动物营养学报    2021, Vol. 33 Issue (1): 33-45    PDF    
奶牛非饲草来源纤维营养研究进展
吕佳颖 , 王二旦 , 郝阳毅 , 李胜利     
中国农业大学动物科学技术学院, 动物营养学国家重点实验室, 北京市生鲜乳质量安全工程技术研究中心, 北京 100193
摘要: 本文在总结分析国内外最新研究成果的基础上,对非饲草来源纤维(NFFS)对奶牛的营养作用和生理影响及其机理进行了综述,主要从NFFS部分替代饲草对奶牛生产性能、瘤胃草垫层和瘤胃发酵的影响,以及NFFS部分替代精料对饲料效率、生产性能和亚急性瘤胃酸中毒(SARA)奶牛生理的影响等方面进行论述,旨在为NFFS饲料在奶牛饲粮中的科学合理利用提供理论参考和依据。
关键词: 奶牛    非饲草来源纤维    研究进展    生产性能    瘤胃发酵    
Research Progress of Nutrition of Non-Forage Fiber Sources on Dairy Cows
LYU Jiaying , WANG Erdan , HAO Yangyi , LI Shengli     
Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
Abstract: This paper summarized the nutritional function and physiological effects of non-forage fiber sources (NFFS) in a diet on dairy cows, as well as the mechanism by summarizing and analyzing the latest research results of domestic and overseas. The effects of partially replacement of forage with NFFS on performance, ruminal mat and rumen fermentation, meanwhile, the effects of partially replacement of concentrate with NFFS on feed efficiency, performance and physiology of dairy cows with subacute ruminal acidosis (SARA) were discussed, in order to provide a theoretical basis for the scientific and rational utilization of NFFS feeds in dairy cows' diets.
Key words: dairy cows    non-forage fiber sources    research progress    performance    rumen fermentation    

奶牛需要粗饲料维持瘤胃环境稳定、促进胃肠道蠕动、提高乳脂率,同时需要精料满足泌乳的能量需求。但是,我国饲料原料短缺,大豆、优质苜蓿干草和燕麦干草等原料的进口量逐年攀升[1]。在奶牛饲料成本不断升高的现状下,价格低廉的农副产品饲料供应逐渐增加,其中大豆皮、甜菜粕、啤酒糟、柑橘渣和麸皮等饲料中性洗涤纤维(NDF)含量高,可作为奶牛饲粮中除干草、秸秆和青贮外的又一纤维来源,称为非饲草来源纤维(NFFS)。几种常用NFFS饲料的营养水平见表 1。生产中将NFFS称为“短纤维”添加饲喂,其木质素含量较低,可利用NDF含量较高,瘤胃降解率更高,部分替代饲草可以改善饲粮的能量供应,提高奶牛的生产性能[2]。此外,NFFS在瘤胃中降解速率快,替代精料谷物不仅能够维持奶牛的生产性能[3],而且其较高的NDF含量有利于提高瘤胃液pH,降低亚急性瘤胃酸中毒(SARA)风险。但是,NFFS替代饲草会降低饲粮物理有效中性洗涤纤维(peNDF)含量,进而降低瘤胃液pH,增加SARA风险,并降低乳脂率[4]。而NFFS替代精料会降低饲粮淀粉和非纤维性碳水化合物(NFC)含量,并降低奶牛的生产性能[5]。加之NFFS的物理形态和化学组成因其产地和加工方式不同变异较大。因此,明确不同种类和水平的NFFS饲料替代饲草或精料对奶牛健康状况、瘤胃发酵、养分消化率和生产性能的影响十分重要。本文整理分析了国内外关于奶牛饲粮中NFFS的最新研究成果,为探究NFFS对奶牛的营养作用机理提供参考,同时为NFFS在奶牛生产中的科学应用提供理论依据。

表 1 几种常用NFFS饲料的营养水平(干物质基础) Table 1 Nutrient levels of several common NFFS feeds (DM basis)
1 NFFS部分替代饲草对奶牛的影响 1.1 对消化率和干物质采食量(DMI)的影响

相比饲草,NFFS在瘤胃中可以快速降解。大豆皮48 h干物质(DM)和NDF瘤胃降解率分别达72.5%和61.0%,甜菜粕分别为77.6%和69.3%[8],苜蓿干草分别为63.7%和43.5%[22],相比之下其值较低。添加10%、20%或30%(DM基础,下同)大豆皮替代苜蓿干草和玉米青贮可以显著提高奶牛对DM和NDF的表观消化率[23]。同时,小粒度的NFFS可能会通过增加饲料与瘤胃微生物的接触面积提高饲料的消化率[24]

大量粗饲料填充瘤胃会增加奶牛的物理饱感,降低DMI[25]。NFFS部分替代饲草能够增加单位质量和单位体积饲粮的能量密度。研究表明,以14.5%大豆皮替代野豌豆干草和玉米青贮[24]以及以3%、6%、9%或12%甜菜粕替代麦秸均能显著提高奶牛的DMI[19],说明高能量密度的NFFS饲粮可能降低了饲草引起的物理饱感,使DMI升高。此外,奶牛对NFFS饲粮的DM和NDF消化率提高,食糜流通速率加快,也可能会升高DMI。多数研究表明NFFS部分替代饲草并不会对泌乳奶牛的DMI产生显著影响[2, 26],甚至会降低DMI[23, 27]。Mohammadzadeh等[23]研究发现,添加10%或20%大豆皮替代苜蓿干草和玉米青贮并不影响奶牛的DMI,但大豆皮添加至30%时奶牛的DMI显著降低。另外,Izumi等[27]发现,与干草和甜菜粕比例为8 : 2配制的干奶牛饲粮相比,二者比例为2 : 8的饲粮使奶牛DMI显著降低。按照肝脏氧化理论,饲料在瘤胃发酵产生的大量丙酸在瘤胃壁吸收,经门静脉血进入肝脏被氧化,使肝脏细胞内ATP浓度升高,孤束核兴奋性降低,从而抑制下丘脑采食中枢,降低DMI[28]。上述2个研究中以快速发酵的NFFS大量替代饲草,促使奶牛瘤胃发酵由乙酸型转变为丙酸型,丙酸产量增加,后者在肝脏氧化,可能改变了肝迷走神经传入神经的信号,作为一个饱信号抑制了奶牛的DMI。综上可知,NFFS可以提高饲料的消化率,其部分替代饲草能够通过增加饲粮能量密度降低物理饱感,提高DMI。但是需要更多研究和实践以确定NFFS适宜的添加量,综合现有研究,提示NFFS替代饲草的比例不宜超过30%,以避免降低消化率和DMI。

1.2 对生产性能的影响

DMI和消化率是决定奶牛生产性能的主要因素。大豆皮替代饲草或者甜菜粕替代麦秸均能够显著提高产奶量[19, 24],这得益于更高的养分消化率和DMI。研究发现甜菜粕替代玉米青贮可以提高乳蛋白率和产奶量[2],因为甜菜粕的瘤胃非降解蛋白(RUP)含量比玉米青贮高,奶牛摄入较多的RUP可以减少瘤胃氨态氮(NH3-N)的产生,增加小肠可代谢蛋白质含量,提高氮利用率[29]。多数研究表明NFFS部分替代饲草可使奶牛产奶量、乳蛋白率和饲料效率维持在替代前的水平[2, 19, 22, 26],说明NFFS对奶牛的生产性能具有正向调节作用,有望通过科学的饲料配方手段引导NFFS充分发挥其营养作用。

饲粮peNDF和饲草来源NDF(fNDF)含量是影响乳脂率的重要因素[30]。李飞[31]通过Meta分析得出保证奶牛瘤胃液pH高于6.16、乳脂率高于3.2%的饲粮peNDF1.18含量应为27.59%~35.62%,peNDF8.0含量为12.83%~18.80%。但是此peNDF推荐量是基于饲草作为奶牛饲粮全部粗饲料来源而提出的,饲粮中并不包含NFFS。NFFS的物理有效因子比饲草低,仍以peNDF推荐量配制NFFS饲粮会降低乳脂率,甚至引起SARA[32],无法满足奶牛对peNDF的需求。因此,现有peNDF推荐量并不适合作为确定NFFS饲粮peNDF含量的依据。针对奶牛对有效纤维的需求,NRC(2001)[33]推荐在饲草切割长度适宜的前提下,泌乳奶牛全混合日粮(TMR)的NDF含量为25%时,fNDF含量不应低于19%,当NDF含量为33%时,fNDF含量不应低于15%,以维持瘤胃液pH和乳脂率。Bradford等[34]分析了12个NFFS替代饲草(NFFS添加量≥15%)的相关研究,发现NFFS饲粮的fNDF含量在NRC(2001)[33]推荐范围内时,瘤胃液pH和乳脂率高于或可以维持替代前饲粮下的水平,但fNDF低于最小推荐量时,瘤胃液pH和乳脂率便会降低。Naderi等[2]发现,以16%甜菜粕替代玉米青贮后饲粮NDF含量为31%,但fNDF含量仅为11.7%,奶牛乳脂率显著降低,说明NRC(2001)[33]推荐量更适宜作为确定NFFS饲粮fNDF含量的参考。同时,NFFS添加量<15%时,只要饲粮fNDF含量满足以NDF含量为参考的最低推荐量时,奶牛乳脂率也可维持替代前饲粮下的水平[19, 23, 26]

综上可知,NFFS部分替代饲草可以提高奶牛的生产性能,但必须保证饲粮中peNDF的足量供应,建议参考NRC(2001)[33]推荐值调节NFFS替代饲草后饲粮的NDF和fNDF含量,以维持奶牛瘤胃液pH和乳脂率。另外,虽然NFFS饲粮的fNDF含量高于最低推荐值,但仍远低于替代前水平,然而NFFS饲粮却能够维持替代前饲粮下奶牛的乳脂率[19, 23, 26],提示来源于NFFS的NFC对奶牛的纤维消化可能没有负面影响,而且来源于NFFS的NDF也可能参与了乳脂的合成,这均需要更多研究加以验证。

1.3 对瘤胃草垫层和行为的影响

NFFS与饲草对奶牛咀嚼和反刍活动以及瘤胃内容物两相分层的刺激能力不同。瘤胃背囊为气体层,腹囊为悬液层,中部为草垫层,是由新摄入的粗饲料和peNDF交缠形成的厚而致密的固体食糜层[35]。有学者通过穿透阻力试验测定瘤胃穿透阻力值(PRV)评价草垫层的密度。PRV越高,厚度越大,则草垫层结构越紧密,对瘤胃壁的摩擦作用越大,越能通过瘤胃壁触觉受体刺激反刍[36]。另有研究发现PRV与奶牛反刍时间呈强正相关(R2=0.744, P < 0.001, n=16)[27]。NFFS替代饲草会降低饲粮的peNDF含量,但对瘤胃草垫层和反刍活动的影响研究结果不一致。Izumi等[27]发现,相比干草和甜菜粕比例为8 : 2的饲粮,二者比例为2 : 8的饲粮会显著降低饲粮的peNDF含量,降低草垫层密度,减少奶牛采食、咀嚼和反刍时间。但Izumi等[37]随后的研究发现添加9.4%或8.1%红豆皮替代苜蓿青贮会使奶牛瘤胃草垫层密度和厚度以及反刍时间显著增加,这可能是因为小粒度的NFFS紧密地塞在长粒度饲草的缝隙中,促使草垫层更密更厚,从而刺激了反刍。2个研究结果不一致可能与NFFS添加量有关,当添加量适宜时,饲粮peNDF含量足以形成结构紧密的草垫层,则NFFS可能并不影响甚至会增加草垫层的密度和厚度,促进反刍活动;但当添加量过高(如添加量为80%)时,饲粮peNDF含量不足以形成草垫层,这不仅会减少对反刍的刺激,甚至会增加动物发生SARA的风险。

此外,草垫层在瘤胃中起着“滤床”作用,即能够将小颗粒未消化食糜滞留在其中,使食糜不易从瘤胃逃逸,增加食糜消化率。饲粮peNDF含量越高,则草垫层越厚越硬,越有利于饲料消化[27]。然而目前关于NFFS替代饲草对奶牛瘤胃草垫层影响的研究较少,NFFS饲粮下瘤胃草垫层和饲料消化率的交互作用仍需进一步探索。综上可知,适量NFFS有利于瘤胃草垫层形成,但作用效果依赖其与饲草的配合比例和相互作用。需要进一步探索基于NRC(2001)[33]对NDF和fNDF的推荐量下,NFFS的添加量是否满足形成结构紧密的瘤胃草垫层所需的peNDF含量的要求,以期在维持瘤胃液pH和乳脂率的基础上促进动物反刍活动和提高消化率。

1.4 对瘤胃液pH、瘤胃菌群和发酵模式的影响

NFFS替代饲草对奶牛咀嚼和反刍的刺激降低,减少唾液分泌量,从而降低瘤胃液pH[37]。也有研究表明NFFS替代饲草不影响奶牛瘤胃液pH[2, 23, 26],可能是因为NFFS饲粮的peNDF含量足够维持瘤胃环境。NFFS对瘤胃环境的影响势必引起瘤胃菌群和发酵模式发生变化,低瘤胃液pH不利于纤维分解菌生长,而适于淀粉分解菌活动,因此NFFS替代饲草使乙酸产量降低,丙酸产量升高。Wang等[38]以麦麸、大豆皮替代部分苜蓿干草和玉米青贮进行体外瘤胃发酵试验,发现NFFS饲粮使拟杆菌门、Methanomassiliicoccus(属于第七产甲烷古菌目)和Marvinbryantia相对丰度升高,厚壁菌门、瘤胃球菌属和梭菌属ⅪⅤa簇相对丰度下降;丙酸产量显著升高,甲烷产量减少。瘤胃中约82%的甲烷由产甲烷菌以二氧化碳和氢气为原料还原生成,原料主要来自丙酮酸脱羧生成乙酸和丁酸的过程,而微生物发酵产丙酸的过程不仅不产生氢,反而需要吸收氢[39]。因此,低pH的瘤胃环境适于氢向生成丙酸的方向流动,使甲烷生成量减少。此外,Quan等[40]研究发现NFFS替代饲草能够显著增加牛乳中细胞外囊泡(EVs)的浓度,使4种EVs的miRNA表达显著上调,5种EVs的miRNA表达显著下调,差异表达miRNA的功能主要富集于柠檬酸循环、脂肪消化和吸收。这可能与NFFS引起的瘤胃发酵模式改变、丙酸产量增加有关。EVs是细胞分泌的含蛋白质、脂质和核酸的功能性囊泡,起着介导细胞间通讯、维持生理状态、调控病理过程的作用[41]。上述研究结果提示NFFS能够改变奶牛生理代谢,影响牛乳EVs表达,为营养手段调控乳中活性物质提供了思路。

综上可知,NFFS部分替代饲草使奶牛瘤胃液pH降低,影响菌群结构,进而改变瘤胃发酵模式,影响生理代谢。NFFS饲粮的fNDF含量应该达到NRC(2001)[33]的最小推荐量,在维持奶牛瘤胃液pH的基础上发挥调节甲烷排放和其他营养作用的潜力。NFFS部分替代饲草对奶牛生产性能和瘤胃发酵的影响见表 2

表 2 NFFS部分替代饲草对奶牛生产性能和瘤胃发酵的影响 Table 2 Effects of NFFS partially replacing forage in a diet on performance and rumen fermentation of dairy cows
2 NFFS部分替代精料对奶牛的影响 2.1 对饲料效率的影响

多数研究表明NFFS替代精料对奶牛的饲料效率没有显著影响[6, 42-43]。另有研究发现在不影响饲粮能氮水平的前提下添加麸皮和甜菜粕等NFFS全部或部分替代饲粮谷物,不仅不影响奶牛的DMI、产奶量和乳品质,而且能够显著提高人可食用饲料转化率(HeFCR)[44-46]。HeFCR是Wilkinson提出衡量畜禽饲粮中人可食用的谷物转化为畜产品效率的概念,在奶牛上以乳中粗蛋白质(CP)含量/每单位人可食用饲料CP摄入量或乳中总能/每单位人可食用饲料总能摄入量作为主要评价方法[44]。NFFS来源于农副产品,几乎不可被人食用,替代谷物不仅能够维持奶牛的生产性能,而且提高了HeFCR,这对于解决快速增长的饲料用粮需求和粮食短缺问题具有重要意义。

2.2 对生产性能的影响

多数研究表明,以大豆皮、甜菜粕、柑橘渣等NFFS部分替代饲粮中玉米、大麦和豆粕等精料不会影响奶牛对DM、有机物(OM)、NDF和ADF的表观消化率以及DMI、产奶量、3.5%乳脂校正乳(3.5%FCM)产量[42, 47-48]。然而NFFS的NDF含量高,替代精料会降低饲粮能量密度,影响奶牛的生产性能。Sánchez-Duarte等[9]研究发现,添加9%甜菜粕替代玉米会使奶牛DM表观消化率、DMI和产奶量显著降低。因为替代后饲粮淀粉和NFC含量降低、NDF含量升高,而饲粮NDF含量与DMI(R2=-0.678, P<0.01)和产奶量(R2=-0.517, P<0.01)呈显著负相关[49]。但也有研究发现NFFS替代玉米能够显著提高奶牛DM和NDF表观消化率以及DMI和3.5%FCM产量[6, 50-51]。这可能是因为NFFS饲粮使奶牛瘤胃中丙酸产量降低,根据肝脏氧化理论,其DMI升高;也可能是因为NFFS饲粮使奶牛瘤胃液pH升高,纤维分解菌活性增强,利于提高养分消化率和生产性能,有研究观察到NFFS替代精料使瘤胃纤维分解菌生长因子——支链脂肪酸异丁酸浓度降低[17]也为上述推论提供了依据。以上研究结果不一致的原因可能是饲料配方及试验条件不同,但Sánchez-Duarte等[9]的研究中NFFS饲粮虽然降低了奶牛的生产性能,却提高了饲料效率,提示NFFS的饲用价值值得进一步研究挖掘。

2.3 对乳品质的影响

大量研究发现NFFS部分替代精料能够维持或提高乳脂率[42-44],这得益于饲粮NDF含量的升高。普遍认为饲粮瘤胃降解蛋白质含量与NFC发酵不平衡是产生低乳蛋白率和高乳尿素氮(MUN)含量的主要原因。添加NFFS主要使饲粮NFC含量降低,减少了瘤胃微生物蛋白(MCP)合成过程中的能量供应,MCP合成量减少,导致乳蛋白率降低[48, 52];而多余的氨经瘤胃壁吸收入血,在肝脏形成尿素,部分尿素扩散入乳中,使MUN含量增多。

NFFS部分替代精料能够改变乳脂肪酸组成。研究指出,甜菜粕和柑橘渣使乳中饱和脂肪酸(SFA)含量显著升高[53],多不饱和脂肪酸(PUFA)含量显著降低[47]。不饱和脂肪酸(UFA)具有维持机体健康、防治慢性疾病的功能。NFFS影响乳脂肪酸组成的机理可能有3点:一是一些NFFS原料中SFA含量高,UFA含量低,底物水平影响了乳脂肪酸合成;二是NFFS饲粮可以提高瘤胃纤维分解菌的数量和活性,而纤维分解菌如白色瘤胃球菌和溶纤维丁酸弧菌在瘤胃UFA氢化生成SFA的过程中发挥着重要作用[54],因此可能通过促进瘤胃氢化反应影响乳脂肪酸组成;三是NFFS饲粮使瘤胃乙酸产量增加,后者作为乳脂肪酸从头合成的原料,主要合成C4 : 0~C14 : 0以及C16 : 0等SFA[55],改变了乳脂肪酸组成。

综上可知,NFFS部分替代精料可以促进乳脂合成,却使乳蛋白率降低、MUN含量升高,同时使乳中SFA合成增加,但不利于UFA积累。这提示,可通过使用高NFC原料补充NFFS饲粮的NFC,选择UFA含量高的NFFS原料以及合理调节NDF含量等途径科学地优化饲粮配方,以同时实现NFFS对乳脂率、乳蛋白率和UFA的正向调控。

2.4 对SARA动物瘤胃液pH、肠道黏膜和氧化应激的影响

生产中常提高饲粮精料比例以促进泌乳奶牛高产,但其也成为SARA的主要诱因,损害动物健康和生产性能[56]。甜菜粕部分替代诱导SARA的高精料饲粮中玉米可以提高奶牛瘤胃液pH,降低乳酸浓度(0.18 mmol/L vs. 0.29 mmol/L)[53]。因为甜菜粕果胶含量高(23%~25%),果胶在瘤胃中发酵主要产生乙酸,乳酸和丙酸产量很少[57],按照“乳酸中毒学说”[58],NFFS有降低SARA风险的作用。

采食高精料饲粮的反刍动物瘤胃液pH长期偏低,诱导LPS和组胺等有害物质产生,后者能够破坏动物肠道上皮黏膜屏障,引发全身炎症反应[59]。研究表明添加20%大豆皮替代诱导SARA饲粮中的玉米可以显著降低山羊结肠和血浆LPS浓度和促炎细胞因子的含量,并通过抑制丝裂原活化蛋白激酶(MAPK)信号通路显著提高结肠上皮细胞紧密连接蛋白的基因表达量和蛋白质含量[59]。此外,SARA动物体内有害物增加会诱发机体产生氧化应激,Guo等[42]研究发现以10%甜菜颗粒粕替代玉米可以显著提高奶牛的总抗氧化能力,降低血浆丙二醛含量,减轻瘤胃内NFC密集发酵的负面影响。

综上可知,NFFS部分替代精料有利于提高奶牛瘤胃液pH,降低高精料饲粮下发生SARA的风险,并可以有效预防SARA对动物肠道黏膜屏障可能造成的损害,减轻氧化应激,对维护高产动物健康具有重要意义。NFFS部分替代精料对奶牛生产性能和瘤胃发酵的影响见表 3

表 3 NFFS部分替代精料对奶牛生产性能和瘤胃发酵的影响 Table 3 Effects of NFFS partially replacing concentrate on performance and rumen fermentation of dairy cows
3 合理利用NFFS的建议

对于泌乳早期和盛期的奶牛来说,充足的能量摄入是维持健康和高产的保证,但高产奶牛TMR中的饲草可能会增加其物理饱感,限制DMI[25]。NFFS的NDF含量高,且能量密度高,可以在高产奶牛饲粮中部分替代饲草以提高DMI[19, 24]和产奶量[2, 24]。对于泌乳后期的奶牛来说,产奶量主要受乳腺泌乳生理限制,养分对其促进作用较小[62],因此可用NFFS部分替代精料,降低饲粮能量密度。在一项极端的研究中,添加17.3%甜菜粕替代大麦,使泌乳后期奶牛饲粮淀粉含量由19.0%降至12.3%,结果发现不影响产奶量,但降低了体况评分和背膘厚[63]。因为NFFS使瘤胃丙酸产量降低,机体缺乏糖异生前体,血糖浓度下降,为满足能量需求促使脂肪动员增强,从而减少了体脂贮存。这说明NFFS饲粮有调节机体能量分配的作用。因此,建议NFFS在高产奶牛饲粮中部分替代饲草以提高DMI和生产性能;在泌乳后期奶牛饲粮中部分替代精料,在维持生产的基础上限制能量摄入,避免过度肥胖等问题发生,同时可降低饲料成本。

NFFS同时具备饲草和精料的特点,是奶牛良好的饲料原料。NFFS饲料种类繁多,除了富含粗纤维和瘤胃快速降解的共性外,其理化特性和营养价值各有特点,如甜菜粕果胶和RUP含量高。建议准确测定NFFS饲料的营养水平,根据其特点在奶牛饲粮中单一添加或组合添加,添加量不宜高于30%,并科学优化饲粮配方,以使NFFS发挥最大的营养价值。

4 小结

本文根据现有研究结果得出以下结论:1)NFFS部分替代饲草能够提高奶牛的DMI和生产性能,建议参考NRC(2001)推荐量确定NFFS饲粮的NDF和fNDF含量,以满足有效纤维需求,维持乳脂率。2)NFFS部分替代精料能够节约粮食饲料原料,维持奶牛生产性能,预防SARA。建议科学优化饲粮配方,保证NFFS饲粮的NFC含量,满足动物生产所需的能量要求。3)建议NFFS部分替代高产奶牛饲粮中的饲草,而部分替代泌乳后期奶牛饲粮中的精料饲喂;也可根据每种NFFS饲料的特点,以低于30%的添加量饲喂。总体来说,NFFS为降低饲料成本、改善奶牛生产性能和健康提供了启发,生产中需要科学配制饲粮,以规避NFFS饲粮营养水平失衡导致的动物健康和生产性能受损等一系列问题,实现NFFS的科学高效利用。

参考文献
[1]
梁霞, 王伟. 畜牧饲料业经济运行现状及改进措施[J]. 中国饲料, 2019(20): 117-120.
LIANG X, WANG W. Economic operation status and improvement measures of animal husbandry feed[J]. China Feed, 2019(20): 117-120 (in Chinese).
[2]
NADERI N, GHORBANI G R, SADEGHI-SEFIDMAZGI A, et al. Shredded beet pulp substituted for corn silage in diets fed to dairy cows under ambient heat stress:feed intake, total-tract digestibility, plasma metabolites, and milk production[J]. Journal of Dairy Science, 2016, 99(11): 8847-8857. DOI:10.3168/jds.2016-11029
[3]
AKINS M S, PERFIELD K L, GREEN H B, et al. Effect of monensin in lactating dairy cow diets at 2 starch concentrations[J]. Journal of Dairy Science, 2014, 97(2): 917-929. DOI:10.3168/jds.2013-6756
[4]
WHITE R R, HALL M B, FIRKINS J L, et al. Physically adjusted neutral detergent fiber system for lactating dairy cow rations.Ⅰ:deriving equations that identify factors that influence effectiveness of fiber[J]. Journal of Dairy Science, 2017, 100(12): 9551-9568. DOI:10.3168/jds.2017-12765
[5]
BOERMAN J P, POTTS S B, VANDEHAAR M J, et al. Milk production responses to a change in dietary starch concentration vary by production level in dairy cattle[J]. Journal of Dairy Science, 2015, 98(7): 4698-4706. DOI:10.3168/jds.2014-8999
[6]
FERRARETTO L F, SHAVER R D, BERTICS S J, et al. Effect of dietary supplementation with live-cell yeast at two dosages on lactation performance, ruminal fermentation, and total-tract nutrient digestibility in dairy cows[J]. Journal of Dairy Science, 2012, 95(7): 4017-4028. DOI:10.3168/jds.2011-5190
[7]
孟梅娟, 涂远璐, 白云峰, 等. 小麦秸与非常规饲料组合效应的研究[J]. 动物营养学报, 2016, 28(9): 3005-3014.
MENG M J, TU Y L, BAI Y F, et al. Combination effects on wheat straw and non-conventional feeds[J]. Chinese Journal of Animal Nutrition, 2016, 28(9): 3005-3014 (in Chinese). DOI:10.3969/j.issn.1006-267x.2016.09.041
[8]
高红.四种粮食加工副产物对奶牛营养价值的研究[D].硕士学位论文.哈尔滨: 东北农业大学, 2017: 27-36.
GAO H.Evaluation of nutritinal vlues of some altenative feed sources to dairy cows[D].Master's Thesis.Harbin: Northeast Agricutural University, 2017: 27-36.(in Chinese)
[9]
SÁNCHEZ-DUARTE J I, KALSCHEUR K F, CASPER D P, et al. Performance of dairy cows fed diets formulated at 2 starch concentrations with either canola meal or soybean meal as the protein supplement[J]. Journal of Dairy Science, 2019, 102(9): 7970-7979. DOI:10.3168/jds.2018-15760
[10]
RANATHUNGA S D, KALSCHEUR K F, HIPPEN A R, et al. Replacement of starch from corn with nonforage fiber from distillers grains and soyhulls in diets of lactating dairy cows[J]. Journal of Dairy Science, 2010, 93(3): 1086-1097. DOI:10.3168/jds.2009-2332
[11]
石风华.非常规饲料替代玉米饲喂肉牛对瘤胃发酵、养分消化率、生产性能和胴体品质的影响[D].博士学位论文.北京: 中国农业大学, 2014: 30-31.
SHI F H.Effects of replacement of maize grains with non-conventional feeds in the diet of beef cattle on rumen fermentation, nutrient digestibility, growth performance and carcass characteristics[D].Ph.D.Thesis. Beijing: China Agricultural University, 2014: 30-31.(in Chinese)
[12]
于晓雷.以农副产品为主要原料的节粮饲料的开发与应用[D].硕士学位论文.北京: 中国农业科学院, 2014: 18.
YU X L.The development and application of economy feed made by the agricultural and sideline products as the main raw materia[D].Master's Thesis.Beijing: Chinese Academy of Agricultural Sciences, 2014: 18.(in Chinese)
[13]
FARMER E R, TUCKER H A, DANN H M, et al. Effect of reducing dietary forage in lower starch diets on performance, ruminal characteristics, and nutrient digestibility in lactating Holstein cows[J]. Journal of Dairy Science, 2014, 97(9): 5742-5753. DOI:10.3168/jds.2014-7963
[14]
王锦荣, 赵国琦, 姜茂成, 等. 甜菜粕颗粒对泌乳奶牛泌乳性能、血液生化指标的影响[J]. 中国畜牧杂志, 2019, 55(7): 106-110.
WANG J R, ZHAO G Q, JIANG M C, et al. Effects of dietary sugar beet pulp pellets on milk performance and blood biochemical indexes in dairy cows[J]. Chinese Journal of Animal Science, 2019, 55(7): 106-110 (in Chinese).
[15]
KAHYANI A, GHORBANI G R, ALIKHANI M, et al. Performance of dairy cows fed diets with similar proportions of undigested neutral detergent fiber with wheat straw substituted for alfalfa hay, corn silage, or both[J]. Journal of Dairy Science, 2019, 102(12): 10903-10915. DOI:10.3168/jds.2019-16869
[16]
SOLIVA C R, AMELCHANKA S L, KREUZER M. The requirements for rumen-degradable protein per unit of fermentable organic matter differ between fibrous feed sources[J]. Frontiers in Microbiology, 2015, 6: 715.
[17]
ABO-ZEID H M, EL-ZAIAT H M, MORSY A S, et al. Effects of replacing dietary maize grains with increasing levels of sugar beet pulp on rumen fermentation constituents and performance of growing buffalo calves[J]. Animal Feed Science and Technology, 2017, 234: 128-138. DOI:10.1016/j.anifeedsci.2017.09.011
[18]
SODER K J, BRITO A K, HAFLA A N, et al. Effect of starchy or fibrous carbohydrate supplementation of orchardgrass on ruminal fermentation and methane output in continuous culture[J]. Journal of Dairy Science, 2016, 99(6): 4464-4475. DOI:10.3168/jds.2015-10471
[19]
HALL M B, CHASE L E. Responses of late-lactation cows to forage substitutes in low-forage diets supplemented with by-products[J]. Journal of Dairy Science, 2014, 97(5): 3042-3052. DOI:10.3168/jds.2013-7539
[20]
涂远璐, 孟梅娟, 高立鹏, 等. 体外产气法评价南方农区非常规饲料资源的营养价值[J]. 江苏农业学报, 2015, 31(4): 855-864.
TU Y L, MENG M J, GAO L P, et al. Nutritive value evaluation of unconventional feeds in south China agriculture region using in vitro gas production technique[J]. Jiangsu Journal of Agricultural Sciences, 2015, 31(4): 855-864 (in Chinese). DOI:10.3969/j.issn.1000-4440.2015.04.023
[21]
李燕鹏.用CNCPS评定反刍动物饲料营养价值[D].硕士学位论文.南宁: 广西大学, 2008: 54-56.
LI Y P.Evaluation of nutritive value of feedstuffs for ruminants using CNCPS techiques[D].Master's Thesis.Nanning: Guangxi University, 2008: 54-56.(in Chinese)
[22]
李文才. 三种常用粗饲料的瘤胃降解特性研究[J]. 中国奶牛, 2017(3): 1-5.
LI W C. Study on rumen degradation characteristic of three kind commonly used roughage on dairy cows[J]. China Dairy Cattle, 2017(3): 1-5 (in Chinese).
[23]
MOHAMMADZADEH H, REZAYAZDI K, NIKKHAH A, et al. Effects of inclusion of graded amounts of soya bean hulls on feed intake, chewing activity and nutrient digestibility in dairy cows[J]. Journal of Animal Physiology and Animal Nutrition, 2014, 98(3): 476-482. DOI:10.1111/jpn.12094
[24]
MIRON J, ADIN G, SOLOMON R, et al. Effects of feeding cows in early lactation with soy hulls as partial forage replacement on heat production, retained energy and performance[J]. Animal Feed Science and Technology, 2010, 155(1): 9-17. DOI:10.1016/j.anifeedsci.2009.09.012
[25]
ALLEN M S, SOUSA D O, VANDEHAAR M J, et al. Equation to predict feed intake response by lactating cows to factors related to the filling effect of rations[J]. Journal of Dairy Science, 2019, 102(9): 7961-7969. DOI:10.3168/jds.2018-16166
[26]
HOLT M S, WILLIAMS C M, DSCHAAK C M, et al. Effects of corn silage hybrids and dietary nonforage fiber sources on feed intake, digestibility, ruminal fermentation, and productive performance of lactating Holstein dairy cows[J]. Journal of Dairy Science, 2010, 93(11): 5397-5407. DOI:10.3168/jds.2010-3411
[27]
IZUMI K, UNNO C. Effects of feeding ratio of beet pulp to alfalfa hay or grass hay on ruminal mat characteristics and chewing activity in Holstein dry cows[J]. Animal Science Journal, 2010, 81(2): 180-186. DOI:10.1111/j.1740-0929.2009.00724.x
[28]
MALDINI G, ALLEN M S. Temporal effects of ruminal propionic acid infusion on feeding behavior of Holstein cows in the postpartum period[J]. Journal of Dairy Science, 2018, 101(4): 3077-3084. DOI:10.3168/jds.2017-13857
[29]
AMIRABADI FARAHANI T, AMANLOU H, FARSUNI N E, et al. Interactions of protein levels fed to Holstein cows pre- and postpartum on productive and metabolic responses[J]. Journal of Dairy Science, 2019, 102(1): 246-259. DOI:10.3168/jds.2018-14575
[30]
KAEOKLIANG O, KAWASHIMA T, NARMSEELEE R, et al. Effects of physically effective fiber in diets based on rice straw and cassava pulp on chewing activity, ruminal fermentation, milk production, and digestibility in dairy cows[J]. Animal Science Journal, 2019, 90(9): 1193-1199. DOI:10.1111/asj.13271
[31]
李飞.奶山羊亚急性瘤胃酸中毒模型构建与奶牛日粮CBI的优化[D].博士学位论文.杨凌: 西北农林科技大学, 2014: 6.
LI F.Developing the models of subacute ruminal acidosis of dairy goats and optimizing the CBI for dairy cows[D].Ph.D.Thesis.Yangling: Northwest A&F University, 2014: 6.(in Chinese)
[32]
REZAC D J, GRIGSBY K N, BELLO N M, et al. Effects of varying rates of tallgrass prairie hay and wet corn gluten feed on productivity of lactating dairy cows[J]. Journal of Dairy Science, 2012, 95(2): 842-849. DOI:10.3168/jds.2011-4752
[33]
NRC.Nutrient requirements of dairy cattle[S].7th ed.Washington, D.C.: National Research Council, 2001.
[34]
BRADFORD B J, MULLINS C R. Invited review:strategies for promoting productivity and health of dairy cattle by feeding nonforage fiber sources[J]. Journal of Dairy Science, 2012, 95(9): 4735-4746. DOI:10.3168/jds.2012-5393
[35]
MERTENS D R. Creating a system for meeting the fiber requirements of dairy cows[J]. Journal of Dairy Science, 1997, 80(7): 1463-1481. DOI:10.3168/jds.S0022-0302(97)76075-2
[36]
IZUMI K, SAKAMOTO T, SHIBAYAMA S, et al. Evaluation of penetration resistance value for the physical factor of rumen digesta in lactating dairy cows[J]. Nihon Chikusan Gakkaiho, 2008, 79(3): 361-368. DOI:10.2508/chikusan.79.361
[37]
IZUMI K, MIWA J, ISHIZUKA K, et al. Effect of a non-forage fiber of red bean hulls on ruminal mat characteristics, chewing activity and milk production in dairy cows[J]. Animal Science Journal, 2014, 85(3): 233-240. DOI:10.1111/asj.12131
[38]
WANG K, NAN X M, CHU K K, et al. Shifts of hydrogen metabolism from methanogenesis to propionate production in response to replacement of forage fiber with non-forage fiber sources in diets in vitro[J]. Frontiers in Microbiology, 2018, 9: 2764. DOI:10.3389/fmicb.2018.02764
[39]
UNGERFELD E M. Shifts in metabolic hydrogen sinks in the methanogenesis-inhibited ruminal fermentation:a Meta-analysis[J]. Frontiers in Microbiology, 2015, 6: 37.
[40]
QUAN S Y, NAN X M, WANG K, et al. Replacement of forage fiber with non-forage fiber sources in dairy cow diets changes milk extracellular vesicle-miRNA expression[J]. Food & Function, 2020, 11(3): 2154-2162.
[41]
SAMUEL M, CHISANGA D, LIEM M, et al. Bovine milk-derived exosomes from colostrum are enriched with proteins implicated in immune response and growth[J]. Scientific Reports, 2017, 7(1): 5933. DOI:10.1038/s41598-017-06288-8
[42]
GUO Y Q, XU X F, ZOU Y, et al. Changes in feed intake, nutrient digestion, plasma metabolites, and oxidative stress parameters in dairy cows with subacute ruminal acidosis and its regulation with pelleted beet pulp[J]. Journal of Animal Science and Biotechnology, 2013, 4(1): 31. DOI:10.1186/2049-1891-4-31
[43]
DANN H M, TUCKER H A, COTANCH K W, et al. Evaluation of lower-starch diets for lactating Holstein dairy cows[J]. Journal of Dairy Science, 2014, 97(11): 7151-7161. DOI:10.3168/jds.2014-8341
[44]
ERTL P, ZEBELI Q, ZOLLITSCH W, et al. Feeding of by-products completely replaced cereals and pulses in dairy cows and enhanced edible feed conversion ratio[J]. Journal of Dairy Science, 2015, 98(2): 1225-1233. DOI:10.3168/jds.2014-8810
[45]
ERTL P, ZEBELI Q, ZOLLITSCH W, et al. Feeding of wheat bran and sugar beet pulp as sole supplements in high-forage diets emphasizes the potential of dairy cattle for human food supply[J]. Journal of Dairy Science, 2016, 99(2): 1228-1236. DOI:10.3168/jds.2015-10285
[46]
KARLSSON J, SPÖRNDLY R, LINDBERG M, et al. Replacing human-edible feed ingredients with by-products increases net food production efficiency in dairy cows[J]. Journal of Dairy Science, 2018, 101(8): 7146-7155. DOI:10.3168/jds.2017-14209
[47]
PHILIPPEAU C, LETTAT A, MARTIN C, et al. Effects of bacterial direct-fed microbials on ruminal characteristics, methane emission, and milk fatty acid composition in cows fed high-or low-starch diets[J]. Journal of Dairy Science, 2017, 100(4): 2637-2650. DOI:10.3168/jds.2016-11663
[48]
NOZIÈRE P, STEINBERG W, SILBERBERG M, et al. Amylase addition increases starch ruminal digestion in first-lactation cows fed high and low starch diets[J]. Journal of Dairy Science, 2014, 97(4): 2319-2328. DOI:10.3168/jds.2013-7095
[49]
赵连生, 王典, 牛俊丽, 等. Meta分析研究饲粮中性洗涤纤维和淀粉比对奶牛生产性能和乳成分组成的影响[J]. 动物营养学报, 2018, 30(9): 3507-3516.
ZHAO L S, WANG D, NIU J L, et al. Effects of dietary neutral detergent fiber to starch ratio on performance and milk component synthesis in dairy cows:a Meta-analysis[J]. Chinese Journal of Animal Nutrition, 2018, 30(9): 183-192 (in Chinese).
[50]
GENCOGLU H, SHAVER R D, STEINBERG W, et al. Effect of feeding a reduced-starch diet with or without amylase addition on lactation performance in dairy cows[J]. Journal of Dairy Science, 2010, 93(2): 723-732. DOI:10.3168/jds.2009-2673
[51]
FREDIN S M, AKINS M S, FERRARETTO L F, et al. Effects of corn-based diet starch content and neutral detergent fiber source on lactation performance, digestibility, and bacterial protein flow in dairy cows[J]. Journal of Dairy Science, 2015, 98(1): 554-565. DOI:10.3168/jds.2014-8592
[52]
GIDLUND H, VAGA M, AHVENJÄRVI S, et al. Predicting omasal flow of nonammonia N and milk protein yield from in vitro-determined utilizable crude protein at the duodenum[J]. Journal of Dairy Science, 2018, 101(2): 1164-1176. DOI:10.3168/jds.2017-13422
[53]
GUO Y Q, WANG L B, ZOU Y, et al. Changes in ruminal fermentation, milk performance and milk fatty acid profile in dairy cows with subacute ruminal acidosis and its regulation with pelleted beet pulp[J]. Archives of Animal Nutrition, 2013, 67(6): 433-447. DOI:10.1080/1745039X.2013.842038
[54]
VASTA V, DAGHIO M, CAPPUCCI A, et al. Invited review:plant polyphenols and rumen microbiota responsible for fatty acid biohydrogenation, fiber digestion, and methane emission:experimental evidence and methodological approaches[J]. Journal of Dairy Science, 2019, 102(5): 3781-3804. DOI:10.3168/jds.2018-14985
[55]
URRUTIA N, BOMBERGER R, MATAMOROS C, et al. Effect of dietary supplementation of sodium acetate and calcium butyrate on milk fat synthesis in lactating dairy cows[J]. Journal of Dairy Science, 2019, 102(6): 5172-5181. DOI:10.3168/jds.2018-16024
[56]
WHITE R R, HALL M B, FIRKINS J L, et al. Physically adjusted neutral detergent fiber system for lactating dairy cow rations.Ⅱ:development of feeding recommendations[J]. Journal of Dairy Science, 2017, 100(12): 9569-9584. DOI:10.3168/jds.2017-12766
[57]
刘晶.饲料果胶对瘤胃微生物菌群结构和微生物蛋白合成影响的研究[D].博士学位论文.杭州: 浙江大学, 2014: 97.
LIU J.Effects of dietary pectin on microbial structure and microbial protein synthesis in the rumen[D].Ph.D. Thesis.Hangzhou: Zhejiang University, 2014: 97.(in Chinese)
[58]
CHEN L M, SHEN Y Z, WANG C, et al. Megasphaera elsdenii lactate degradation pattern shifts in rumen acidosis models[J]. Frontiers in Microbiology, 2019, 10: 162. DOI:10.3389/fmicb.2019.00162
[59]
ZHANG K, TU Y L, GAO L P, et al. Replacement of grains with soybean hulls ameliorates SARA-induced impairment of the colonic epithelium barrier function of goats[J]. BMC Veterinary Research, 2018, 14(1): 376. DOI:10.1186/s12917-018-1705-8
[60]
PETRI R M, MÜNNICH M, ZEBELI Q, et al. Graded replacement of corn grain with molassed sugar beet pulp modulates the fecal microbial community and hindgut fermentation profile in lactating dairy cows[J]. Journal of Dairy Science, 2019, 102(6): 5019-5030. DOI:10.3168/jds.2018-15704
[61]
MAHJOUBI E, AMANLOU H, ZAHMATKESH D, et al. Use of beet pulp as a replacement for barley grain to manage body condition score in over-conditioned late lactation cows[J]. Animal Feed Science and Technology, 2009, 153(1/2): 60-67.
[62]
CAPUCO A V, ELLIS S E, HALE S A, et al. Lactation persistency:insights from mammary cell proliferation studies[J]. Journal of Animal Science, 2003, 81(Suppl.3): 18-31.