在养猪业发展日益规模化、集约化的趋势下,饲养环境中的各种不利因素,如应激、感染和炎症等,都会影响仔猪的健康状况,并最终降低动物的生长性能,同时会对动物的胴体品质造成很大的影响[1]。因此,通过添加氨基酸和植物多酚等营养素来进行营养调控,可以有效地缓解仔猪免疫应激。
香菇多糖是一种取自香菇的菌丝体或子实体的葡聚糖,有很高的药用价值。有研究表明,香菇多糖可以作为一种有效的免疫调节药物,用于治疗肠道癌症[2-3]和细菌、病毒或真菌感染引起的疾病[4-5]。刘国欣等[6]研究指出,香菇多糖可有效提高小鼠体内T淋巴细胞活性,并通过促进T淋巴细胞增殖来达到调节免疫的作用。本课题组已有研究表明,香菇多糖能有效地缓解脂多糖(LPS)刺激导致的仔猪肠道免疫应激反应,降低肠道损伤[7]。
骨骼肌是机体蛋白质含量最丰富的组织之一,因此蛋白质的合成与提高肌肉的质量直接相关[8]。而LPS刺激机体会使动物产生免疫应激,进而引发炎症反应,后者会阻碍肌肉蛋白质的合成并加速其降解,最终导致肌肉组织的萎缩[9]。与炎症反应密切相关的Toll受体4(TLR4)和核苷酸结合寡聚化结构域(NOD)信号通路,在炎症反应中扮演着重要的角色[10]。TLR4是机体固有免疫的一个重要组成部分,其与髓样分化蛋白88(MyD88)相互作用可启动核转录因子-κB(NF-κB)活化,使机体产生天然免疫和炎症反应[11]。NOD1和NOD2也可以激活促炎性细胞因子的释放,而这些促炎性细胞因子还抑制丝氨酸/苏氨酸蛋白激酶(Akt)活性,并激活泛素-蛋白酶体途径(UPP),使肌肉蛋白质部分降解[12]。因此,本试验的目的是通过LPS应激建立断奶仔猪肌肉损伤模型,研究香菇多糖对LPS刺激断奶仔猪肌肉组织TLR4、NOD和Akt/叉头转录因子(FOXO)信号通路的影响,旨在为缓解仔猪断奶应激提供一定的理论基础。
1 材料与方法 1.1 试验材料香菇多糖:纯度为50%,另外的50%主要是植物纤维载体;LPS:来源于大肠杆菌(Escherichia coli)055 : B5,纯度>97%。
1.2 试验动物与设计试验选取24头体重(7.84±0.21) kg的健康三元杂交断奶仔猪,按照体重近似原则随机分为2组:对照组(12头)和香菇多糖组(12头)。对照组饲喂基础饲粮,香菇多糖组饲喂基础饲粮+0.02%香菇多糖。饲喂28 d后,每组选取6只猪腹膜注射100 μg/kg BW的LPS,另6只则注射等量的0.9%生理盐水,4 h后将猪麻醉、屠宰,取肌肉样品待测。
1.3 试验饲粮试验采用玉米-豆粕型基础饲粮,其组成及营养水平参见汪龙梅等[7]。其中消化能为14.0 MJ/kg,粗蛋白质含量为20.2%,钙含量为0.9%,总磷含量为0.7%,且饲粮中没有添加抗生素。
1.4 饲养管理试验期间,同组每2头仔猪饲养于同一笼,笼大小为1.8 m×1.1 m×1.0 m,猪舍温度控制在25~27 ℃,保持猪舍清洁和通风。基础饲粮采用粉料饲喂,饲养过程中仔猪自由采食和饮水。
1.5 样品采集LPS或生理盐水注射4 h后,屠宰仔猪,取背最长肌和腓肠肌样品,并立即放入液氮,然后储存在-80 ℃冰箱中等待进一步分析。
1.6 肌肉中TLR4、NOD以及Akt/FOXO信号通路相关基因mRNA表达量的测定肌肉中TLR4、NOD以及Akt/FOXO信号通路相关基因mRNA表达量的具体测定方法参照陈少魁等[13]的文章,所用引物序列见表 1。
![]() |
表 1 基因的引物序列 Table 1 Primer sequences of genes |
试验数据采用SPSS 22.0统计软件进行双因素方差分析,模型主效应包括香菇多糖处理、LPS处理以及两者的互作效应。统计结果用平均值和均值标准误(SEM)表示。P < 0.05表示具有差异显著,当有互作效应时,采用Duncan氏法进行多重比较。
2 结果与分析 2.1 香菇多糖对LPS刺激仔猪肌肉中TLR4和NOD信号通路关键基因的mRNA表达量的影响由表 2、表 3可知,LPS应激导致仔猪背最长肌和腓肠肌中TLR4、MyD88、NOD2、RIPK2和TNF-α的mRNA表达量显著上调(P < 0.05),同时腓肠肌中NF-κB的mRNA表达量也显著上调(P < 0.05)。而添加香菇多糖后,背最长肌中MyD88、TNF-α和腓肠肌中TLR4、RIPK2、NF-κB的mRNA表达量显著上调(P < 0.05)。香菇多糖和LPS对背最长肌中MyD88和NOD1以及腓肠肌中TLR4、RIPK2和NF-κB的mRNA表达量的影响具有互作效应(P < 0.05),即香菇多糖会提高注射LPS的仔猪肌肉中这些关键基因的mRNA表达量,而对于注射生理盐水的仔猪则没有这种效应。
![]() |
表 2 香菇多糖对LPS刺激仔猪背最长肌中TLR4和NOD信号通路关键基因的mRNA表达量的影响 Table 2 Effects of lentinan on mRNA expression levels of key genes in TLR4 and NOD signaling pathways in longissimus dorsi muscle of LPS-challenged piglets |
![]() |
表 3 香菇多糖对LPS刺激仔猪腓肠肌中TLR4和NOD信号通路关键基因的mRNA表达量的影响 Table 3 Effects of lentinan on mRNA expression levels of key genes in TLR4 and NOD signaling pathways in gastrocnemius muscle of LPS-challenged piglets |
由表 4可知,LPS应激导致仔猪背最长肌和腓肠肌中FOXO1和MuRF1的mRNA表达量显著上调(P < 0.05),Akt1的mRNA表达量显著下调(P < 0.05)。而添加香菇多糖后,腓肠肌中MAFbx的mRNA表达量显著下调(P < 0.05)。
![]() |
表 4 香菇多糖对LPS刺激仔猪肌肉中Akt/FOXO信号通路关键基因的mRNA表达量的影响 Table 4 Effects of lentinan on mRNA expression levels of key genes in Akt/FOXO signaling pathway in muscle of LPS-challenged piglets |
本试验采用LPS刺激仔猪建立肌肉损伤模型,这是目前比较成熟的组织损伤模型建立方法[11]。LPS是革兰氏阴性菌的细胞壁成分,可导致仔猪全身或局部免疫系统被激活,促进炎性细胞因子大量产生,导致机体发生强烈的炎症反应[4, 11]。研究发现香菇多糖能通过加强巨噬细胞的吞噬活性和促进TNF-α的分泌,对免疫反应发挥调控作用[5-6]。因此,推测香菇多糖可能会对LPS刺激引起的肌肉损伤过程有积极作用。
TLR4和NOD在调节宿主天然免疫反应中起着关键作用。TLR4和NOD及其下游因子是炎症信号通路的重要组成成员,可通过识别病原分子相关模式(PAMPs)(如LPS、肽聚糖)在检测入侵病原体和诱导先天性和适应性免疫反应方面发挥重要作用[14]。TLR4或NOD与其特异性PAMPs的结合触发多种细胞内信号传导途径,会激活NF-κB,从而导致促炎性细胞因子的大量释放,引发炎症[11]。在本试验中,断奶仔猪TLR4及其下游信号分子(MyD88、NF-κB)、NOD及其下游信号分子(RIPK2)和促炎性细胞因子TNF-α在背最长肌和腓肠肌中的mRNA表达量在LPS刺激后显著上调,同时腓肠肌中NF-κB的mRNA表达量也显著上调;而在饲粮中添加0.02%香菇多糖后,背最长肌中MyD88和TNF-α及腓肠肌中TLR4、RIPK2和NF-κB的mRNA表达量显著上调;并且,LPS和香菇多糖对背最长肌中MyD88和NOD1以及腓肠肌中TLR4、RIPK2和NF-κB的mRNA表达量的影响具有互作效应,即香菇多糖会提高注射LPS仔猪肌肉中这些关键基因的mRNA表达量,而对于注射生理盐水的仔猪则没有这种效应。上述结果表明,在应激急性期,香菇多糖可能通过刺激TLR4和NOD信号通路上调促炎性细胞因子的表达来增强免疫系统的防御力,发挥保护机体的作用。Murata等[15]研究发现香菇多糖可以诱导促炎性细胞因子的产生。Ahn等[16]也发现香菇多糖会上调促炎性细胞因子的表达,并通过TLR4信号通路诱导炎性体相关基因的表达。这与本研究所得结果基本一致。同时,Ahn等[16]研究发现香菇多糖可增强炎性细胞因子和炎性成分的表达,并降低黑色素瘤缺乏因子2(AIM2)和非典型炎性体的激活,可用于靶向炎性体的理想免疫调节剂。也就是说,香菇多糖会通过提高炎性细胞因子的表达来增强宿主免疫系统。
此外,LPS与TLR4/髓样分化蛋白2(MD2)相互作用在引发炎症反应的同时,还会介导Akt/FOXO/UPP信号通路,并导致肌肉萎缩[17]。在UPP途径中,MAFbx和MuRF1被认为是肌肉蛋白质降解的关键调控因子[18]。Akt是胰岛素信号转导的关键蛋白,它能诱导蛋白质合成,从而导致骨骼肌的增大、增生[8]。Akt也会诱导FOXO转录因子磷酸化失活,以抑制MAFbx和MuRF1的转录,从而减少细胞内特定蛋白质的降解[19]。在本试验中,LPS注射4 h后,背最长肌中Akt1的mRNA表达量显著下调,同时背最长肌和腓肠肌中FOXO1和MuRF1的mRNA表达量显著上调;而在饲粮中添加0.02%香菇多糖后,腓肠肌中MAFbx的mRNA表达量显著下调。这表明香菇多糖对肌肉萎缩的抑制作用可能是通过抑制LPS诱导的Akt/FOXO信号通路的激活,进而抑制UPP途径来缓解肌肉萎缩。
4 结论在断奶仔猪饲粮中添加0.02%香菇多糖可促进LPS刺激导致的断奶仔猪肌肉组织中TLR4和NOD信号通路的激活,这说明香菇多糖在应激急性期能在一定程度上通过增强炎症反应来加强免疫,同时通过激活Akt/FOXO信号通路,抑制肌肉蛋白质的降解。
[1] |
CHEN F, LIU Y L, ZHU H L, et al. Fish oil attenuates liver injury caused by LPS in weaned pigs associated with inhibition of TLR4 and nucleotide-binding oligomerization domain protein signaling pathways[J]. Innate Immunity, 2013, 19(5): 504-515. |
[2] |
WANG Y, HAN X, LI Y D, et al. Effects of tumor-specific antigen induced by lentinan on murine H22 hepatocellular carcinoma immunoprophylaxis[J]. European Review for Medical and Pharmacological Sciences, 2015, 19(23): 4516-4524. |
[3] |
INA K, KATAOKA T, ANDO T. The use of lentinan for treating gastric cancer[J]. Anti-Cancer Agents in Medicinal Chemistry, 2013, 13(5): 681-688. |
[4] |
侯爱萍, 张树梅. 香菇多糖抗菌抗病毒普适性研究[J]. 药学研究, 2015, 34(4): 199-201. |
[5] |
艾亮, 王晓东. 香菇多糖联合云芝糖肽对Lewis肺癌小鼠免疫调节与抗肿瘤作用的研究[J]. 新中医, 2019, 51(1): 12-17. |
[6] |
刘国欣, 邢建国, 李明春, 等. 香菇多糖对小鼠T淋巴细胞膜上离子通道基因表达的影响[J]. 中国药房, 2014, 25(15): 1361-1364. |
[7] |
汪龙梅.香菇多糖对脂多糖刺激的断奶仔猪肠道损伤的调控作用[D].硕士学位论文.武汉: 武汉轻工大学, 2018.
|
[8] |
FANZANI A, CONRAADS V M, PENNA F, et al. Molecular and cellular mechanisms of skeletal muscle atrophy:an update[J]. Journal of Cachexia, Sarcopenia and Muscle, 2012, 3(3): 163-179. |
[9] |
ORELLANA R A, SURYAWAN A, WILSON F A, et al. Development aggravates the severity of skeletal muscle catabolism induced by endotoxemia in neonatal pigs[J]. American Journal of Physiology:Regulatory, Integrative and Comparative Physiology, 2012, 302(6): R682-R690. DOI:10.1152/ajpregu.00259.2011 |
[10] |
陈逢.鱼油通过TLR4和NOD信号通路对脂多糖诱导的仔猪肠道、肝脏损伤和肌肉蛋白质降解的调控作用[D].硕士学位论文.武汉: 武汉轻工大学, 2013.
|
[11] |
CHEN S K, LIU Y L, WANG X Y, et al. Asparagine improves intestinal integrity, inhibits TLR4 and NOD signaling, and differently regulates p38 and ERK1/2 signaling in weanling piglets after LPS challenge[J]. Innate Immunity, 2016, 22(8): 577-587. |
[12] |
FUKATA M, VAMADEVAN A S, ABREU M T. Toll-like receptors (TLRs) and NOD-like receptors (NLRs) in inflammatory disorders[J]. Seminars in Immunology, 2009, 21(4): 242-253. |
[13] |
陈少魁, 刘玉兰, 李权, 等. 脂多糖刺激对仔猪下丘脑-垂体-肾上腺轴Toll样受体4信号通路关键基因表达的影响[J]. 动物营养学报, 2014, 26(11): 3356-3361. |
[14] |
TAKEUCHI O, AKIRA S. Pattern recognition receptors and inflammation[J]. Cell, 2010, 140(6): 805-820. |
[15] |
MURATA Y, SHIMAMURA T, TAGAMI T, et al. The skewing to Th1 induced by lentinan is directed through the distinctive cytokine production by macrophages with elevated intracellular glutathione content[J]. International Immunopharmacology, 2002, 2(5): 673-689. |
[16] |
AHN H, JRON E, KIM J C, et al. Lentinan from shiitake selectively attenuates AIM2 and non-canonical inflammasome activation while inducing pro-inflammatory cytokine production[J]. Scientific Reports, 2017, 7: 1314. DOI:10.1038/s41598-017-01462-4 |
[17] |
LAUFENBERG L J, PRUZNAK A M, NAVARATNARAJAH M, et al. Sepsis-induced changes in amino acid transporters and leucine signaling via mTOR in skeletal muscle[J]. Amino Acids, 2014, 46(12): 2787-2798. |
[18] |
DEHOUX M, VAN BENEDEN R, PASKO N, et al. Role of the insulin-like growth factor Ⅰ decline in the induction of atrogin-1/MAFbx during fasting and diabetes[J]. Endocrinology, 2004, 145(11): 4806-4812. DOI:10.1210/en.2004-0406 |
[19] |
KANG P, WANG X Y, WU H T, et al. Glutamate alleviates muscle protein loss by modulating TLR4, NODs, Akt/FOXO and mTOR signaling pathways in LPS-challenged piglets[J]. PLoS One, 2017, 12(8): e0182246. DOI:10.1371/journal.pone.0182246 |