动物营养学报    2020, Vol. 32 Issue (3): 1034-1046    PDF    
丁酸在幼龄反刍动物中的作用机理及其产品应用的研究进展
吴东霖 , 徐萍 , 邵凯 , 徐明     
内蒙古农业大学动物科学学院, 呼和浩特 010018
摘要: 丁酸有促进幼龄反刍动物胃肠道发育、降低腹泻、缓解断奶应激和提高生长性能等生理功能。丁酸产品是在乳和饲料中添加的一类安全、无残留、环保的饲料添加剂。本文总结了丁酸在幼龄反刍动物中的作用机理,并以丁酸产品在乳和饲料中添加的应用效果为框架,综述了国内外丁酸产品在幼龄反刍动物中应用的研究进展,旨在为丁酸产品的推广应用提供参考。
关键词: 丁酸    作用机理    应用效果    幼龄反刍动物    
Mechanism of Butyric Acid and Application of Its Products in Young Ruminants
WU Donglin , XU Ping , SHAO Kai , XU Ming     
College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
Abstract: Butyric acid has many physiological functions in young ruminants, such as promoting gastrointestinal development, reducing diarrhea, alleviating weaning stress and improving growth performance. Butyrate products are a kind of safe, non-residue and environmentally friendly feed additive added into milk and feeds in animal production. This paper reviewed the mechanism of butyric acid and the research progress in young ruminants based on the application effects in milk and feeds, and to provide references for the application of butyrate products.
Key words: butyric acid    mechanism    application effect    young ruminants    

丁酸是典型的短链挥发性脂肪酸,对人、禽类、猪、反刍动物[1]和鱼类[2]均具有促进胃肠道发育、改善机体免疫力、提高生产性能等功能[3]。丁酸合成途径广泛、高效[4],但存在易挥发、有难闻酸臭味、在胃内快速释放等问题,而丁酸产品可克服这些问题,应用前景广阔。鉴于丁酸产品在生产实践中的应用越来越广泛,本文就丁酸在幼龄反刍动物中的作用机理及其产品在幼龄反刍动物中的应用效果作一综述。

1 丁酸在幼龄反刍动物中的作用机理 1.1 为胃肠道上皮细胞提供能量

瘤胃微生物发酵过程会产生丁酸,占总挥发性脂肪酸产生量的5%~20%,尽管瘤胃内浓度较乙酸和丙酸低,但其最具活性[5]。瘤胃内多达90%的丁酸被瘤胃壁直接吸收,且大部分在瘤胃上皮细胞内被氧化为酮体(主要为β-羟丁酸),释放能量[6-7]。动物后肠道尤其是结肠也以丁酸作为快速能量来源,可迅速将丁酸氧化成酮体[8]

提高幼龄反刍动物瘤胃内丁酸浓度,可提高瘤胃上皮细胞内生酮酶乙酰辅酶A乙酰转移酶和3-羟基-3-甲基戊二酰辅酶A合成酶的活性[9],进而提高瘤胃上皮细胞对丁酸的氧化能力。同时,丁酸会抑制瘤胃上皮细胞对乙酸、丙酸和葡萄糖的吸收[10-11]。瘤胃上皮细胞对丁酸的利用能力随着日龄的增加逐渐增强。哺乳犊牛瘤胃上皮细胞主要依靠血液中的葡萄糖供能[12],2周龄时能够以较高能力利用葡萄糖、乳糖和丁酸,而到断奶前后,瘤胃上皮细胞对葡萄糖的利用能力减弱[13],对丁酸的利用率是葡萄糖利用率的10倍[14]

1.2 促进胃肠道结构和功能发育

外源丁酸盐可促进胃肠道上皮细胞有丝分裂、减缓细胞凋亡[15]以及缩短细胞周期[16],从而促进细胞增殖[17-18]。丁酸提高细胞周期蛋白D1和周期素依赖性蛋白激酶4基因表达量[16],降低细胞分裂周期G0/G1期细胞数量,促进细胞到S期,从而促进细胞分裂。同时,丁酸具有降低肠道上皮细胞糖氧化[19]和谷氨酰胺氧化供能的作用[20],导致戊糖磷酸途径产生大量的核糖来维持细胞分裂所需核糖[21]

丁酸在瘤胃内可促进乳头发育,增加瘤胃表面积、胃壁厚度及其重量[9, 22-23];在肠道中,丁酸可促进绒毛发育、黏膜发育、肌层发育,增加肠道长度及重量等[18, 23-24];丁酸亦可促进胰腺发育[25]。丁酸盐可提高犊牛肠道刷状缘酶活性[17-18, 25-26],促进胰蛋白酶和脂肪酶的分泌,提高其活性[23, 27]。生长羔羊真胃内灌注丁酸可增强门静脉排流组织对葡萄糖、谷氨酸和谷氨酸胺的摄取[28],该能力增强与糖代谢烯醇化酶1(ENO1)基因表达量提高有关,通过线粒体左旋肉碱穿梭通路提高氧摄取和线粒体功能[29]。丁酸也可提高羊小肠内寡肽转运蛋白[26]、脂肪酸代谢功能相关基因的表达量[29]

增加幼龄反刍动物瘤胃丁酸浓度可通过影响激素和生长因子[如胰岛素样生长因子-1(IGF-1)及其受体]分泌,间接刺激瘤胃上皮细胞增殖[30-32]。但在成年反刍动物瘤胃中灌注丁酸并未提高瘤胃上皮细胞中IGF-1受体及其结合蛋白基因的表达量[33]。在丁酸注入结肠时,丁酸也可间接地通过某种神经激素机制对回肠和空肠上皮细胞产生营养作用[34]。丁酸可间接影响胃肠道肽激素分泌或刺激迷走神经[25, 27, 34],但其机理尚不明确。胰高血糖素样肽-2(GLP-2)是肠内L细胞分泌的胃肠肽激素[35],可刺激胃肠道发育、加速细胞增殖和提高肠壁完整性,从而调节营养物质吸收和能量平衡[35-36]。Connor等[37]报道,GLP-2可提高犊牛机体健康和生产性能,减少肠道内病原微生物感染。而Elsabagh等[38]的研究表明,瘤胃内注入的丁酸盐在瘤胃上皮细胞内被氧化为β-羟丁酸,具有促进GLP-2在血液中释放的作用。这可部分解释丁酸对机体的生理作用。

1.3 改善胃肠道屏障功能

饲粮添加丁酸盐可改善瘤胃上皮细胞的能量代谢,提高反刍动物胃肠道紧密连接蛋白的表达[39-40],利于瘤胃上皮的屏障功能[41]。紧密连接受多种信号通路调节,包括蛋白激酶C(PKC)、丝裂原活化蛋白激酶(MAPK)、细胞周期蛋白、Ras蛋白、磷酸化和基因甲基化等[42]。近期研究表明,紧密连接也受到炎性基因、GLP-2的调节[43]。丁酸钠降低编码紧密连接蛋白的DNA甲基化率,从而促进紧密连接蛋白基因表达,与此同时,丁酸钠抑制PKC、MAPK信号通路,进而促进紧密连接蛋白基因表达[44]。PKC和MAPK同属丝氨酸/苏氨酸蛋白激酶,它们的活化导致丝氨酸/苏氨酸蛋白磷酸酶被同时活化,磷酸酶的活化导致紧密连接蛋白去磷酸化,使得连接复合体被破坏,从而紧密连接受损[45]。饲粮中添加丁酸钠可提高断奶羔羊血液中GLP-2浓度和肠道GLP-2蛋白表达量,同时降低核转录因子-κB(NF-κB)蛋白表达量,提高闭合蛋白(occludin)、封闭蛋白(claudin)和闭锁小带蛋白-1(ZO-1)蛋白表达量[40]。GLP-2调控MAPK信号通路,降低肠道屏障通透性[43],而降低NF-κB蛋白表达量会降低炎性基因表达[46]

另外,Guilloteau等[25]报道,丁酸钠可提高犊牛真胃和结肠热休克蛋白27和70的表达量。热休克蛋白可保护黏膜细胞免遭受氧化应激、温度升高、pH改变等环境应激,同时可作为伴侣蛋白增强细胞代谢,通过这2个生理功能保护细胞[47],从而维持胃肠道屏障。

1.4 影响胃肠道微生物

Li等[48]通过瘤胃瘘管灌注168 h的丁酸溶液后发现,奶牛瘤胃内拟杆菌门的相对丰度从71%降低到60%,硬壁菌门的相对丰度从22%升高到30%。提高硬壁菌门与拟杆菌门之比可提高从饲粮中产生丁酸的能力[49]。在属的水平上,Li等[48]发现,瘤胃灌注丁酸可提高丁酸产生菌(丁酸弧菌和假丁酸弧菌)的相对丰度。丁酸产生菌不仅产生丁酸,而且还是纤维利用的主要微生物[50]。因此,丁酸可提高瘤胃内纤维素酶活性和纤维降解效率,增强微生物代谢[51-52]

最近研究发现,丁酸浓度与甲烷产气菌属AbM4株数量具有显著的正相关[53]。甲烷产气菌AbM4株是瘤胃内严格厌氧微生物,以瘤胃内氢气、二氧化碳和甲酸为能量底物[54],通过转移原虫产生的氢制造甲烷[55]。丁酸浓度和瘤胃原虫相对丰度呈正相关[52]。总之,丁酸可提高瘤胃有益微生物的数量,利于机体代谢,但增加了瘤胃甲烷产量。

O’Hara等[56]利用16S rRNA基因高通量测序表明,包被丁酸钠可提高犊牛后肠道挥发性脂肪酸产生菌和有益菌的丰度,减少损害肠道的艰难杆菌属(Mogibacterium)的丰度。此外,Rice等[57]报道,丁酸钠可减少犊牛粪便中球虫的数量。

1.5 缓解组织炎症反应

亚急性瘤胃酸中毒(SARA)使大量革兰氏阴性菌死亡,其细胞壁的主要成分脂多糖(LPS)和D-谷氨酰基内消旋二氨基庚二酸(iE-DAP)的浓度在瘤胃内显著升高。研究发现,SARA状态下在反刍动物饲粮中添加丁酸钠可降低瘤胃内LPS浓度,同时丁酸钠可直接抑制转录因子NF-κB活性,并可抑制促炎细胞因子白细胞介素-1β(IL-1β)、白细胞介素-6(IL-6)和肿瘤坏死因子-α(TNF-α)合成等途径,缓解奶山羊瘤胃上皮细胞的炎症反应,同时可修复瘤胃上皮的紊乱状态[58]

SARA损伤胃肠道屏障功能,使胃肠道上皮通透性增强,经过胃肠道进入肝门静脉中的LPS和iE-DAP显著增多,导致肝脏功能受损,发生肝脏炎症[59-60]。体内试验证明,丁酸钠可下调肝脏炎症基因及其部分蛋白的表达[59];而对于体外培养中使用LPS诱导的奶牛肝脏细胞炎症反应,丁酸钠可通过抑制胞质核苷酸寡聚结构域蛋白-1受体表达,抑制组蛋白H3去乙酰化、磷酸化p65和磷酸化NF-κB抑制物α(IκBα)蛋白表达,缓解炎症反应[61]

SARA导致肝脏对LPS和iE-DAP的解毒能力减弱,到达外周血液循环的LPS和iE-DAP增多,外周器官发生一系列的炎症反应[59-60]。饲粮中添加丁酸钠可降低泌乳山羊子宫内促炎细胞因子IL-1β和IL-6的浓度,并下调炎症信号分子Toll样受体4(TLR4)、NF-κB基因和促炎细胞因子IL-1βIL-6基因表达,从而缓解泌乳山羊子宫炎症反应[62]

2 现行丁酸产品种类 2.1 丁酸盐

丁酸钠易溶于水和乙醇,密度为0.96 g/mL,白色结晶,具有特殊的奶酪酸败样脂臭味,有吸湿性。丁酸钠在水中的溶解性(115 g/L)远高于丁酸钙(6 g/L)[63]。丁酸为弱酸,而丁酸盐呈弱碱性。丁酸和丁酸钠可作为防腐剂、防霉剂和酸度调节剂。相比丁酸易挥发、具有难闻的酸臭味,丁酸钠更加稳定、气味小,在饲料加工过程中更容易处理[34]。丁酸钙钠成分为77.1%丁酸、9.8%钠、7.0%钙、0.7%棕榈油和2.5%水分[64-66]

2.2 包被丁酸盐

包被丁酸钠相比未包被丁酸钠,在加工生产中稳定、损失小,携带丁酸更高效,到达后肠道释放的丁酸更多[67]。同时,包被丁酸钠可掩盖丁酸钠的气味、克服易吸潮等缺点[68]。包被丁酸钠在幼龄反刍动物瘤胃微生物定植尚不完全时,大部分能够过瘤胃,在小肠内脂肪酶作用下分解,未被分解的到达大肠。大多数商业包被丁酸盐产品通常设定了释放部位,大部分在小肠或大肠,但实际释放的具体部位尚不清楚[69]。动物日龄及其胃肠道发育的状况、包被材料、包被程度、丁酸盐含量等因素都是使用包被丁酸盐时要考虑的问题。

2.3 三丁酸甘油酯

三丁酸甘油酯是由3分子丁酸和1分子甘油酯化而成,又称甘油三丁酸酯,为白色近油状液体,略有脂肪香气,易溶于乙醇、氯仿和乙醚,极难溶于水(0.01%),天然品存在于牛脂中。因受工艺纯化和生产成本等因素影响,实际应用于生产中的三丁酸甘油酯中包含少部分单丁酸甘油酯和二丁酸甘油酯。三丁酸甘油酯在单胃动物和禽类上应用的报道较多,且具有优于包被丁酸钠的使用效果。在反刍动物方面,有关三丁酸甘油酯的研究较少,尤其是在幼龄反刍动物方面,只有极少添加在代乳粉中的报道(表 1)。

表 1 丁酸产品在犊牛乳中的应用效果 Table 1 Effects of butyrate products in milk for calves
3 乳中添加丁酸产品

丁酸天然存在于反刍动物乳中[1],约占牛初乳干物质的2.1%[70]、牛常乳干物质的1.2%[71]。全乳干物质含量为12%~13%,犊牛每日饮用8 L全乳相当于摄入约12 g丁酸。乳中丁酸是以三酰甘油的形式共同构成乳脂成分[71]。如果代乳粉中使用植物性脂肪(棕榈油、椰子油)或动物性脂肪(牛油、猪油)代替乳脂肪,对于幼畜反刍动物的生长发育不利。因此,代乳粉中应当添加丁酸[22]。需要指出的是,犊牛和羔羊胃前脂肪酶对中、短链脂肪酸构成的三酰甘油具有较强的水解催化作用[72],在幼龄反刍动物口腔中优先水解含丁酸基团的三酰甘油[73],并且该酶在真胃中的酸性环境下仍然具有催化活性[74],只作用于三酰甘油的sn-3酯键,产物为二酰甘油和脂肪酸[74],因此牛乳中部分丁酸会在胃中被释放。胰脂肪酶裂解三酰甘油的sn-1和sn-3酯键[73],使三丁酸甘油酯在十二指肠和空肠以sn-2单丁酸甘油酯形式吸收[69]

3.1 全乳中添加丁酸产品

全乳中添加丁酸钙(5 g/d),在出生后23 d的试验期内不影响犊牛饮奶量、平均日增重、体重和料重比[75]。丁酸钙的较低水溶性可能会使其到达后肠道发挥作用,如对幼畜胃肠道结构与功能发育、腹泻的影响等。因此,不能排除在全乳中加入其他丁酸产品(如丁酸钠、包被丁酸钠和三丁酸甘油酯等)的可能应用效果,值得研究。Sun等[76]报道,在酸化奶中加入丁酸钠具有降低犊牛腹泻、减少断奶应激、提高断奶前后平均日增重、提高断奶前胸宽和胸围的良好效果,且0.3%干物质(DM)丁酸钠的总体效果优0.6%DM丁酸钠。

3.2 代乳粉中添加丁酸产品 3.2.1 不包被丁酸产品

代乳粉中使用不包被丁酸产品的研究较多且全面,其中丁酸钠使用最多(表 1)。Hiltz等[77]报道,犊牛初乳代乳粉中添加丁酸钠降低了犊牛对免疫球蛋白G的吸收能力,这与丁酸加速肠道细胞成熟有关。Górka等[18, 78]报道,使用不包被丁酸钠可增加犊牛出生后前2周的体重。代乳粉中添加不包被丁酸钠可降低犊牛腹泻率[79],提高犊牛增重,降低料重比[26, 78-81]。但丁酸产品也有无效果的报道[5, 65-66, 82-83]

丁酸产品促进胃肠道结构和功能的发育,但在生长性能不一定能表现出来。总的来看,代乳粉中添加不包被丁酸产品可促进胃肠道发育,从而提高养分消化和吸收、降低腹泻、改善养分代谢等,进而促进幼龄反刍动物的生长发育(表 1)。

Araujo等[82-83]指出,三丁酸甘油酯对犊牛的生长性能没有促进效果。Inabu等[84]的研究表明,三丁酸甘油酯降低犊牛开食料干物质采食量和代谢能摄入量,但促进GLP-2的分泌,从而不影响犊牛生长性能、腹泻率和健康状况。到目前为止,有关三丁酸甘油酯的研究均未涉及犊牛胃肠道发育,此方面需要进一步研究。

3.2.2 包被丁酸产品

Nazari等[85]报道,包被丁酸钙可提高犊牛采食量、体重和平均日增重,降低料重比,提高肩胛、臀高和臀宽。新生犊牛易腹泻,包被能够使丁酸到达后肠道并缓慢均匀释放,这种添加方式显示是有益的,但需验证。目前尚缺乏在代乳粉中比较不同梯度丁酸产品应用效果的报道,更无比较包被丁酸产品与不包被丁酸产品应用效果的报道。

3.3 使用推荐

丁酸产品在代乳粉中的添加剂量,从0.3%~1.0%DM不等(表 1),其中0.3%DM不包被丁酸钠的使用最多,并具有促进犊牛胃肠道发育和功能、降低腹泻和提高生长性能等良好效果,已被反复证明具有很好的应用价值。代乳粉中1.0%的丁酸浓度与全乳中丁酸浓度接近,并且犊牛对其也具有良好的耐受性[79]。因此,可推荐在犊牛代乳粉中添加使用0.3%~1.0%DM的不包被丁酸钠。

全乳上只有1篇使用不包被丁酸钙的报道,尚无其他丁酸产品报道。酸化奶中添加0.3%DM丁酸钠效果显著。故全乳中使用丁酸产品的添加形式及水平不能确定,暂推荐添加0.3%DM不包被丁酸钠。初乳及其代乳粉中不应添加丁酸产品。

羔羊上尚无乳中添加丁酸产品的试验,暂推荐在羔羊乳方面使用同犊牛一样的方法。

4 饲料中添加丁酸产品

丁酸产品在幼龄反刍动物饲料中的研究涉及到犊牛和羔羊,包括包被和不包被2种形式。其中,有关丁酸钠的研究占绝大多数,丁酸钙为少数,三丁酸甘油酯尚未涉及(表 2)。

表 2 丁酸产品在犊牛和羔羊饲料中的应用效果 Table 2 Effects of butyrate products in feeds or diets for calves and lambs
4.1 不包被丁酸产品

孟庆爽[23]报道,不包被丁酸钠可降低哺乳犊牛腹泻率,并在试验前期提高犊牛采食量。在哺乳期,不包被丁酸产品对提高采食量、体重、平均日增重等生长性能上的报道并不一致,在生长期丁酸产品对生长性能的影响较为一致[23-24, 75, 86],这显示出,不包被丁酸产品的价值即在哺乳期的良好作用累积到了生长期,进而提高生长期犊牛的生长性能。Rice等[57]报道,生长期犊牛使用不包被丁酸钠利于生长发育。

在羔羊上,在不包被丁酸产品上只有使用丁酸钠的报道(表 2)。丁酸钠主要影响哺乳期采食量、体重、平均日增重和降低料重比,而对生长育肥期羔羊生长性能、屠宰性能等的影响较小[87-89],此外,对羔羊粪便评分没有显著影响[88]

4.2 包被丁酸产品

包被丁酸钠的研究较多,其中在犊牛上的报道较多,而在羔羊上的报道极少(表 2)。在犊牛上,多数研究均表明包被丁酸钠可降低腹泻,利于机体健康[18, 23, 78],提高犊牛采食量、体重、平均日增重,降低料重比[18, 81, 91-92];仅有1篇研究认为包被丁酸钠线性降低哺乳期开食料采食量、平均日增重[90]。包被丁酸产品对哺乳期犊牛胃肠道发育起着促进作用,但对生长期犊牛胃肠道发育影响的研究还未涉及。

羔羊上,邴新帅[40]报道,包被丁酸钠可提高断奶羔羊的平均日增重。包被丁酸产品在哺乳羔羊上的应用效果尚无报道。

4.3 使用推荐

不包被丁酸产品主要在瘤胃释放,少量丁酸也能到达肠道发挥作用,而且对胃肠道的刺激在已有报道中显示效果较好。包被丁酸产品直接作用促进肠道发育,也能够间接刺激瘤胃发育。已有比较不包被丁酸钠和包被丁酸钠的研究结果显示,不包被丁酸钠的应用效果优于包被丁酸钠[23]。此外,丁酸钙在饲料中的使用效果不及丁酸钠。对哺乳反刍动物而言,已有报道中的不包被丁酸产品添加剂量范围较广(0.15%~3.00%)。

综合上述试验结果,在犊牛和羔羊上,推荐在哺乳期开食料中添加0.3%~1.0%DM不包被丁酸钠,在生长期饲粮中添加0.3%~1.0%DM包被丁酸钠。

5 乳和饲料中同时添加丁酸产品

乳和饲料中同时添加丁酸产品的报道不多,现已探究了代乳粉中添加不包被丁酸钠与开食料中添加包被丁酸钠[18, 78, 93]以及代乳粉与开食料中均添加包被丁酸钠[94]的效果(表 3)。尽管在代乳粉中添加不包被丁酸钠与开食料中添加包被丁酸钠的添加方式没有协同效应[18, 78],但2种添加方式均显示出对哺乳犊牛可降低腹泻,提高采食量、体重、平均日增重、胸围、腹围,促进机体健康[18, 78, 93-94]

表 3 丁酸产品在犊牛乳和饲料中同时添加的应用效果 Table 3 Application effects of butyrate products added simultaneously in milk and feeds for calves

因此,值得推荐代乳粉中添加0.3%DM不包被丁酸钠和开食料中添加0.3%DM包被或不包被丁酸钠的组合。

6 小结及展望

丁酸具有多种生物学功能,已有报道显示出良好的应用效果。本文根据丁酸在幼龄反刍动物中的作用机理及其产品研究结果,推荐了在乳和饲料中的具体使用方案。犊牛全乳中添加丁酸产品、羔羊饲料及代乳粉中添加丁酸产品等方面均需要进一步探究,以完备丁酸产品在幼龄反刍动物中的应用效果,获得可针对动物不同生理阶段最为理想的丁酸添加形式、水平和组合。

参考文献
[1]
BEDFORD A, GONG J. Implications of butyrate and its derivatives for gut health and animal production[J]. Animal Nutrition, 2018, 4(2): 151-159.
[2]
刘艳莉, 胡毅, 钟蕾, 等. 丁酸对动物肠道健康的影响及水产应用前景[J]. 水产科学, 2019, 38(2): 276-281.
[3]
左丽君, 姜宁, 张爱忠. 丁酸钠对畜禽机体营养及免疫调控作用的研究进展[J]. 中国畜牧杂志, 2019, 55(4): 25-28.
[4]
岳莹雪, 王玉琦, 闫芬芬, 等. 丁酸的生产方法及在肠道中的生理功能研究进展[J]. 食品工业科技, 2019, 40(15): 339-344.
[5]
KATO S I, SATO K, CHIDA H, et al. Effects of Na-butyrate supplementation in milk formula on plasma concentrations of GH and insulin, and on rumen papilla development in calves[J]. Journal of Endocrinology, 2011, 211(3): 241-248.
[6]
WEIGAND E, YOUNG J W, MCGILLIARD A D. Extent of butyrate metabolism by bovine ruminoreticulum epithelium and the relationship to absorption rate[J]. Journal of Dairy Science, 1972, 55(5): 589-597. DOI:10.3168/jds.S0022-0302(72)85541-3
[7]
KRISTENSEN N B, PIERZYNOWSKI S G, DANFAER A. Portal-drained visceral metabolism of 3-hydroxybutyrate in sheep[J]. Journal of Animal Science, 2000, 78(8): 2223-2228. DOI:10.2527/2000.7882223x
[8]
刘锐钢, 肖英平, 陈安国. 丁酸盐的生物学功能和机制及其在动物生产中的应用[J]. 动物营养学报, 2013, 25(6): 1180-1188.
[9]
NIWIŃSKA B, HANCZAKOWSKA E, ARCISZEWSKI M B, et al. Review:exogenous butyrate:implications for the functional development of ruminal epithelium and calf performance[J]. Animal, 2017, 11(9): 1522-1530. DOI:10.1017/S1751731117000167
[10]
HARMON D L, GROSS K L, KREHBIEL C R, et al. Influence of dietary forage and energy intake on metabolism and acyl-CoA synthetase activity in bovine ruminal epithelial tissue[J]. Journal of Animal Science, 1991, 69(10): 4117-4127. DOI:10.2527/1991.69104117x
[11]
WIESE B I, GÓRKA P, MUTSVANGWA T, et al. Short communication:interrelationship between butyrate and glucose supply on butyrate and glucose oxidation by ruminal epithelial preparations[J]. Journal of Dairy Science, 2013, 96(9): 5914-5918. DOI:10.3168/jds.2013-6677
[12]
RÉMOND D, ORTIGUES I, JOUANY J P. Energy substrates for the rumen epithelium[J]. Proceedings of the Nutrition Society, 1995, 54(1): 95-105. DOI:10.1079/PNS19950040
[13]
GIESECKE D, BECK U, WIESMAYR S, et al. The effect of rumen epithelial development on metabolic activities and ketogenesis by the tissue in vitro[J]. Comparative Biochemistry and Physiology Part B:Comparative Biochemistry, 1979, 62(4): 459-463. DOI:10.1016/0305-0491(79)90118-4
[14]
BALDWIN R L, JESSE B W. Developmental changes in glucose and butyrate metabolism by isolated sheep ruminal cells[J]. The Journal of Nutrition, 1992, 122(5): 1149-1153. DOI:10.1093/jn/122.5.1149
[15]
MENTSCHEL J, LEISER R, MÜLLING C, et al. Butyric acid stimulates rumen mucosa development in the calf mainly by a reduction of apoptosis[J]. Archiv für Tierernaehrung, 2001, 55(2): 85-102. DOI:10.1080/17450390109386185
[16]
MALHI M, GUI H B, YAO L, et al. Increased papillae growth and enhanced short-chain fatty acid absorption in the rumen of goats are associated with transient increases in cyclin D1 expression after ruminal butyrate infusion[J]. Journal of Dairy Science, 2013, 96(12): 7603-7616. DOI:10.3168/jds.2013-6700
[17]
GÓRKA P, KOWALSKI Z M, PIETRZAK P, et al. Is rumen development in newborn calves affected by different liquid feeds and small intestine development?[J]. Journal of Dairy Science, 2011, 94(6): 3002-3013. DOI:10.3168/jds.2010-3499
[18]
GÓRKA P, PIETRZAK P, KOTUNIA A, et al. Effect of method of delivery of sodium butyrate on maturation of the small intestine in newborn calves[J]. Journal of Dairy Science, 2014, 97(2): 1026-1035. DOI:10.3168/jds.2013-7251
[19]
FLEMING S E, FITCH M D, DEVRIES S, et al. Nutrient utilization by cells isolated from rat jejunum, cecum and colon[J]. The Journal of Nutrition, 1991, 121(6): 869-878. DOI:10.1093/jn/121.6.869
[20]
OBA M, BALDWIN VI R L, BEQUETTE B J. Oxidation of glucose, glutamate, and glutamine by isolated ovine enterocytes in vitro is decreased by the presence of other metabolic fuels[J]. Journal of Animal Science, 2004, 82(2): 479-486. DOI:10.2527/2004.822479x
[21]
NEWSHOLME E A, CRABTREE B, ARDAWI M S M. The role of high rates of glycolysis and glutamine utilization in rapidly dividing cells[J]. Bioscience Reports, 1985, 5(5): 393-400. DOI:10.1007/BF01116556
[22]
GÓRKA P, KOWALSKI Z M, ZABIELSKI R, et al. Invited review:use of butyrate to promote gastrointestinal tract development in calves[J]. Journal of Dairy Science, 2018, 101(6): 4785-4800. DOI:10.3168/jds.2017-14086
[23]
孟庆爽.丁酸钠释放速率对哺乳犊牛生长性能和胃肠道发育的影响[D].硕士学位论文.呼和浩特: 内蒙古农业大学, 2019: 12-33.
[24]
赵会利, 高艳霞, 李建国, 等. 丁酸钠对断奶犊牛生长、血液生化指标及胃肠道发育的影响[J]. 畜牧兽医学报, 2013, 44(10): 1600-1608. DOI:10.11843/j.issn.0366-6964.2013.10.013
[25]
GUILLOTEAU P, ZABIELSKI R, DAVID J C, et al. Sodium-butyrate as a growth promoter in milk replacer formula for young calves[J]. Journal of Dairy Science, 2009, 92(3): 1038-1049. DOI:10.3168/jds.2008-1213
[26]
GÓRKA P, ŚLIWIŃ SKI B, FLAGA J, et al. Effect of exogenous butyrate on the gastrointestinal tract of sheep.Ⅱ.Hydrolytic activity in the rumen and structure and function of the small intestine[J]. Journal of Animal Science, 2018, 96(12): 5325-5335. DOI:10.1093/jas/sky368
[27]
GUILLOTEAU P, SAVARY G, JAGUELIN-PEYRAULT Y, et al. Dietary sodium butyrate supplementation increases digestibility and pancreatic secretion in young milk-fed calves[J]. Journal of Dairy Science, 2010, 93(12): 5842-5850. DOI:10.3168/jds.2009-2751
[28]
FOOTE A P, FREETLY H C. Effect of abomasal butyrate infusion on net nutrient flux across the portal-drained viscera and liver of growing lambs[J]. Journal of Animal Science, 2016, 94(7): 2962-2972. DOI:10.2527/jas.2016-0485
[29]
FOOTE A P, ZAREK C M, KUEHN L A, et al. Effect of abomasal butyrate infusion on gene expression in the duodenum of lambs[J]. Journal of Animal Science, 2017, 95(3): 1191-1196. DOI:10.2527/jas.2016.1022
[30]
BALDWIN VI R L, MCLEOD K R, KLOTZ J L, et al. Rumen development, intestinal growth and hepatic metabolism in the pre-and postweaning ruminant[J]. Journal of Dairy Science, 2004, 87(Suppl.): E55-E65.
[31]
PENNER G B, STEELE M A, ASCHENBACH J R, et al. Ruminant nutrition symposium:molecular adaptation of ruminal epithelia to highly fermentable diets[J]. Journal of Animal Science, 2011, 89(4): 1108-1119. DOI:10.2527/jas.2010-3378
[32]
SHEN Z M, SEYFERT H M, LÖHRKE B, et al. An energy-rich diet causes rumen papillae proliferation associated with more IGF type 1 receptors and increased plasma IGF-1 concentrations in young goats[J]. The Journal of Nutrition, 2004, 134(1): 11-17.
[33]
SHEN Z M, KUHLA S, ZITNAN R, et al. Intraruminal infusion of n-butyric acid induces an increase of ruminal papillae size independent of IGF-1 system in castrated bulls[J]. Archives of Animal Nutrition, 2005, 59(4): 213-225. DOI:10.1080/17450390500216894
[34]
GUILLOTEAU P, MARTIN L, EECKHAUT V, et al. From the gut to the peripheral tissues:the multiple effects of butyrate[J]. Nutrition Research Reviews, 2010, 23(2): 366-384. DOI:10.1017/S0954422410000247
[35]
JANSSEN P, ROTONDO A, MULÉ F, et al. Review article:a comparison of glucagon-like peptides 1 and 2[J]. Alimentary Pharmacology and Therapeutics, 2013, 37(1): 18-36.
[36]
CONNOR E E, BALDWIN VI R L, CAPUCO A V, et al. Characterization of glucagon-like peptide 2 pathway member expression in bovine gastrointestinal tract[J]. Journal of Dairy Science, 2010, 93(11): 5167-5178. DOI:10.3168/jds.2010-3205
[37]
CONNOR E E, EVOCK-CLOVER C M, WALKER M P, et al. Comparative gut physiology symposium:comparative physiology of glucagon-like peptide-2:implications and applications for production and health of ruminants[J]. Journal of Animal Science, 2015, 93(2): 492-501. DOI:10.2527/jas.2014-8577
[38]
ELSABAGH M, INABU Y, OBITSU T, et al. Response of plasma glucagon-like peptide-2 to feeding pattern and intraruminal administration of volatile fatty acids in sheep[J]. Domestic Animal Endocrinology, 2017, 60: 31-41. DOI:10.1016/j.domaniend.2017.03.001
[39]
BALDWIN VI R L, WU S T, LI W Z, et al. Quantification of transcriptome responses of the rumen epithelium to butyrate infusion using RNA-seq technology[J]. Gene Regulation and Systems Biology, 2012, 6: 67-80.
[40]
邴新帅.丁酸钠与沙蒿多糖对断奶羔羊肠道发育及胰高血糖素样肽-2的影响[D].硕士学位论文.呼和浩特: 内蒙古农业大学, 2018: 39-65.
[41]
LAARMAN A H, DIONISSOPOULOS L, AlZAHAL O, et al. Butyrate supplementation affects mRNA abundance of genes involved in glycolysis, oxidative phosphorylation and lipogenesis in the rumen epithelium of Holstein dairy cows[J]. American Journal of Animal and Veterinary Sciences, 2013, 8(4): 239-245. DOI:10.3844/ajavsp.2013.239.245
[42]
刘志华, 秦环龙. 肠上皮细胞紧密连接基因及信号调控的研究进展[J]. 中华临床营养杂志, 2010, 18(5): 310-316. DOI:10.3760/cma.j.issn.1674-635X.2010.05.012
[43]
宗秋芳, 钦伟云, 霍永久, 等. 猪肠上皮紧密连接蛋白研究进展[J]. 浙江农业学报, 2018, 30(8): 1435-1444. DOI:10.3969/j.issn.1004-1524.2018.08.23
[44]
ZHANG K, MENG M J, GAO L P, et al. Sodium butyrate improves high-concentrate diet-induced impairment of ruminal epithelium barrier function in goats[J]. Journal of Agricultural and Food Chemistry, 2018, 66(33): 8729-8736. DOI:10.1021/acs.jafc.8b03108
[45]
丁惠民, 邱海波. 蛋白激酶C对肺微血管内皮通透性的影响[J]. 国际呼吸杂志, 2006, 26(10): 784-786.
[46]
刘欣欣.高精料日粮对反刍动物肝脏细胞凋亡的影响及丁酸钠调控作用[D].硕士学位论文.南京: 南京农业大学, 2016: 16-20.
[47]
SIKORA A, GRZESIUK E. Heat shock response in gastrointestinal tract[J]. Journal of Physiology and Pharmacology, 2007, 58(Suppl.3): 43-62.
[48]
LI R W, WU S T, BALDWIN VI R L, et al. Perturbation dynamics of the rumen microbiota in response to exogenous butyrate[J]. PLoS One, 2012, 7(1): e29392. DOI:10.1371/journal.pone.0029392
[49]
JUMPERTZ R, LE D S, TURNBAUGH P J, et al. Energy-balance studies reveal associations between gut microbes, caloric load, and nutrient absorption in humans[J]. The American Journal of Clinical Nutrition, 2011, 94(1): 58-65. DOI:10.3945/ajcn.110.010132
[50]
MRÁZEK J, TEPŠI ČK, AVGUŠTIN G, et al. Diet-dependent shifts in ruminal butyrate-producing bacteria[J]. Folia Microbiologica, 2006, 51(4): 294-298. DOI:10.1007/BF02931817
[51]
REN Q C, XUAN J J, WANG L K, et al. Effects of tributyrin supplementation on in vitro culture fermentation and methanogenesis and in vivo dietary nitrogen, calcium and phosphorus losses in Small Tail ewes[J]. Animal Feed Science and Technology, 2018, 243: 64-71. DOI:10.1016/j.anifeedsci.2018.07.008
[52]
CARBERRY C A, KENNY D A, HAN S, et al. Effect of phenotypic residual feed intake and dietary forage content on the rumen microbial community of beef cattle[J]. Applied and Environmental Microbiology, 2012, 78(14): 4949-4958. DOI:10.1128/AEM.07759-11
[53]
DONG L F, MA J N, TU Y, et al. Weaning methods affect ruminal methanogenic archaea composition and diversity in Holstein calves[J]. Journal of Integrative Agriculture, 2019, 18(5): 1080-1092. DOI:10.1016/S2095-3119(18)62120-3
[54]
LEAHY S C, KELLY W J, LI D, et al. The complete genome sequence of Methanobrevibacter sp. AbM4[J]. Standards in Genomic Sciences, 2013, 8(2): 215-227. DOI:10.4056/sigs.3977691
[55]
TÓTHOVÁ T, PIKNOVÁ M, KIŠIDAYOVÁ S, et al. Distinctive archaebacterial species associated with anaerobic rumen protozoan Entodinium caudatum[J]. Folia Microbiologica, 2008, 53(3): 259-262. DOI:10.1007/s12223-008-0039-5
[56]
O'HARA E, KELLY A, MCCABE M S, et al. Effect of a butyrate-fortified milk replacer on gastrointestinal microbiota and products of fermentation in artificially reared dairy calves at weaning[J]. Scientific Reports, 2018, 8(1): 14901. DOI:10.1038/s41598-018-33122-6
[57]
RICE E M, ARAGONA K M, MORELAND S C, et al. Supplementation of sodium butyrate to postweaned heifer diets:effects on growth performance, nutrient digestibility, and health[J]. Journal of Dairy Science, 2019, 102(4): 3121-3130. DOI:10.3168/jds.2018-15525
[58]
DAI H Y, LIU X X, YAN J Y, et al. Sodium butyrate ameliorates high-concentrate diet-induced inflammation in the rumen epithelium of dairy goats[J]. Journal of Agricultural and Food Chemistry, 2017, 65(3): 596-604. DOI:10.1021/acs.jafc.6b04447
[59]
ROY C A, WANG Y, ZHANG H M, et al. Sodium butyrate mitigates iE-DAP induced inflammation caused by high-concentrate feeding in liver of dairy goats[J]. Journal of Agricultural and Food Chemistry, 2018, 66(34): 8999-9009. DOI:10.1021/acs.jafc.8b02732
[60]
XU T L, MA N N, WANG Y, et al. Sodium butyrate supplementation alleviates the adaptive response to inflammation and modulates fatty acid metabolism in lipopolysaccharide-stimulated bovine hepatocytes[J]. Journal of Agricultural and Food Chemistry, 2018, 66(25): 6281-6290.
[61]
ROY A C, CHANG G J, MA N N, et al. Sodium butyrate suppresses NOD1-mediated inflammatory molecules expressed in bovine hepatocytes during iE-DAP and LPS treatment[J]. Journal of Cellular Physiology, 2019, 234(11): 19602-19620. DOI:10.1002/jcp.28560
[62]
BILAL M S, XU T L, AABDIN Z, et al. Effect of sodium butyrate in combating the negative effects of sub-acute ruminal acidosis induced lipopolysaccharides in the uteri of lactating goats[J]. Pakistan Veterinary Journal, 2017, 37(2): 205-209.
[63]
MALLO J J, BALFAGÓN A, GRACIA M I, et al. Evaluation of different protections of butyric acid aiming for release in the last part of the gastrointestinal tract of piglets[J]. Journal of Animal Science, 2012, 90(Suppl.4): 227-229.
[64]
FRIETEN D, GERBERT C, KOCH C, et al. Ad libitum milk replacer feeding, but not butyrate supplementation, affects growth performance as well as metabolic and endocrine traits in Holstein calves[J]. Journal of Dairy Science, 2017, 100(8): 6648-666. DOI:10.3168/jds.2017-12722
[65]
GERBERT C, FRIETEN D, KOCH C, et al.Organ and epithelial growth in the gastrointestinal tract of Holstein calves fed milk replacer ad libitum and supplemented with butyrate[C]//Proceedings of the Society of Nutrition Physiology.Göttingen: [s.n.], 2017.
[66]
GERBERT C, FRIETEN D, KOCH C, et al. Effects of ad libitum milk replacer feeding and butyrate supplementation on behavior, immune status, and health of Holstein calves in the postnatal period[J]. Journal of Dairy Science, 2018, 101(8): 7348-7360. DOI:10.3168/jds.2018-14542
[67]
陈国顺, 徐振飞, 余荣, 等. 不同类型丁酸钠在生产加工过程中的稳定性研究[J]. 中国畜牧杂志, 2011, 47(5): 62-66.
[68]
李芳, 游斌杰, 郑萍, 等. 国内包被技术在畜牧业的应用研究进展[J]. 饲料研究, 2019, 42(05): 100-105.
[69]
MOQUET P C A, ONRUST L, VAN IMMERSEEL F, et al. Importance of release location on the mode of action of butyrate derivatives in the avian gastrointestinal tract[J]. World's Poultry Science Journal, 2016, 72(1): 61-80. DOI:10.1017/S004393391500269X
[70]
GARCIA M, GRECO L F, FAVORETO M G, et al. Effect of supplementing fat to pregnant nonlactating cows on colostral fatty acid profile and passive immunity of the newborn calf[J]. Journal of Dairy Science, 2014, 97(1): 392-405. DOI:10.3168/jds.2013-7086
[71]
CEBALLOS L S, MORALES E R, DE LA TORRE ADARVE G, et al. Composition of goat and cow milk produced under similar conditions and analyzed by identical methodology[J]. Journal of Food Composition and Analysis, 2009, 22(4): 322-329. DOI:10.1016/j.jfca.2008.10.020
[72]
杨汉博, 王峰. 动物消化道脂肪酶研究概述[J]. 饲料广角, 2009(5): 33-35.
[73]
DOREAU M, CHILLIARD Y. Digestion and metabolism of dietary fat in farm animals[J]. British Journal of Nutrition, 1997, 78(1): S15-S35. DOI:10.1079/BJN19970132
[74]
DRACKLEY J K. Calf nutrition from birth to breeding[J]. Veterinary Clinics of North America:Food Animal Practice, 2008, 24(1): 55-86. DOI:10.1016/j.cvfa.2008.01.001
[75]
DAVARMANESH A R, FATHI NASRI M H, KALANTARI FIROUZABAD A R, et al. Effect of Ca-butyrate and oleobiotec (a flavouring agent) supplemented starter on the performance of Holstein dairy calves[J]. The Journal of Agricultural Science, 2015, 153(8): 1506-1513. DOI:10.1017/S0021859615000726
[76]
SUN Y Y, LI J, MENG Q S, et al. Effects of butyric acid supplementation of acidified milk on digestive function and weaning stress of cattle calves[J]. Livestock Science, 2019, 225: 78-84. DOI:10.1016/j.livsci.2019.04.021
[77]
HILTZ R L, LAARMAN A H. Effect of butyrate on passive transfer of immunity in dairy calves[J]. Journal of Dairy Science, 2019, 102(5): 4190-4197. DOI:10.3168/jds.2018-15555
[78]
GÓRKA P, KOWALSKI Z M, PIETRZAK P, et al. Effect of method of delivery of sodium butyrate on rumen development in newborn calves[J]. Journal of Dairy Science, 2011, 94(11): 5578-5588. DOI:10.3168/jds.2011-4166
[79]
HILL T M, ALDRICH J M, SCHLOTTERBECK R L, et al. Effects of changing the fat and fatty acid composition of milk replacers fed to neonatal calves[J]. The Professional Animal Scientist, 2007, 23(2): 135-143. DOI:10.15232/S1080-7446(15)30953-0
[80]
HILL T M, ALDRICH J M, SCHLOTTERBECK R L, et al. Amino acids, fatty acids, and fat sources for calf milk replacers[J]. The Professional Animal Scientist, 2007, 23(4): 401-408. DOI:10.15232/S1080-7446(15)30995-5
[81]
GUILLOTEAU P, ROMÉ V, LE NORMAND L, et al. Is Na-butyrate a growth factor in the preruminant calf? Preliminary results[J]. Journal of Animal and Feed Sciences, 2004, 13(Suppl.1): 393-396.
[82]
ARAUJO G, BACH A, MEREU A, et al.Effects of supplementing the milk replacer with tributyrin on the metabolism of Holstein calves[C]//Zaragoza: ⅩⅤ Jornadas Sobre Producción Animal.Zaragoza: Asociacion Interprofesional Para el Desarrollo Agrario, 2013.
[83]
ARAUJO G, TERRÉ M, MEREU A, et al. Effects of supplementing a milk replacer with sodium butyrate or tributyrin on performance and metabolism of Holstein calves[J]. Animal Production Science, 2016, 56(11): 1834-1841. DOI:10.1071/AN14930
[84]
INABU Y, MURAYAMA K, INOUCHI K, et al. The effect of tributyrin supplementation to milk replacer on plasma glucagon-like peptide 2 concentrations in pre-weaning calves[J]. Animal Science Journal, 2019, 90(9): 1185-1192. DOI:10.1111/asj.13262
[85]
NAZARI M, KARKOODI K, ALIZADEH A. Performance and physiological responses of milk-fed calves to coated calcium butyrate supplementation[J]. South African Journal of Animal Science, 2012, 42(3): 296-303.
[86]
ŚLUSARCZYK K, STRZETELSKI J A, FURGAŁ-DIERŻUK I. The effect of sodium butyrate on calf growth and serum level of β-hydroxybutyric acid[J]. Journal of Animal and Feed Sciences, 2010, 19(3): 348-357. DOI:10.22358/jafs/66298/2010
[87]
CAVINI S, IRAIRA S, SIURANA A, et al. Effect of sodium butyrate administered in the concentrate on rumen development and productive performance of lambs in intensive production system during the suckling and the fattening periods[J]. Small Ruminant Research, 2015, 123(2/3): 212-217.
[88]
SOLTANI M, KAZEMI-BONCHENARI M, KHALTABADI-FARAHANI A H, et al. Interaction of forage provision (alfalfa hay) and sodium butyrate supplementation on performance, structural growth, blood metabolites and rumen fermentation characteristics of lambs during pre-weaning period[J]. Animal Feed Science and Technology, 2017, 230: 77-86. DOI:10.1016/j.anifeedsci.2017.06.002
[89]
赵健康, 张俐华, 郭金梁, 等. 添喂谷氨酰胺、丁酸钠对哺乳中后期羔羊生长的影响[J]. 新疆农业科学, 2013, 50(1): 154-157.
[90]
WANAT P, GÓRKA P, KOWALSKI Z M. Short communication:effect of inclusion rate of microencapsulated sodium butyrate in starter mixture for dairy calves[J]. Journal of Dairy Science, 2015, 98(4): 2682-2686. DOI:10.3168/jds.2014-8482
[91]
SERBESTER U, ÇAKMAKÇI C, GÖNCÜ S, et al. Effect of feeding starter containing butyrate salt on pre-and post-weaning performance of early or normally weaned calves[J]. Revue de Médecine Vétérinaire, 2014, 165(1/2): 44-48.
[92]
MCCURDY D E, WILKINS K R, HILTZ R L, et al. Effects of supplemental butyrate and weaning on rumen fermentation in Holstein calves[J]. Journal of Dairy Science, 2019, 102(10): 8874-8882. DOI:10.3168/jds.2019-16652
[93]
GÓRKA P, KOWALSKI Z M, PIETRZAK P, et al. Effect of sodium butyrate supplementation in milk replacer and starter diet on rumen development in calves[J]. Journal of Physiology and Pharmacology, 2009, 60(Suppl.3): 47-53.
[94]
ROH S, KIMURA N, SAKAMOTO K, et al. Effects of butyrate supplementation in antibiotic-free milk replacer and starter on growth performance in suckling calves[J]. Animal Science Journal, 2018, 89(10): 1486-1491. DOI:10.1111/asj.13096