.01.012
[37]
LEMME A, GOBBI R, ESTEVES-GARCIA E.Effectiveness of creatine sources on performance of broilers at deficient or adequate methionine supply[C]//Proceedings of the 13th European Poultry Conference.Tours, France: European Federation of WPSA Branches, 2010.