2. 北京农学院动物科学技术学院, 北京 102206
2. Beijing University of Agriculture, Beijing 102206, China
MicroRNA(miRNA)是一种长度为18~25 nt的内源性短链非编码RNA,在不同物种间高度保守,其通过诱导mRNA的降解或阻断其翻译,在转录水平发挥调节作用[1-2]。多项研究表明,miRNA与乳腺、骨骼肌[3]、卵泡[4]、肝脏[5]、晶状体[6]、免疫细胞[7]等几乎所有组织、器官、细胞的发育密切相关。哺乳动物乳腺是动物体中少数反复经历发育、功能分化和退化的器官之一。乳腺发育和泌乳是一个复杂的过程,受多种激素、细胞因子及miRNA等的共同调控[8]。从理论上讲,了解乳腺发育和泌乳的精准调控网络,对于更好地了解乳腺生理功能及调节规律至关重要;从生产上讲,我国对奶牛生产的需求已经从过去单方面追求产量转变为对质量和产量的双重追求,最大程度地调动乳腺潜能,是行业需求。因此,本文拟从激素对乳腺miRNA表达谱的调控及乳腺miRNA对激素受体及其下游通路的调控2个角度,揭示奶牛乳腺激素相关miRNA的研究进展及方向,以期助力于乳腺生物学的发展及奶产品质量的提高。
1 激素对乳腺miRNA表达谱的影响乳腺组织的miRNA表达谱在不同泌乳阶段存在差异[9],并能对细菌侵袭[10-11]、热应激[12]、营养[13]等环境改变产生应答。在此过程中,激素,尤其是泌乳相关激素,是诱导乳腺miRNA变化的重要原因之一。
研究表明,地塞米松、胰岛素(INS)、催乳素(PRL)等生乳激素能够改变奶牛乳腺上皮细胞(BMEC)miRNA的表达谱。Muroya等[14]研究表明,生乳激素的添加显著降低BMEC中miR-21-5p、miR-26a及miR-320a的表达,并减少培养基中miR-339a的丰度,同时诱导培养基中miR-148表达上调。此外,有报道牛乳中miR-148a的含量在哺乳第5个月开始减少[15-16],说明激素诱导的miRNA与乳蛋白合成、乳腺发育和细胞成熟度有关。基于靶基因预测的生物信息学分析揭示,在BMEC中被下调的miRNA与转录调控、蛋白质磷酸化和导管发育等生物学进程相关[14]。
Jiao等[17]探讨了PRL/miR-183/胰岛素受体底物1(IRS1)途径调控奶牛乳脂代谢的分子机制。该研究中,用不同浓度PRL处理BMEC后,在一定的浓度和时间范围内,miR-183的表达与PRL存在相关性。为了确定PRL改变miR-183表达的机制,研究进一步使用甲基化抑制剂(5-aza-dc)处理BMEC,结果表明,5-aza-dc可部分抑制PRL介导的miR-183的下调,用亚硫酸氢DNA测序法检测PRL组和PRL+5-aza-dc组的甲基化水平,发现5-aza-dc处理抑制了PRL诱导的DNA甲基化,证实PRL可以通过BMEC甲基化作用抑制miR-183的表达。此外,研究还发现,IRS1在泌乳高峰期的乳腺组织中高表达,而miR-183的表达水平与IRS1表达负相关,miR-183可能与IRS1基因的3′UTR位点结合,并负调控IRS1基因mRNA和蛋白水平的表达。
此外,万中英等[18]针对中药王不留行增乳活性单体邻苯二甲酸二丁酯和PRL对乳腺上皮细胞内源性miRNAs表达的影响开展了研究,结果两者均可以抑制原代培养的泌乳中期BMEC中miRNA-143、miRNA-125和miRNA-195表达,该研究进一步证实激素可以改变奶牛乳腺miRNA表达谱,从而发挥后续调控作用。
除奶牛外,研究表明激素对其他物种乳腺miRNA表达同样具有影响。Hanan等[19]通过小鼠乳腺上皮细胞系中获得腺泡前体细胞、导管前体细胞和多能前体克隆细胞,其中,腺泡前体细胞中miR-146b的表达明显高于后两者。在单独使用PRL或雌激素和孕酮结合的激素刺激后,显著上调miR-146b的表达[20]。由于研究目的的不同,小鼠等模式动物的研究更倾向于病理机制的探讨,而奶牛则更倾向于乳腺生理功能的了解,但是毋庸置疑,奶牛乳腺中激素对miRNA的影响的研究,尚需更多发掘和拓展。
2 miRNA对激素受体及其下游信号通路的调控 2.1 对催乳素受体及其下游信号通路的调控PRL是一种最为重要的生乳激素,在乳腺发育、泌乳启动、乳汁生成等方面发挥重要作用。多种miRNA可以通过PRL、催乳素受体(PRLR)及其下游信号通路,参与PRL诱导的生物学进程。
泌乳启动需要自分泌PRL进行诱导,而磷酸酶(PTEN)-磷脂酰肌醇-3-羟激酶(PI3K)-蛋白激酶(AKT)信号通路能够内源性调节PRL的水平[21]。研究证实,PTEN基因是miR-29b在调节乳腺发育中的重要靶标,PTEN信号蛋白对于PRL自分泌的活动至关重要[22]。此外,在Do等[23]针对miRNA在整个泌乳期的时间表达模式进行的研究中证实,miR-29b/miR-363是乳腺从初乳向常乳生成过渡期信号的重要调节物,而泌乳阶段之间过渡的相关信号通路涉及细胞凋亡[PTEN和应激活化蛋白激酶(SAPK)/氨基末端激酶(JNK)]、细胞内信号传导[蛋白激酶A、转化生长因子-β(TGF-β)和细胞外信号调节激酶5(ERK5)]、细胞周期调节[信号转导与转录激活因子3(STAT3)]、细胞因子、激素和生长因子等。这说明miRNA可以通过PTEN对PRL及其受体表达发挥调控作用。
另一个广受关注的能够靶向PRLR的miRNA是miR-142-3p。小鼠乳腺研究中证实,miR-142-3p能够通过PRLR介导的多个信号通路改变小鼠乳腺的结构及泌乳功能[24]。奶牛乳腺中miR-142-3p功能及机制研究有限,于蕾等[25]发现,miR-142-3p在不同乳品质的奶牛乳腺组织中均有表达,但相比于处于泌乳期的高乳品质乳腺组织和干奶期乳腺组织,泌乳期低乳品质奶牛乳腺组织中的表达量最高,证明miR-142-3p在调控奶牛乳腺的泌乳功能上发挥作用,在以BMEC为模型的功能学研究中进一步证实,miR-142-3p沉寂后,可以通过改变其靶基因PRLR的表达及其下游信号通路的活性,最终增加BMEC合成β-酪蛋白及甘油三酯的能力。由此可见,miR-142-3p可以通过激素受体及其下游通路,完成对乳腺泌乳的调控。
2.2 对生长激素受体及其下游信号通路的调控乳腺的发育由生长激素(GH)、雌激素、孕激素和PRL等的复杂相互作用所调控。GH与生长激素受体(GHR)的结合触发了受非受体型酪氨酸蛋白激酶(JAK2)诱导的下游信号转导过程[26]。整体上讲,GHR通过JAK2下游的信号转导和转录激活(STAT)途径调节酪蛋白的生成[27-28],通过丝裂原活化蛋白激酶(MAPK)途径促进乳腺上皮细胞增殖和细胞周期调整[27],通过蛋白激酶C(PKC)途径改变葡萄糖代谢,通过IRS途径维持细胞的生长、分裂和代谢[29]。因此,研究miRNA通过靶向GHR调节奶牛乳腺发育、泌乳及乳品品质生成的机制具有重要意义。
miR-139是奶牛乳腺中发现的靶向GHR的最重要miRNA之一。Cui等[30]研究发现,miR-139在泌乳中期奶牛乳腺组织中的表达较妊娠中期下调,根据miR-139在奶牛泌乳过程中的作用,对其2个潜在的靶基因GHR和胰岛素样生长因子受体(IGF1R)进行了研究。双荧光素酶报告基因方法证实miR-139能够与GHR和IGF1R的3′UTR直接结合,功能学研究表明miR-139的过表达或沉默改变了BMEC中GHR和IGF1R的mRNA及蛋白表达水平。此外,miR-139的过表达降低了β-酪蛋白的生成,下调GHR及IGF1R通路中关键信号分子的表达,抑制乳腺上皮细胞的增殖,而沉默miR-139则与之相反。沉默GHR降低了β-酪蛋白、IGF1R和IGF1R途径关键信号分子的蛋白水平,而联合沉默miR-139和GHR则提高了GHR的表达水平并逆转了GHR的沉默效应。研究表明,GH可以通过刺激肝脏分泌IGF1间接作用于乳腺,诱导乳腺中miRNA表达的改变[31]。以上研究证实,GHR和IGF1R是奶牛乳腺中miR-139的靶基因,miR-139可通过靶向GHR和IGF1R改变其下游信号通路,从而抑制BMEC中β-酪蛋白的合成和细胞增殖。
另一个已被证实直接靶向GHR的miRNA是bta-miR-15a。bta-miR-15a位于牛12号染色体18 887 743~18 887 825 bp[32],在细胞发育、细胞周期[33]和死亡[34-35]调节中起重要作用。Li等[36]针对miR-15a在奶牛乳腺中的表达和功能开展了研究。结果表明,bta-miR-15a可以调节荷斯坦奶牛乳腺的发育,利用TargetScan5.1软件预测GHR基因是bta-miR-15a的潜在靶基因。研究进一步将bta-miR-15a模拟物或抑制剂分别转染BMEC,随后采用定量实时PCR、蛋白质印迹(Western blot)和CASY-TT等技术对泌乳相关基因和蛋白的表达进行了研究和分析,确定bta-miR-15a与GHR的调控关系。结果表明,当转染bta-miR-15a mimic时,bta-miR-15a的表达比内源性水平提高8.4倍,同时GHR的表达降低,当转染bta-miR-15a抑制剂时则效果相反。Western blot结果表明,bta-miR-15a转染可降低GHR和酪蛋白的表达。由此说明,bta-miR-15a能够在翻译水平上抑制GHR蛋白的表达,间接影响酪蛋白的合成,其作用机制可能是miR-15a抑制GHR的调节作用,从而影响JAK2-STAT5信号通路,并最终降低β-酪蛋白的生成。
2.3 其他激素相关miRNA除PRL及GH外,还有多种激素在乳腺发育和泌乳调控中发挥作用。瘦素(leptin)是脂肪细胞分泌的内分泌/旁分泌激素。在乳腺中,脂肪垫及脂肪细胞合成的瘦素能够与其他激素互作,发挥重要作用。研究表明,瘦素能够增加PRL的生乳能力[37],PRL、瘦素和雌激素的联合会增加β-乳球蛋白的表达[38],瘦素受体(LEPR)则在哺乳动物乳腺发育、泌乳及退化过程中起重要作用[39]。门晶等[40]采用靶基因预测软件,发现LEPR是miR-30d的潜在靶基因。该研究首先构建了包含与miR-30d靶向结合的LEPR序列的重组荧光素酶报告载体,将miR-30d与重组荧光素酶载体质粒共转染后的细胞进行片段化,检测荧光素酶活性,该研究确定LEPR是miR-30d的靶基因,并参与调控奶牛乳腺的生长发育和泌乳功能。
此外,对乳腺而言,INS是另一个重要的调节激素。INS一方面可以增加乳产量[41],另一方面与乳腺细胞的发育、存活及营养分配密切相关[42-43]。Wang等[9]在对奶牛产后30 d乳腺组织miRNA及其靶基因表达进行联合分析时发现,胰岛素受体(INSR)可能是miR-15/16、miR-181a、miR-221、miR-223的作用靶点。其中,miR-221在泌乳早期的表达低于泌乳高峰期,而miR-223则相反。此外,双重荧光素酶报告基因方法表明,IRS1、STAT5A及STAT3是miR-221的靶基因[44]。随后的分析揭示,miR-221模拟物的转染导致STAT5A和IRS1在mRNA和蛋白质水平上的表达显著降低。同时,miR-221转染后,JAK-STAT和PI3K-AKT/雷帕霉素靶蛋白(mTOR)信号通路中受STAT5A和IRS1调节的下游分子细胞因子信号转导抑制因子3(SOCS3)、AKT3和mTOR的表达均发生了变化。该研究证实,miR-221通过靶向STAT5A和IRS1(PI3K-Akt/mTOR和JAK-STAT信号传导途径的关键基因)抑制乳腺上皮细胞增殖。
3 小结乳腺是一种独特的组织,在成年期经历细胞增殖、分化和凋亡的周期。乳腺的发育是通过内分泌激素,包括GH、孕激素、PRL及其他激素相互作用,完成乳腺的周期性变化及泌乳功能的调节。miRNA作为调节生物学功能和乳腺发育的一类分子不容忽视。一方面,激素可以通过对miRNA表达谱的影响,完成对更多生物学功能的调节,使激素作用的范围更加深广; 另一方面,miRNA通过直接靶向激素受体及其下游信号通路分子,参与到激素相关的调节功能中,使信号的传递更完善,使调节更精准。
虽然针对miRNA在牛乳腺中的特殊生物学作用多有研究报道,但与乳腺激素有关的miRNA在牛乳腺中的作用机制还有待完善,这方面相关研究的深入和拓展可以为更好地了解乳腺生物学提供助益,更为促进乳腺健康、提高乳腺泌乳能力提供必要的理论信息和指导方向。
[1] |
李文清, 南雪梅, 卜登攀. 奶牛乳腺发育和泌乳相关的microRNA[J]. 动物营养学报, 2014, 26(1): 1-6. LI W Q, NAN X M, BU D P. MicroRNAs associated with bovine mammary development and lactation[J]. Chinese Journal of Animal Nutrition, 2014, 26(1): 1-6 (in Chinese). DOI:10.3969/j.issn.1006-267x.2014.01.001 |
[2] |
FILIPOWICZ W, BHATTACHARYYA S N, SONENBERG N. Mechanisms of post-transcriptional regulation by microRNAs:are the answers in sight?[J]. Nature Reviews Genetics, 2008, 9(2): 102-114. DOI:10.1038/nrg2290 |
[3] |
YIN H D, HE H R, SHEN X X, et al. MicroRNA profiling reveals an abundant miR-200a-3p promotes skeletal muscle satellite cell development by targeting TGF-β2 and regulating the TGF-β2/SMAD signaling pathway[J]. International Journal of Molecular Science, 2020, 21(9): 3274. DOI:10.3390/ijms21093274 |
[4] |
王亨琴, 王晓梅, 孟凯, 等. 卵泡液中细胞外囊泡及其携带的microRNA对卵泡发育的作用[J]. 生物工程学报, 2020, 36(4): 632-642. WANG H T, WANG X M, MENG K, et al. Effect of extracellular vesicles and microRNAs in follicular fluid on follicular development[J]. Chinese Journal of Biotechnology, 2020, 36(4): 632-642 (in Chinese). |
[5] |
ZHANG C Y, CHANG C F, GAO H, et al. miR-429 regulates rat liver regeneration and hepatocyte proliferation by targeting JUN/MYC/BCL2/CCND1 signaling pathway[J]. Cellular Signalling, 2018, 50: 80-89. DOI:10.1016/j.cellsig.2018.06.013 |
[6] |
LIU H F, JIANG B. Let-7a-5p represses proliferation, migration, invasion and epithelial-mesenchymal transition by targeting Smad2 in TGF-β2-induced human lens epithelial cells[J]. Journal of Biosciences, 2020, 45: 59. DOI:10.1007/s12038-020-0001-5 |
[7] |
TAPEH B E G, MOSAYYEBI B, SAMEI M, et al. microRNAs involved in T-cell development, selection, activation, and hemostasis[J]. Journal of Cellular Physiology, 2020. DOI:10.1002/jcp.29689 |
[8] |
MACIAS H, HINCK L. Mammary gland development[J]. Wiley Interdisciplinary Reviews Developmental Biology, 2012, 1(4): 533-557. DOI:10.1002/wdev.35 |
[9] |
WANG M, MOISÁ S, KHAN M J, et al. MicroRNA expression patterns in the bovine mammary gland are affected by stage of lactation[J]. Journal of Dairy Science, 2012, 95(11): 6529-6535. DOI:10.3168/jds.2012-5748 |
[10] |
LUORENG Z M, WANG X P, MEI C G, et al. Comparison of microRNA profiles between bovine mammary glands infected with Staphylococcus aureus and Escherichia coli[J]. International Journal of Biological Sciences, 2018, 14(1): 87-99. DOI:10.7150/ijbs.22498 |
[11] |
LAI Y C, LAI Y T, RAHMAN M M, et al. Bovine milk transcriptome analysis reveals microRNAs and RNU2 involved in mastitis[J]. The FEBS Journal, 2020, 287(9): 1899-1918. DOI:10.1111/febs.15114 |
[12] |
LI Q L, YANG C H, DU J, et al. Characterization of miRNA profiles in the mammary tissue of dairy cattle in response to heat stress[J]. BMC Genomics, 2018, 19: 975. DOI:10.1186/s12864-018-5298-1 |
[13] |
LI R, BEAUDOIN F, AMMAH A A, et al. Deep sequencing shows microRNA involvement in bovine mammary gland adaptation to diets supplemented with linseed oil or safflower oil[J]. BMC Genomics, 2015, 16: 884. DOI:10.1186/s12864-015-1965-7 |
[14] |
MUROYA S, HAGI T, KIMURA A, et al. Lactogenic hormones alter cellular and extracellular microRNA expression in bovine mammary epithelial cell culture[J]. Journal of Animal Science and Biotechnology, 2016, 7: 8. DOI:10.1186/s40104-016-0068-x |
[15] |
CHEN X, GAO C, LI H J, et al. Identification and characterization of microRNAs in raw milk during different periods of lactation, commercial fluid, and powdered milk products[J]. Cell Research, 2010, 20(10): 1128-1137. DOI:10.1038/cr.2010.80 |
[16] |
GU Y R, LI M Z, WANG T, et al. Lactation-related microRNA expression profiles of porcine breast milk exosomes[J]. PLoS One, 2012, 7(8): e43691. DOI:10.1371/journal.pone.0043691 |
[17] |
JIAO P X, YUAN Y, ZHANG M M, et al. PRL/microRNA-183/IRS1 pathway regulates milk fat metabolism in cow mammary epithelial cells[J]. Genes, 2020, 1(2): 196. |
[18] |
万中英, 佟慧丽, 李庆章, 等. 中药王不留行增乳活性单体及催乳素对奶牛乳腺上皮细胞特异性miRNA的影响[J]. 中国畜牧兽医, 2010, 37(8): 230-232. WAN Z Y, TONG H L, LI Q Z, et al. Influence on the specific microRNAs in bovine mammary gland epithelial cells by semen vaccariae active monomer and prolactin[J]. China Animal Husbandry & Veterinary Medicine, 2010, 37(8): 230-232 (in Chinese). |
[19] |
KITTRELL F S, CARLETTI M Z, KERBAWY S, et al. Prospective isolation and characterization of committed and multipotent progenitors from immortalized mouse mammary epithelial cells with morphogenic potential[J]. Breast Cancer Research, 2011, 13(2): R41. DOI:10.1186/bcr2863 |
[20] |
ELSARRAJ H S, STECKLEIN S R, VALDEZ K, et al. Emerging functions of microRNA-146a/b in development and breast cancer:microRNA-146a/b in development and breast cancer[J]. Journal of Mammary Gland Biology and Neoplasia, 2012, 17(1): 79-87. DOI:10.1007/s10911-012-9240-x |
[21] |
WANG Z R, HOU X M, QU B, et al. Pten regulates development and lactation in the mammary glands of dairy cows[J]. PLoS One, 2014, 9(7): e102118. DOI:10.1371/journal.pone.0102118 |
[22] |
CHEN C C, STAIRS D B, BOXER R B, et al. Autocrine prolactin induced by the Pten-Akt pathway is required for lactation initiation and provides a direct link between the Akt and Stat5 pathways[J]. Genes & Development, 2012, 26(19): 2154-2168. |
[23] |
DO D N, LI R, DUDEMAINE P L, et al. MicroRNA roles in signaling during lactation:an insight from differential expression, time course and pathway analyses of deep sequence data[J]. Scientific Reports, 2017, 7: 44605. DOI:10.1038/srep44605 |
[24] |
TIAN L, ZHANG L, CUI Y J, et al. miR-142-3p regulates milk synthesis and structure of murine mammary glands via PRLR-mediated multiple signaling pathways[J]. Journal of Agricultural and Food Chemistry, 2019, 67(34): 9532-9542. DOI:10.1021/acs.jafc.9b03734 |
[25] |
于蕾, 王春梅, 崔英俊, 等. Bta-miR-142-3p对奶牛乳腺上皮细胞泌乳功能的影响[J]. 中国乳品工业, 2015, 43(5): 8-11. YU L, WANG C M, CUI Y J, et al. Impact of bta-miR-142-3p on lactation function of dairy cow mammary epithelial cells[J]. China Dairy Industry, 2015, 43(5): 8-11 (in Chinese). DOI:10.3969/j.issn.1001-2230.2015.05.002 |
[26] |
GALLEGO M I, BINART N, ROBINSON G W, et al. Prolactin, growth hormone, and epidermal growth factor activate Stat5 in different compartments of mammary tissue and exert different and overlapping developmental effects[J]. Developmental Biology, 2001, 229(1): 63-175. |
[27] |
BOCKMEYER C L, CHRISTGEN M, MÜLLER M, et al. MicroRNA profiles of healthy basal and luminal mammary epithelial cells are distinct and reflected in different breast cancer subtypes[J]. Breast Cancer Research and Treatment, 2011, 130(3): 735-745. DOI:10.1007/s10549-010-1303-3 |
[28] |
MAO J, MOLENAAR A J, WHEELER T T, et al. STAT5 binding contributes to lactational stimulation of promoter Ⅲ expressing the bovine acetyl-CoA carboxylase alpha-encoding gene in the mammary gland[J]. Journal of Molecular Endocrinology, 2002, 29(1): 73-88. DOI:10.1677/jme.0.0290073 |
[29] |
GALLEGO M I, BINART N, ROBINSON G W, et al. Prolactin, growth hormone, and epidermal growth factor activate Stat5 in different compartments of mammary tissue and exert different and overlapping developmental effects[J]. Developmental Biology, 2001, 229(1): 163-175. DOI:10.1006/dbio.2000.9961 |
[30] |
CUI Y J, SUN X, JIN L F, et al. miR-139 suppresses β-casein synthesis and proliferation in bovine mammary epithelial cells by targeting the GHR and IGF1R signaling pathways[J]. BMC Veterinary Research, 2017, 13: 350. DOI:10.1186/s12917-017-1267-1 |
[31] |
SCIASCIA Q, PACHECO D, MCCOARD S A. Increased milk protein synthesis in response to exogenous growth hormone is associated with changes in mechanistic (mammalian) target of rapamycin (mTOR) C1-dependent and independent cell signaling[J]. Journal of Dairy Science, 2013, 96(4): 2327-2338. DOI:10.3168/jds.2012-6267 |
[32] |
GU Z L, ELESWARAPU S, JIANG H L. Identification and characterization of microRNAs from the bovine adipose tissue and mammary gland[J]. FEBS Letters, 2007, 581(5): 981-988. DOI:10.1016/j.febslet.2007.01.081 |
[33] |
BANDI N, ZBINDEN S, GUGGER M, et al. miR-15a and miR-16 are implicated in cell cycle regulation in a Rb-dependent manner and are frequently deleted or down-regulated in non-small cell lung cancer[J]. Cancer Research, 2009, 69(13): 5553-5559. DOI:10.1158/0008-5472.CAN-08-4277 |
[34] |
CIMMINO A, CALIN G A, FABBRI M, et al. miR-15 and miR-16 induce apoptosis by targeting BCL2[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(39): 13944-13949. DOI:10.1073/pnas.0506654102 |
[35] |
AQEILAN R I, CALIN G A, CROCE C M. miR-15a and miR-16-1 in cancer:discovery, function and future perspectives[J]. Cell Death & Differentiation, 2010, 17(2): 215-220. |
[36] |
LI H M, WANG C M, LI Q Z, et al. miR-15a decreases bovine mammary epithelial cell viability and lactation and regulates growth hormone receptor expression[J]. Molecules, 2012, 17(10): 12037-12048. DOI:10.3390/molecules171012037 |
[37] |
FEUERMANN Y, SHAMAY A, MABJEESH S J. Leptin up-regulates the lactogenic effect of prolactin in the bovine mammary gland in vitro[J]. Journal of Dairy Science, 2008, 91(11): 4183-4189. DOI:10.3168/jds.2008-0988 |
[38] |
FEUERMANN Y, MABJEESH S J, SHAMAY A. Mammary fat can adjust prolactin effect on mammary epithelial cells via leptin and estrogen[J]. International Journal of Endocrinology, 2009, 2009: 427260. |
[39] |
李萌, 李庆章. 奶山羊乳腺中瘦素及其受体的表达与作用[J]. 中国农业科学, 2008, 41(12): 4187-4193. LI M, LI Q Z. Expression and function of leptin and its receptor in mammary gland of goat[J]. Scientia Agricultura Sinica, 2008, 41(12): 4187-4193 (in Chinese). DOI:10.3864/j.issn.0578-1752.2008.12.032 |
[40] |
门晶, 接晶, 高学军, 等. 靶向奶牛Lepr基因的miR-30d报告基因载体构建及靶向验证[J]. 中国乳品工业, 2011, 39(5): 4-6, 30. MEN J, JIE J, GAO X J, et al. Construction of dairy cow Lepr targeting miR-30d reporter gene vector and verification of its targeting[J]. China Dairy Industry, 2011, 39(5): 4-6, 30 (in Chinese). DOI:10.3969/j.issn.1001-2230.2011.05.001 |
[41] |
BEQUETTE B J, KYLE C E, CROMPTON L A, et al. Insulin regulates milk production and mammary gland and hind-leg amino acid fluxes and blood flow in lactating goats[J]. Journal of Dairy Science, 2001, 84(1): 241-255. DOI:10.3168/jds.S0022-0302(01)74474-8 |
[42] |
HU H, WANG J Q, BU D P, et al. In vitro culture and characterization of a mammary epithelial cell line from Chinese Holstein dairy cow[J]. PLoS One, 2009, 4(11): e7636. DOI:10.1371/journal.pone.0007636 |
[43] |
李真, 李庆章. 奶山羊乳腺发育过程中生长激素、胰岛素及其受体的变化规律研究[J]. 中国农业科学, 2010, 43(8): 1730-1737. LI Z, LI Q Z. Development change of growth hormone, insulin and their receptors in mammary gland of dairy goats[J]. Scientia Agricultura Sinica, 2010, 43(8): 1730-1737 (in Chinese). |
[44] |
JIAO B L, ZHANG X L, WANG S H, et al. MicroRNA-221 regulates proliferation of bovine mammary gland epithelial cells by targeting the STAT5a and IRS1 genes[J]. Journal of Dairy Science, 2019, 102(1): 426-435. DOI:10.3168/jds.2018-15108 |