





二
二
二

目前,对生鲜乳中二
上述研究结果表明,不同种类奶产品中二

二
TCDD对生殖系统的毒性作用研究较多,但作用机制不完全一致。谭雪梅[21]研究表明,母体宫内暴露TCDD可导致雄性仔鼠生殖功能降低,抑制睾丸组织细胞增殖并诱导其凋亡,导致睾丸组织细胞增殖-凋亡失衡。分析其作用机制可能是睾丸组织细胞增殖-凋亡失衡与其细胞凋亡的线粒体通路被激活有关。殷俊[22]研究表明,TCDD能抑制大鼠睾丸间质细胞增殖,进而诱导其凋亡,同时可以增加细胞内活性氧(ROS)含量;可能的作用机制是其上调促凋亡蛋白B淋巴细胞瘤-2相关X蛋白(Bax)表达,下调抑凋亡蛋白B细胞淋巴瘤因子2(Bcl-2)表达,激活半胱氨酸蛋白酶3(Caspase-3)表达,进一步导致大鼠睾丸间质细胞凋亡;研究还表明,雌性子代大鼠母体TCDD暴露可影响卵巢功能和发育,改变子代大鼠卵巢重量、雌二醇(E2)和促卵泡激素(FSH)浓度、发情周期、原始卵泡和次级卵泡数及黄体数量。其作用机制可能是下调生长分化因子9(GDF9)和骨形态发生蛋白15(BMP15)mRNA及蛋白表达,同时与印迹基因[(H19和胰岛素样生长因子-2(IGF-2)]mRNA表达下调有关[23-24]。Orlowska等[25]通过对猪颗粒细胞蛋白质组研究表明,经TCDD处理的颗粒细胞中共发现75个差异表达蛋白质点;TCDD处理3、12和24 h后,分别鉴定出29、34和12个斑点;功能分析表明,细胞骨架蛋白是TCDD在所有作用时间点中影响最大的一类蛋白质,因此推测TCDD可能通过细胞骨架和细胞外基质重排以及调节对细胞应激反应重要蛋白质来影响卵泡功能和发育。Jin等[26]研究表明,TCDD处理怀孕大鼠可以提高睾丸细胞凋亡和睾丸促炎细胞因子白细胞介素(IL)-1β、IL-18、IL-12含量,推测TCDD可能通过Klotho/PDLIM2/p65途径影响细胞中促炎细胞因子分泌,从而增加睾丸炎症反应,影响睾丸微环境,诱导生殖细胞凋亡。沈斌等[27]研究表明,TCDD暴露导致成年男性类固醇激素中性激素变化异常。
2.2 TCDD的致癌作用研究表明,TCDD具有致癌作用,主要通过芳香烃受体(aryl hydrocarbon receptor,AhR)信号通路调控。AhR是一种配体激活转录因子,在多种肿瘤细胞中表达,调节信号转导途径中基因表达。Wu等[28]研究了AhR在绒毛膜癌肿瘤干细胞(cancer stem cells,CSCs)中的作用及其机制。研究表明,AhR在绒毛膜癌CSCs球形细胞中表达和核移位明显增加。TCDD激活AhR可显著提高细胞球形形成效率、抗化疗能力和形成肿瘤细胞移植能力,而敲除AhR可显著降低肿瘤干细胞特性。可能的作用机制是,激活β连环蛋白路径可能是AhR调节CSCs特性的重要生物学功能,且CSCs中起重要作用的ABCG2也是AhR直接靶点。Masoudi等[29]对123个(59个为胰腺导管腺癌患者,64个为健康对照者)血浆样本中AhR含量进行了研究,结果表明,患病组血浆中AhR含量平均值是0.28 ng/mL,与健康对照组血浆中AhR含量(0.07 ng/mL)有显著差异。该研究结果可为AhR胰腺癌的诊断提供依据。Vogel等[30]研究表明,在过度表达芳香烃受体阻遏物(aryl hydrocarbon receptor repressor,AhRR)的转基因小鼠中,通过皮下攻击小鼠淋巴瘤细胞(mouse lymphoma cells,EL4)后抑制了TCDD和炎症诱导的肿瘤生长;进一步通过小鼠胚胎成纤维细胞(mouse embryonic fibroblasts,MEF)研究表明,AhRR介导的细胞凋亡抑制与IL-1β和环氧合酶(COX)-2表达抑制有关,后者依赖于蛋白激酶A(PKA)和CAAT增强剂结合蛋白β(C/EBPβ)的激活。上述结果为AhRR抑制炎症作用的机制提供了参考依据,并强调了AhRR是抑制肿瘤生长的潜在治疗靶点;Yang等[31]研究表明,TCDD对小鼠胚胎干细胞(mouse embryonic stem cells,MESCs)具有致癌作用,其作用机制可能是TCDD显著上调MESCs中细胞色素P4501A1(cytochrome P4501A1,CYP1A1)转录水平,提高MESCs衍生畸胎瘤的恶性转化率,并在肿瘤组织连续培养中产生无限期增殖能力。然而,对TCDD致癌作用也有相反研究结果。Yamaguchi等[32]通过体外培养人结直肠癌细胞RKO细胞研究TCDD作用,发现0.1~100.0 nmol/L的TCDD抑制了RKO细胞的形成和增殖,并促进细胞死亡;进一步研究表明,预处理AhR信号抑制剂CH223191消除了TCDD这些作用。可能的作用机制是TCDD降低了AhR含量,提高了CYP1A1含量,增加了核因子-κB p65和β-连环蛋白水平,同时增加了致癌抑制剂p53、视网膜母细胞瘤、p21和调节钙素水平。研究结果表明,TCDD刺激AhR信号传导,AhR信号传导抑制结直肠癌细胞生长,也表明AhR是结直肠癌一个重要靶向分子;Danjou等[33]通过对429例乳腺癌病例和716例健康对照组病例进行研究,包括对参与者的居住史、222个二
研究表明,二
进一步研究表明,TCDD激活AhR对小鼠胚胎成骨细胞前体细胞MC3T3-E1细胞增殖和分化有剂量依赖性抑制作用。激活AhR会促进细胞外调节蛋白激酶(extracellular regulated protein kinases,ERK)磷酸化,AhR剂量依赖性激活ERK信号通路降低了MC3T3-E1细胞增殖水平,抑制ALP活性。研究结果提示,AhR高表达可能通过激活ERK信号通路抑制成骨细胞增殖和分化,进一步导致CIA小鼠骨侵蚀。Cedervall等[36]通过胎鼠跖骨培养模型,研究TCDD对骨生长影响,结果表明,1 pmol/L~10 nmol/L的TCDD均没有影响骨生长,推测可能原因是虽然AhR在生长板中广泛表达,但局部激活不调控骨生长。因此,TCDD诱导生长衰竭可能是通过全身而非局部作用介导。Fader等[37]研究表明,给雄性和雌性幼鼠胃里灌注0.01~30.00 μg/kg的TCDD,剂量依赖性增加了雄性和雌性骨小梁体积分数(bone volume fraction,BVF),分别增加了2.9和3.3倍,降低血清抗酒石酸酸性磷酸酶(tartrate resistant acid phosphatase,TRAP)活性及破骨细胞表面与骨表面比率,抑制组织蛋白酶K(cathepsin K,CatK)和基质金属蛋白酶13(matrix metalloprotease,MMP13)活性,提示TCDD损害骨吸收。骨小梁表面成骨细胞数量增加与骨髓脂肪细胞数量减少表明,AhR激活可能直接导致间充质干细胞向成骨细胞而不是脂肪细胞分化。TCDD可剂量依赖性诱导成骨细胞分化和矿化阳性调节因子跨膜糖蛋白NMB在股骨表达,其表达量可增加18.8倍。本研究结果表明,AhR激活使骨重塑平衡向成骨方向倾斜,导致骨量增加,骨髓脂肪减少。
2.4 TCDD诱发腭裂TCDD诱发腭裂研究报道较多。Gao等[38]研究报道,采用TCDD诱导妊娠第13天C57BL/6J小鼠胚胎腭间充质(mouse embryonic palate mesenchymal,MEPM)细胞,结果表明,TCDD抑制MEPM细胞生长和迁移,增加细胞凋亡,抑制细胞从G1期向S期发展,并减少进入G2/M期细胞趋势。TCDD在蛋白质水平上抑制细胞周期蛋白E(cyclin E)和细胞周期蛋白依赖性激酶2(cyclin-dependent kinase 2,CDK2)表达,增加p16和p21蛋白表达。此研究结果表明,TCDD可通过改变MEPM细胞诱导腭裂。Gao等[39]给妊娠第10天C57BL/6J小鼠口服64 μg/kg的TCDD,在妊娠第13、14和15天分析腭部长链非编码RNA(IncRNA)H19和IGF-2表达水平,结果表明,IncRNA H19表达水平比对照组分别高(1.99±0.23)倍、(4.52±0.21)倍和(1.36±0.33)倍,而IGF-2基因表达水平与IncRNA H19相反,均低于对照组,且比对照组分别降低(0.52±0.42)倍、(0.24±0.16)倍和(0.49±0.22)倍。此研究结果表明,IncRNA H19可能是TCDD诱发腭裂潜在指标。Wang等[40]研究报道,给妊娠第10.5天C57BL/6J小鼠注射28 μg/kg TCDD,分别于妊娠第13.5、14.5和15.5天采集腭部,分析DNA甲基化、DNA甲基转移酶(DNMTs)和DNMTs启动子CpG甲基化表达水平,结果表明,TCDD组DNA甲基化水平和DNMT3a表达水平高于对照组,但是DNMT3a启动子区CpG位点2甲基化表达水平降低,导致DNMT3a表达上调,可能导致胎儿腭组织整体甲基化,这种异常甲基化可能是TCDD诱发胎鼠腭部畸形原因。相似研究报道表明,用相同剂量64 μg/kg的TCDD处理妊娠第10.5天C57BL/6J小鼠,随后在妊娠第13.5、14.5、15.5和17.5天采集胎儿腭部,分析DNMTs和甲基-CpG结合域蛋白(MBDs)表达水平,结果表明,TCDD组腭裂发生率为98.24%,对照组无腭裂发生,且TCDD组DNMTs和MBDs表达水平显著高于对照组,提示腭裂发生可能与DNMTs和MBDs有关[41]。雷俊秋等[42]研究表明,给妊娠第10.5天C57BL/6J胎鼠单次灌胃TCDD,灌注剂量为28 μg/kg,在妊娠第13.5、14.5、15.5、16.5和17.5天处死孕鼠,结果表明,TCDD诱导胎鼠均发生腭裂,发生率为100%,且可能与γ-氨基丁酸A型受体β3亚基(GABRB3)降低有关。
2.5 TCDD的其他毒性除上述毒性作用,TCDD还有其他一些毒性作用。Nghiem等[43]研究暴露于二
TCDD具有特有的物理和化学特性,很容易在食物链中积累。人类暴露于TCDD主要途径是通过饮食摄入,生鲜乳也是饮食摄入的主要来源,降低生鲜乳中TCDD的含量主要通过防控动物饲料污染。TCDD等二
目前,我国还未对生鲜乳中TCDD等二
[1] |
COVACI A, RYAN J J, SCHEPENS P. Patterns of PCBs and PCDD/PCDFs in chicken and pork fat following a Belgian food contamination incident[J]. Chemosphere, 2002, 47(2): 207-217. DOI:10.1016/S0045-6535(01)00191-6 |
[2] |
MALISCH R. Increase of the PCDD/F-contamination of milk, butter and meat samples by use of contaminated citrus pulp[J]. Chemosphere, 2000, 40(9/10/11): 1041-1053. |
[3] |
HOOGENBOOM R, BOVEE T, PORTIER L, et al. The German bakery waste incident; use of a combined approach of screening and confirmation for dioxins in feed and food[J]. Talanta, 2004, 63(5): 1249-1253. DOI:10.1016/j.talanta.2004.05.046 |
[4] |
US EPA.Tetra-through octa-chlorinated dioxins and furans by isotope dilution HRGC/HRMS[R].Method 1613, Washington, D.C.: U.S. Environmental Protection Agency Office of Water, Engineering and Analysis Division, 1994: 1-86.
|
[5] |
中华人民共和国国家卫生和计划生育委员会.GB 5009.205-2013食品中二( |
[6] |
HARRISON R O, CARLSON R E. An immunoassay for TEQ screening of dioxin/furan samples:current status of assay and applications development[J]. Chemosphere, 1997, 34(5/6/7): 915-928. |
[7] |
ENGWALL M, BRUNSTRÖM B, NÄF C, et al. Levels of dioxin-like compounds in sewage sludge determined with a bioassay based on EROD induction in chicken embryo liver cultures[J]. Chemosphere, 1999, 38(10): 2327-2343. DOI:10.1016/S0045-6535(98)00437-8 |
[8] |
MURK A J, LEGLER J, DENISON M S, et al. Chemical-activated luciferase gene expression (CALUX):a novel in vitro bioassay for Ah receptor active compounds in sediments and pore water[J]. Fundamental and Applied Toxicology, 1996, 33(1): 149-160. DOI:10.1006/faat.1996.0152 |
[9] |
常文保, 王敏灿, 张柏林, 等. 稀土螯合物探针及其在时间分辨荧光免疫分析中的应用[J]. 大学化学, 1997, 12(1): 1-6. |
[10] |
RAMOS L, ELJARRAT E, HERNÁNDEZ L M, et al. Levels of PCDDs and PCDFs in farm cow's milk located near potential contaminant sources in Asturias (Spain).Comparison with levels found in control, rural farms and commercial pasteurized cow's milks[J]. Chemosphere, 1997, 35(10): 2167-2179. DOI:10.1016/S0045-6535(97)00295-6 |
[11] |
DURAND B, DUFOUR B, FRAISSE D, et al. Levels of PCDDs, PCDFs and dioxin-like PCBs in raw cow's milk collected in France in 2006[J]. Chemosphere, 2008, 70(4): 689-693. DOI:10.1016/j.chemosphere.2007.06.057 |
[12] |
KIM D G, KIM M, JANG J H, et al. Monitoring of environmental contaminants in raw bovine milk and estimates of dietary intakes of children in South Korea[J]. Chemosphere, 2013, 93(3): 561-566. DOI:10.1016/j.chemosphere.2013.06.055 |
[13] |
PIZARRO-ARÁNGUIZ N, GALBÁN-MALAGÓN C J, RUIZ-RUDOLPH P, et al. Occurrence, variability and human exposure to polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs) and dioxin-like polychlorinated biphenyls (DL-PCBs) in dairy products from Chile during the 2011-2013 survey[J]. Chemosphere, 2015, 126: 78-87. DOI:10.1016/j.chemosphere.2014.10.087 |
[14] |
ROCHA D A M, TORRES J P M, REICHEL K, et al. Determination of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in Brazilian cow milk[J]. Science of the Total Environment, 2016, 572: 177-184. DOI:10.1016/j.scitotenv.2016.07.179 |
[15] |
FVRST P, KRAUSE G H M, HEIN D, et al. PCDD/PCDF in cow's milk in relation to their levels in grass and soil[J]. Chemosphere, 1993, 27(8): 1349-1357. DOI:10.1016/0045-6535(93)90229-X |
[16] |
SCHULER F, SCHMID P, SCHLATTER C. Transfer of airborne polychlorinated dibenzo-p-dioxins and dibenzofurans into dairy milk[J]. Journal of Agricultural and Food Chemistry, 1997, 45(10): 4162-4167. DOI:10.1021/jf970248g |
[17] |
APPELBE T W, SNIHUR N A, DINEEN C, et al. Point-to-point modelling:an application to Canada-Canada and Canada-United States long distance calling[J]. Information Economics and Policy, 1988, 3(4): 311-331. DOI:10.1016/0167-6245(88)90030-3 |
[18] |
HOOGENBOOM R L A P, KLOP A, HERBES R, et al. Carry-over of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and polychlorinated biphenyls (PCBs) in dairy cows fed smoke contaminated maize silage or sugar beet pulp[J]. Chemosphere, 2015, 137: 214-220. DOI:10.1016/j.chemosphere.2015.07.040 |
[19] |
HOOGENBOOM L, HOFFER S, MENNEN M, et al. Dioxins formed during fires, a threat to the food chain?[J]. Organohalogen Compd, 2012, 74(1): 1600-1603. |
[20] |
KOGEVINAS M. Human health effects of dioxins:cancer, reproductive and endocrine system effects[J]. APMIS, 2001, 109(Suppl.103): S223-S232. |
[21] |
谭雪梅.宫内暴露TCDD对雄性子代生殖功能及睾丸细胞凋亡的影响及机制[D].硕士学位论文.郑州: 郑州大学, 2019.
|
[22] |
殷俊.TCDD对大鼠睾丸间质细胞凋亡的影响及其机制[D].硕士学位论文.郑州: 郑州大学, 2017. http://cdmd.cnki.com.cn/Article/CDMD-10459-1017129079.htm
|
[23] |
ZHANG X L, JI M M, TAN X M, et al. Impairment of ovaries by 2, 3, 7, 8-tetrachlorobenzo-p-dioxin (TCDD) exposure in utero associated with BMP15 and GDF9 in the female offspring rat[J]. Toxicology, 2018, 410: 16-25. DOI:10.1016/j.tox.2018.08.015 |
[24] |
ZHANG X L, JI M M, TAN X M, et al. Role of epigenetic regulation of Igf2 and H19 in 2, 3, 7, 8-Tetrachlorobenzo-p-dioxin (TCDD)-induced ovarian toxicity in offspring rats[J]. Toxicology Letters, 2019, 311: 98-104. DOI:10.1016/j.toxlet.2019.04.034 |
[25] |
ORLOWSKA K, SWIGONSKA S, SADOWSKA A, et al. The effects of 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin on the proteome of porcine granulosa cells[J]. Chemosphere, 2018, 212: 170-181. DOI:10.1016/j.chemosphere.2018.08.046 |
[26] |
JIN M H, LOU J, YU H H, et al. Exposure to 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin promotes inflammation in mouse testes:the critical role of Klotho in Sertoli cells[J]. Toxicology Letters, 2018, 295: 134-143. DOI:10.1016/j.toxlet.2018.06.001 |
[27] |
沈斌, 施丽丽, 董晶剑, 等. 二( ![]() |
[28] |
WU C C, YU S R, TAN Q X, et al. Role of AhR in regulating cancer stem cell-like characteristics in choriocarcinoma[J]. Cell Cycle, 2018, 17(18): 2309-2320. DOI:10.1080/15384101.2018.1535219 |
[29] |
MASOUDI S, HASSANZADEH A, FAZLI H R, et al. An increased level of aryl hydrocarbon receptor in patients with pancreatic cancer[J]. Middle East Journal of Digestive Diseases, 2019, 11(1): 38-44. |
[30] |
VOGEL C F A, ISHIHARA Y, CAMPBELL C E, et al. A protective role of aryl hydrocarbon receptor repressor in inflammation and tumor growth[J]. Cancers, 2019, 11(5): 589. DOI:10.3390/cancers11050589 |
[31] |
YANG X X, KU T T, SUN Z D, et al. Assessment of the carcinogenic effect of 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin using mouse embryonic stem cells to form teratoma in vivo[J]. Toxicology Letters, 2019, 312: 139-147. DOI:10.1016/j.toxlet.2019.05.012 |
[32] |
YAMAGUCHI M, HANKINSON O. 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin suppresses the growth of human colorectal cancer cells in vitro:implication of the aryl hydrocarbon receptor signaling[J]. International Journal of Oncology, 2019, 54(4): 1422-1432. |
[33] |
DANJOU A M N, COUDON T, PRAUD D, et al. Long-term airborne dioxin exposure and breast cancer risk in a case-control study nested within the French E3N prospective cohort[J]. Environment International, 2019, 124: 236-248. DOI:10.1016/j.envint.2019.01.001 |
[34] |
HERLIN M, FINNILA M A J, ZIOUPOS P, et al. New insights to the role of aryl hydrocarbon receptor in bone phenotype and in dioxin-induced modulation of bone microarchitecture and material properties[J]. Toxicology and Applied Pharmacology, 2013, 273(1): 219-226. |
[35] |
YU H T, DU Y X, ZHANG X L, et al. The aryl hydrocarbon receptor suppresses osteoblast proliferation and differentiation through the activation of the ERK signaling pathway[J]. Toxicology and Applied Pharmacology, 2014, 280(3): 502-510. DOI:10.1016/j.taap.2014.08.025 |
[36] |
CEDERVALL T, LIND P M, SÄVENDAHL L. Expression of the aryl hydrocarbon receptor in growth plate cartilage and the impact of its local modulation on longitudinal bone growth[J]. International Journal of Molecular Sciences, 2015, 16(4): 8059-8069. |
[37] |
FADER K A, NAULT R, RAEHTZ S, et al. 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin dose-dependently increases bone mass and decreases marrow adiposity in juvenile mice[J]. Toxicology and Applied Pharmacology, 2018, 348: 85-98. DOI:10.1016/j.taap.2018.04.013 |
[38] |
GAO L Y, WANG Y, YAO Y C, et al. 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin mediated cleft palate by mouse embryonic palate mesenchymal cells[J]. Archives of Oral Biology, 2016, 71: 150-154. DOI:10.1016/j.archoralbio.2016.08.002 |
[39] |
GAO L Y, ZHANG F Q, ZHAO W H, et al. LncRNA H19 and target gene-mediated cleft palate induced by TCDD[J]. Biomedical and Environmental Sciences, 2017, 30(9): 676-680. |
[40] |
WANG C, YUAN X G, LIU C P, et al. Preliminary research on DNA methylation changes during murine palatogenesis induced by TCDD[J]. Journal of Cranio-Maxillofacial Surgery, 2017, 45(5): 678-684. DOI:10.1016/j.jcms.2017.02.004 |
[41] |
ZHANG W, ZHOU S S, GAO Y W, et al. Alterations in DNA methyltransferases and methyl-CpG binding domain proteins during cleft palate formation as induced by 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin in mice[J]. Molecular Medicine Reports, 2018, 17(4): 5396-5401. |
[42] |
雷俊秋, 邱林, 丁雄辉, 等. γ-氨基丁酸A型受体β3亚基在2, 3, 7, 8-四氯二苯并二( ![]() |
[43] |
NGHIEM G T, NISHIJO M, PHAM T N, et al. Adverse effects of maternal dioxin exposure on fetal brain development before birth assessed by neonatal electroencephalography (EEG) leading to poor neurodevelopment; a 2-year follow-up study[J]. Science of the Total Environment, 2019, 667: 718-729. DOI:10.1016/j.scitotenv.2019.02.395 |
[44] |
OANH N T P, KIDO T, HONMA S, et al. Androgen disruption by dioxin exposure in 5-year-old Vietnamese children:decrease in serum testosterone level[J]. Science of the Total Environment, 2018, 640-641: 466-474. DOI:10.1016/j.scitotenv.2018.05.257 |
[45] |
PANG C F, ZHU C H, ZHANG Y Y, et al. 2, 3, 7, 8-Tetrachloodibenzo-p-dioxin affects the differentiation of CD4 helper T cell[J]. Toxicology Letters, 2019, 311: 49-57. DOI:10.1016/j.toxlet.2019.04.015 |
[46] |
LI Y P, XIE H Q, ZHANG W L, et al. Type 3 innate lymphoid cells are altered in colons of C57BL/6 mice with dioxin exposure[J]. Science of the Total Environment, 2019, 662: 639-645. DOI:10.1016/j.scitotenv.2019.01.139 |
[47] |
ZHA S J, SHI W, SU W H, et al. Exposure to 2, 3, 7, 8-tetrachlorodibenzo-paradioxin (TCDD) hampers the host defense capability of a bivalve species, Tegillarca granosa[J]. Fish & Shellfish Immunology, 2019, 86: 368-373. |