脊椎动物的肠道中寄居着大量的微生物,它们被统称为微生物群。肠道微生物群中的基因组中所包含的基因数量可达到宿主自身基因组数量的100倍[1-2]。然而,不仅是数量上的庞大,微生物群在宿主体内也发挥着强大的不可或缺的功能。微生物群可以被看作是一种代谢器官[3],对宿主营养、肠道发育和生理调节都起到重要的作用。它们可以消化宿主无法消化吸收的成分,产生宿主生长发育所需要的代谢产物[4]。不仅如此,微生物群还决定了宿主免疫系统的发展,影响免疫介导的信号传递过程[5]。可以说,正是肠道微生物群将机体的营养、代谢和免疫3个过程紧紧联结在了一起。
早在1 500年前,东晋的葛洪就用粪便提取物制作成“黄汤”来治疗食物中毒和严重腹泻的患者。明代的李时珍也在本草纲目中记载了使用粪便提取物来治疗腹泻、发烧、疼痛、呕吐和便秘[6]。现如今,粪便微生物移植(FMT)技术不仅在治疗艰难梭菌感染方面获得了巨大成功[7],对于肠易激综合征、炎症性肠病、胰岛素抵抗和多发性硬化症等疾病,FMT技术也表现出很好的疗效[8-12]。并且,随着“肝肠轴”和“脑肠轴”等概念的提出[13-14],FMT技术应用于代谢病,甚至精神病上的治疗也在飞速发展[15-16]。
1 鸭FMT技术的可行性探究与其他脊椎动物一样,鸭的胃肠道内也寄居着大量的微生物,在后肠中的数量高达1×1011 CFU/g,其中的优势菌群为厚壁菌和拟杆菌[17]。对于禽类来说,微生物群除了能够影响机体的代谢功能以外,在机体的免疫功能中也起着独特的作用。法氏囊是禽类特有的免疫器官。在孵化期间,法氏囊作为禽类肠道的憩室,在禽类孵化后被微生物定植。随后,这些微生物可以作为抗原促使机体产生抗体,或者诱导机体内产生细胞因子,促进法氏囊B细胞的增殖和成熟[18]。同时,微生物群还可以在肠道内产生黏蛋白来保护肠道,一些禽类的黏蛋白还具有特殊的免疫功能,例如鸡黏蛋白可以减轻空肠弯曲杆菌的毒性[19]。此外,FMT技术已经在一些研究中运用于禽类(表 1),这也为鸭粪便微生物移植技术的标准化奠定了基础。
![]() |
表 1 FMT技术在禽类中的应用 Table 1 Application of FMT technology in poultry |
FMT技术中,供体的肠道微生物是治愈受体疾病的关键,因此供体的选择是决定FMT是否成功的重要因素。选择不合适的供体可能会损害受体肠道菌群的稳定性和耐受性,引起受体肠道排斥反应。此外,由于供体粪便可能携带致病性微生物,如若不谨慎选择供体,FMT过程中可能会导致病原体传播。供体的选择包括从表现性状、行为、抗生素使用史、药物使用史和疫病史等多方面进行评价,并且在移植前对供体进行血清学检测和粪便检测,以监测感染性病原体和其他危险因素。
与鸭传染病相关的病原微生物主要有以下几类。1)与鸭传染性疾病相关的病毒:鸭瘟病毒、鸭肝炎病毒、鸭肠炎病毒、毒性肠炎疱疹病毒、A型流感病毒、鸭细小病毒、鸭副黏病毒(新城疫病毒);2)与鸭传染性疾病相关的细菌:禽类多杀性巴氏杆菌、大肠杆菌、沙门氏菌、烟曲霉菌、黄曲霉菌、弯曲杆菌和单核球增多性李斯特菌;3)与鸭传染性疾病相关的寄生虫:艾美球虫、住白细胞虫、毛滴虫、绦虫、肉孢子虫和隐孢子虫[24-33]。
2.1 表观特征及行为学特征观察选为供体的鸭表观特征与行为应当符合如下条件:1)生长发育良好;2)无不良行为(如啄癖、异食癖);3)羽毛完整,身体表面无伤口或其他损伤;4)体温维持在40~42 ℃;5)正常饮水采食;6)粪便正常,未出现病变样粪便或者便秘;7)无使用抗生素或其他药物记录。
此外还需注意的是,作为供体的鸭在收集粪便前的2周内不能接种弱毒疫苗,且不能接触其他有过疫病史的鸭。
2.2 血清学检测病原体可以刺激宿主,并在血清中产生相应的抗体,这使得我们通过抗原-抗体结合反应监测侵入性病原体成为了可能。血清学检测包括:血清中和试验、血凝抑制试验、酶联免疫吸附测定(ELISA)试验、琼脂扩散试验和补体固定试验。尤其是ELISA试验,由于其具有很高的特异性与敏感性,已被广泛运用于病原体血清学检测[34-35]。近年来,鸭腺病毒和尼泊尔禽流感病毒都利用血清学检测进行了研究与风险防控[36-37]。
2.3 粪便检测由于粪便中可能携带某些传染性病原体,如禽大肠杆菌、鸭疫里默氏杆菌等致病菌[38-39]。对供体鸭进行粪便检测可直接降低鸭FMT的传染风险。从供体鸭的粪便中提取DNA,然后进行PCR扩增,根据标准致病菌的基因序列设计特异性引物,通过相应的扩增产物可判断粪便中是否存在潜在的病原体[40-41]。
同样,除了在粪便检测中筛选致病菌外,还应当关注益生菌的作用。有报道称,枯草芽孢杆菌可增强鸭的免疫力和抗氧化能力[42],乳酸杆菌可促进鸭肠道发育,并有助于维持肠道完整性[43]。可以利用16S rDNA测序和宏基因组学的研究方法,根据鸭FMT粪便微生物组成和功能的分析结果,筛选出肠道中具有高丰度“功能微生物”且无致病微生物的最佳供体鸭。
3 鸭FMT技术粪便菌液的制备及保存方法选取符合FMT条件的供体鸭后,将其与其他鸭隔离,单独饲养,正常饮水饲喂。在收集粪便的不锈钢鸭笼下放置牛皮纸,收集供体鸭新鲜粪便。将收集到的粪便样品保存在无菌的Eppendorf管中,置于冰上,快速转移到实验室。如需长时间运输,则需要置于干冰或液氮中冷冻保存,并在做后续处理时,将样品置于42 ℃的水浴锅中溶解。尽量缩短转移时间,以减少肠道微生物的损耗。
将收集到的粪便样品转移到实验室后,将其与无菌、非抑菌磷酸盐缓冲液(PBS)按照1 : 5的比例混合稀释,匀浆。将混匀后的悬浮液通过纱布或者0.25 mm孔径的不锈钢筛网筛,重复过滤3次,以消除粪便悬浮液中未消化的小颗粒物质[44-45]。之后将滤液转移到无菌的离心管中,置入离心机中,1 000 r/min离心5 min。用移液枪小心吸取上清液,制成粪便菌液。
制作好的粪便菌液可即刻用于受体,进行粪便微生物移植操作。如需长期保存,则需要在菌液中加入10%无菌甘油,混合完全后置于-80 ℃环境保存,冷冻样品需在6个月内使用完毕。由于肠道微生物以厌氧菌为主,在制作粪便菌液过程中,应尽量缩短粪便暴露在空气中的时间。所有操作均在室温下进行,优先在厌氧培养箱中操作,所有试验仪器设备均要求做无菌处理。
4 鸭FMT技术粪便微生物的移植在人类医学中,将粪便微生物转入受体体内方式有很多种,包括从上消化道(口服)、中消化道(内窥镜、鼻胃管、鼻空肠和鼻十二指肠)和下消化道(结肠镜检查和灌肠)给药[46-47]。对于鸭来说,由于其肠道短、代谢快,灌胃粪便菌液是最佳给药方式[48]。灌胃过程为:取出受体鸭并称重;在注射器前嵌套灌胃塑胶软管,按10 mL/kg剂量吸取粪便菌液,反复吹打几次,排净灌胃管内气泡;将受体鸭保定,沿着受体鸭食管向腹部左侧进管,注射粪便菌液(过程要迅速,防止受体鸭产生应激反应或呕吐反应)。每次灌胃都需要替换洁净无菌的注射器和灌胃塑胶软管。
5 小结基于人类医学和鸭养殖业的经验,本文探讨了关于鸭FMT技术标准化程序的制定,包括供体鸭的选择、粪便菌液的制备保存和粪便菌液的移植,同时也为鸭养殖生产提供了一个全新的思路:FMT是一种技术手段,它不仅可以用于治疗疾病,也可以与动物的疾病防控,甚至与提高动物的生产性能联系在一起。通过对鸭FMT技术的标准化,在无抗养殖的大环境下改善鸭的肠道健康,可推进整个畜牧行业向绿色养殖过渡。目前,FMT技术已在猪养殖业有所应用,主要以初生仔猪为受体,进行粪菌移植,以达到降低腹泻率、提高生产性能的目的。由于猪为哺乳动物,进行FMT操作需要在仔猪断奶后进行,并且仔猪体型较大,灌胃或灌肠时需多人操作,粪便菌液制作量大,灌胃耗时长。相较而言,鸭FMT技术具有易于操作、无生长阶段限制以及粪便菌液制作方便等优势。
目前,我们对于肠道微生物的了解还不够全面,对于微生物之间的相互作用还未探明,微生物群的具体作用机制和通路还有待深入探索。但随着高通量研究方法包括宏基因组学、元转录组学和代谢组学的日益发展,宿主健康与肠道菌群组成和功能之间的关系将会逐渐得到揭示。FMT技术的标准化和普及、粪便菌液干粉化处理以及鸭肠道微生物库的建立只是肠道微生物应用于水禽生产的初步探索,未来将会有更多更精准的FMT治疗方案,人们对于健康机体的微生物区系也将会有更清楚的认识。届时,对于致病微生物将不再需要大剂量的抗生素进行“不分敌我”的杀灭,而是只需要使用健康的菌群进行定植,即可达到治愈改良效果。相信在不久的将来,通过肠道微生物介导以改善动物机体健康将会成为现实。
[1] |
XU J, GORDON J I. Honor thy symbionts[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(18): 10452-10459. DOI:10.1073/pnas.1734063100 |
[2] |
SAVAGE D C. Microbial ecology of the gastrointestinal tract[J]. Annual Review of Microbiology, 1977, 31: 107-133. DOI:10.1146/annurev.mi.31.100177.000543 |
[3] |
BÄCKHED F, MANCHESTER J K, SEMENKOVICH C F, et al. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(3): 979-984. DOI:10.1073/pnas.0605374104 |
[4] |
BÄCKHED F, DING H, WANG T, et al. The gut microbiota as an environmental factor that regulates fat storage[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(44): 15718-15723. DOI:10.1073/pnas.0407076101 |
[5] |
NICHOLSON J K, HOLMES E, KINROSS J, et al. Host-gut microbiota metabolic interactions[J]. Science, 2012, 336(6086): 1262-1267. DOI:10.1126/science.1223813 |
[6] |
ZHANG F M, LUO W S, SHI Y, et al. Should we standardize the 1, 700-year-old fecal microbiota transplantation?[J]. The American Journal of Gastroenterology, 2012, 107(11): 1755. |
[7] |
BAKKEN J S, BORODY T, BRANDT L J, et al. Treating Clostridium difficile infection with fecal microbiota transplantation[J]. Clinical Gastroenterology and Hepatology, 2011, 9(12): 1044-1049. DOI:10.1016/j.cgh.2011.08.014 |
[8] |
SMITS L P, BOUTER K E C, DE VOS W M, et al. Therapeutic potential of fecal microbiota transplantation[J]. Gastroenterology, 2013, 145(5): 946-953. DOI:10.1053/j.gastro.2013.08.058 |
[9] |
HALKJÆR S I, BOOLSEN A W, GÜNTHER S, et al. Can fecal microbiota transplantation cure irritable bowel syndrome?[J]. World Journal of Gastroenterology, 2017, 23(22): 4112-4120. DOI:10.3748/wjg.v23.i22.4112 |
[10] |
GOYAL A, YEH A, BUSH B R, et al. Safety, clinical response, and microbiome findings following fecal microbiota transplant in children with inflammatory bowel disease[J]. Inflammatory Bowel Diseases, 2018, 24(2): 410-421. DOI:10.1093/ibd/izx035 |
[11] |
KOOTTE R S, LEVIN E, SALOJÄRVI J, et al. Improvement of insulin sensitivity after lean donor feces in metabolic syndrome is driven by baseline intestinal microbiota composition[J]. Cell Metabolism, 2017, 26(4): 611-619. DOI:10.1016/j.cmet.2017.09.008 |
[12] |
WING A C, KREMENCHUTZKY M. Multiple sclerosis and faecal microbiome transplantation:are you going to eat that?[J]. Beneficial Microbes, 2019, 10(1): 27-32. DOI:10.3920/BM2018.0029 |
[13] |
TRIVEDI P J, ADAMS D H. Gut-liver immunity[J]. Journal of Hepatology, 2016, 64(5): 1187-1189. DOI:10.1016/j.jhep.2015.12.002 |
[14] |
MAYER E A, TILLISCH K, GUPTA A. Gut/brain axis and the microbiota[J]. The Journal of Clinical Investigation, 2015, 125(3): 926-938. DOI:10.1172/JCI76304 |
[15] |
EVRENSEL A, CEYLAN M E. Fecal microbiota transplantation and its usage in neuropsychiatric disorders[J]. Clinical Psychopharmacology and Neuroscience, 2016, 14(3): 231-237. DOI:10.9758/cpn.2016.14.3.231 |
[16] |
XU M Q, CAO H L, WANG W Q, et al. Fecal microbiota transplantation broadening its application beyond intestinal disorders[J]. World Journal of Gastroenterology, 2015, 21(1): 102-111. DOI:10.3748/wjg.v21.i1.102 |
[17] |
BARNES E M. The avian intestinal flora with particular reference to the possible ecological significance of the cecal anaerobic bacteria[J]. The American Journal of Clinical Nutrition, 1972, 25(12): 1475-1479. DOI:10.1093/ajcn/25.12.1475 |
[18] |
KOHL K D. Diversity and function of the avian gut microbiota[J]. Journal of Comparative Physiology B, 2012, 182(5): 591-602. DOI:10.1007/s00360-012-0645-z |
[19] |
YOUNG J C, ZHOU T, YU H, et al. Degradation of trichothecene mycotoxins by chicken intestinal microbes[J]. Food and Chemical Toxicology, 2007, 45(1): 136-143. DOI:10.1016/j.fct.2006.07.028 |
[20] |
SIEGERSTETTER S C, PETRI R M, MAGOWAN E, et al. Fecal microbiota transplant from highly feed-efficient donors shows little effect on age-related changes in feed-efficiency-associated fecal microbiota from chickens[J]. Applied and Environmental Microbiology, 2018, 84(2): e2330-17. |
[21] |
YITBAREK A, ASTILL J, HODGINS D C, et al. Commensal gut microbiota can modulate adaptive immune responses in chickens vaccinated with whole inactivated avian influenza virus subtype H9N2[J]. Vaccine, 2019, 37(44): 6640-6647. DOI:10.1016/j.vaccine.2019.09.046 |
[22] |
GILROY R, CHALONER G, WEDLEY A, et al. Campylobacter jejuni transmission and colonisation in broiler chickens is inhibited by faecal microbiota transplantation[J]. bioRxiv, 2018, 476119. |
[23] |
SCHREUDER J, VELKERS F C, BOUWSTRA R J, et al. Limited changes in the fecal microbiome composition of laying hens after oral inoculation with wild duck feces[J]. Poultry Science, 2019, 98(12): 6542-6551. DOI:10.3382/ps/pez526 |
[24] |
LE GALL-RECULÉ G, JESTIN V. Biochemical and genomic characterization of muscovy duck parvovirus[J]. Archives of Virology, 1994, 139(1/2): 121-131. |
[25] |
LAROUCAU K, DE BARBEYRAC B, VORIMORE F, et al. Chlamydial infections in duck farms associated with human cases of psittacosis in France[J]. Veterinary Microbiology, 2009, 135(1/2): 82-89. |
[26] |
何永强, 洪健, 吴旧生, 等. 致麻鸭产蛋下降的副粘病毒的分离和鉴定[J]. 中国兽医学报, 2005(3): 238-241. HE Y Q, HONG J, WU J S. Isolation and identification of paramyxovirus causing duck egg drop[J]. Chinese Journal of Veterinary Science, 2005(3): 238-241 (in Chinese). DOI:10.3969/j.issn.1005-4545.2005.03.004 |
[27] |
MONDAL T, KHAN M S R, ALAM M, et al. Isolation, identification and characterization of Salmonella from duck[J]. Bangladesh Journal of Veterinary Medicine, 2008, 6(1): 7-12. |
[28] |
BAKI M A, ISLAM R M, DAS P M, et al. Pathology of duck cholera in natural and experimental infections[J]. Bangladesh Journal of Microbiology, 1991, 61: 122-129. |
[29] |
BUXTON I, SOMMER C V. Serodiagnosis of Aspergillus fumigatus antibody in migratory ducks[J]. Avian Diseases, 1980, 24(2): 446-454. DOI:10.2307/1589711 |
[30] |
孙裴, 徐前明, 李立虎. 安徽某地区鸭大肠杆菌病与病毒性肝炎混合感染的防治[J]. 湖南农业科学, 2010(11): 116-118. SUN P, XU Q M, LI L H. The control method for mixed infection of colibacillosis and viral hepatitis of duck in one area of Anhui province[J]. Hunan Agricultural Sciences, 2010(11): 116-118 (in Chinese). DOI:10.3969/j.issn.1006-060X.2010.11.038 |
[31] |
DAVIS M. The monster at our door:the global threat of avian flu[M]. [s.l.]: Holt Paperbacks, 2006.
|
[32] |
ADZITEY F, HUDA N, ALI G R R. Prevalence and antibiotic resistance of Campylobacter, Salmonella, and L. monocytogenes in ducks:a review[J]. Foodborne Pathogens and Disease, 2012, 9(6): 498-505. DOI:10.1089/fpd.2011.1109 |
[33] |
RUFF M D. Important parasites in poultry production systems[J]. Veterinary Parasitology, 1999, 84(3/4): 337-347. |
[34] |
LIU S N, ZHANG X X, ZOU J F, et al. Development of an indirect ELISA for the detection of duck circovirus infection in duck flocks[J]. Veterinary Microbiology, 2010, 145(1/2): 41-46. |
[35] |
ZHANG Y, LI Y F, LIU M, et al. Development and evaluation of a VP3-ELISA for the detection of goose and Muscovy duck parvovirus antibodies[J]. Journal of Virological Methods, 2010, 163(2): 405-409. DOI:10.1016/j.jviromet.2009.11.002 |
[36] |
CHEN C T, WAN C H, SHI S H, et al. Development and application of a fiber2 protein-based indirect ELISA for detection of duck adenovirus 3[J]. Molecular and Cellular Probes, 2019, 48: 101447. DOI:10.1016/j.mcp.2019.101447 |
[37] |
PANDEY S, SHERCHAND S, MANANDHAR P, et al. Serological surveillance of avian influenza virus in Nepal[J]. Journal of Human Virology and Retrovirology, 2016, 4(1): 00120. |
[38] |
SHI S Q, QI Z, JIANG W, et al. Effects of probiotics on cecal microbiome profile altered by duck Escherichia coli 17 infection in Cherry Valley ducks[J]. Microbial Pathogenesis, 2020, 138: 103849. DOI:10.1016/j.micpath.2019.103849 |
[39] |
DIAZ J A R, KIM W H, FERNANDEZ C P, et al. Identification and expression analysis of duck interleukin-17D in Riemerella anatipestifer infection[J]. Developmental & Comparative Immunology, 2016, 61: 190-197. |
[40] |
GREEN H C, DICK L K, GILPIN B, et al. Genetic markers for rapid PCR-based identification of gull, Canada goose, duck, and chicken fecal contamination in water[J]. Applied and Environmental Microbiology, 2012, 78(2): 503-510. DOI:10.1128/AEM.05734-11 |
[41] |
YANG M, CHENG A C, WANG M S, et al. Development and application of a one-step real-time Taqman RT-PCR assay for detection of duck hepatitis virus type1[J]. Journal of Virological Methods, 2008, 153(1): 55-60. DOI:10.1016/j.jviromet.2008.06.012 |
[42] |
RAJPUT I R, LI W F, LI Y L, et al. Application of probiotic (Bacillus subtilis) to enhance immunity, antioxidation, digestive enzymes activity and hematological profile of Shaoxing duck[J]. Pakistan Veterinary Journal, 2012, 33(1): 69-72. |
[43] |
SUMARSIH S, SULISTIYANTO B, SUTRISNO C I, et al. Characteristic of Lactobacillus isolated from pengging duck's intestines as probiotics[J]. International Journal of Poultry Science, 2014, 13(1): 47-51. |
[44] |
HAMILTON M J, WEINGARDEN A R, SADOWSKY M J, et al. Standardized frozen preparation for transplantation of fecal microbiota for recurrent Clostridium difficile infection[J]. The American Journal of Gastroenterology, 2012, 107(5): 761-767. DOI:10.1038/ajg.2011.482 |
[45] |
OWENS C, BROUSSARD E, SURAWICZ C. Fecal microbiota transplantation and donor standardization[J]. Trends in Microbiology, 2013, 21(9): 443-445. DOI:10.1016/j.tim.2013.07.003 |
[46] |
LINK A, LACHMUND T, SCHULZ C, et al. Endoscopic peroral jejunal fecal microbiota transplantation[J]. Digestive and Liver Disease, 2016, 48(11): 1336-1339. DOI:10.1016/j.dld.2016.08.110 |
[47] |
CAMMAROTA G, MASUCCI L, IANIRO G, et al. Randomised clinical trial:faecal microbiota transplantation by colonoscopy vs.vancomycin for the treatment of recurrent Clostridium difficile infection[J]. Alimentary Pharmacology and Therapeutics, 2015, 41(9): 835-843. DOI:10.1111/apt.13144 |
[48] |
STURKIE P D. Avian physiology[M]. New York: Springer Science & Business Media, 2012.
|