动物营养学报    2021, Vol. 33 Issue (1): 132-140    PDF    
胃饥饿素分泌调控机制的研究进展
孙睿1,2,3 , 杨文艳1,2,3     
1. 吉林农业大学动物科学技术学院, 长春 130118;
2. 吉林农业大学动物生产及产品质量安全教育部重点实验室, 长春 130118;
3. 吉林省动物营养与饲料科学重点实验室, 长春 130118
摘要: 胃饥饿素(Ghrelin)是一种由28个氨基酸组成的多肽,具有促进生长激素释放、调控动物采食和能量代谢等作用。文章从Ghrelin的转录、修饰和体内循环过程出发,并对一些营养物质和激素对Ghrelin分泌的影响与调控机制进行综述,旨在为进一步研究调控Ghrelin分泌的机制提供理论参考,也为阐明动物的促生长机制提供理论依据。
关键词: 胃饥饿素    分泌机制    转录调控    营养物质    
Advances on Regulation Mechanism of Ghrelin Secretion
SUN Rui1,2,3 , YANG Wenyan1,2,3     
1. College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China;
2. Key Laboratory of Animal Production and Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China;
3. Jilin Key Laboratory of Animal Nutrition and Feed Science, Changchun 130118, China
Abstract: Ghrelin is a polypeptide composed of 28 amino acids. It has multiple functions including promoting the release of growth hormone, regulating animal feeding and adjusting energy metabolism and so on. We reviewed the transcription, modification and internal circulation of Ghrelin, and the regulatory mechanisms of some nutrients and hormones on Ghrelin secretion. In order to provide theoretical references for further study of the mechanism of regulating Ghrelin secretion, and also provide theoretical basis for elucidating the growth-promoting mechanism of animals.
Key words: Ghrelin    secretion mechanism    transcriptional regulation    nutrients    

胃饥饿素(Ghrelin),又称生长激素释放肽,是一种由28个氨基酸组成的多肽,由胃底黏膜泌酸腺X/A样细胞产生,约占胃黏膜细胞总数的20%[1]。作为一种多功能肽,Ghrelin广泛分布在下丘脑、垂体、肠道、肾脏、胰脏、胎盘等中枢和外周器官[2]。Ghrelin主要以2种形式存在:去酰基化Ghrelin(des-acyl-ghrelin,DAG)和酰基化Ghrelin(acyl-ghrelin,AG)[3]。Ghrelin作为生长激素促分泌素受体(growth hormone secretagogue receptor,GHSR)的内源性配体,除具有促进垂体释放生长激素(growth hormone,GH)的作用外[4],还是连接中枢神经系统和参与营养代谢的外周组织的重要方式[2],在促进摄食、改善胃肠功能、调节脂类代谢和能量平衡等方面也具有广泛作用。研究发现,Ghrelin与其受体GHSR-1a结合后,GHSR-1a会通过释放神经肽Y和影响下丘脑弓状核神经元的刺鼠相关蛋白来促使动物产生饥饿感,从而促进摄食[5]。不仅如此,通过向小鼠脑内注射Ghrelin,可促进脂肪细胞中与脂肪储存相关酶及蛋白的表达[6],且对脂质代谢存在外周效应,包括增加白色脂肪组织质量、刺激肝脏的脂肪生成等[7]。此外,Ghrelin对提高机体免疫力、改善内分泌功能、治疗心血管疾病等方面均具有重要作用[3, 7-8]。Ghrelin的分泌是一个较为复杂的过程,包括mRNA转录、转录后的翻译、修饰、分泌及在体内的转运等,营养物质的摄入、体内激素水平等因素的变化都会影响到Ghrelin合成和释放的过程[9-10]。目前对于Ghrelin生理功能方面的研究与应用已较为成熟,但关于合成及其分泌过程的相关研究较少。因此,进一步探究Ghrelin合成和释放的机制及其影响因素,对改善动物健康、提高动物生产性能具有重要作用,对Ghrelin在动物生产中的应用也有着重要意义。

1 Ghrelin的合成、分泌及转运 1.1 Ghrelin基因的转录与翻译

Ghrelin基因到Ghrelin肽的过程,需要在Ghrelin基因完成转录后,成熟的Ghrelin mRNA翻译后生成Ghrelin前体蛋白原(Preproghrelin)[11]。人Ghrelin基因定位在3号染色体(3p25-26)上[12],研究表明,Ghrelin基因中有2个不同的转录起始位点,相对于ATG起始密码子来说,一个发生在-80位,另一个发生在-555位,会产生2个不同的mRNA转录本(转录本-A和转录本-B),其中转录本-A是胃中Ghrelin mRNA的主要表现形式,而转录本-B上呈现的人类Ghrelin基因中存在1个短的非编码第一外显子[13]。对人和大鼠Ghrelin基因核心启动子序列的研究发现,其上游刺激因子(upstream stimulatory factor,USF)可与Ghrelin启动子内多种具有活性的E-box序列结合,以调节Ghrelin基因的表达,当USF与Ghrelin启动子内同样具有活性的TATA-box序列结合时,USF还可以与RNA聚合酶的转录因子相互作用,间接证明了Ghrelin启动子活性可能通过调节某些重要的蛋白质-蛋白质间的相互作用来实现[14-15]。研究发现,Nkx2.2是一种包含对胰腺Ghrelin细胞分泌重要的转录因子的同源结构域,作为Ghrelin启动子的转录因子,具有增加人Ghrelin mRNA表达的作用[16]Ghrelin启动子中存在正调控区和负调控区,Shiimura等[17]研究表明,人Ghrelin启动子序列的-1 400和-1 800之间的核苷酸是抑制Ghrelin启动子活性的负调控区,而核因子-κB(NF-κB)可能是参与Ghrelin启动子活性负调控的一个重要的转录因子,上述这些转录因子都可能成为调控Ghrelin基因转录的重要靶点。

1.2 Ghrelin的加工与修饰

转录和翻译后的Preproghrelin由117个氨基酸组成,在结构上含有1个N-末端分泌信号肽,该信号肽会在内质网中被丝氨酸蛋白酶移除,成为由94个氨基酸组成的Ghrelin前体蛋白(Proghrelin)[18]。Ghrelin需要通过与GHSR-1a结合才能发挥其生理作用[19],为实现这一目的,Ghrelin需要将中链脂肪酸(通常是正辛酸)连接到其丝氨酸-3(Ser-3)上,这是一种独特的翻译后修饰的过程,即酰化,由Ghrelin O-酰基转移酶(Ghrelin O-acyltransferase,GOAT)在内质网中进行[20-21],此过程中需要辛酰基辅酶A(octanoyl-CoA)的参与,将丝氨酸辛酰化,使Proghrelin酰化为酰基化Ghrelin前体蛋白(Acly proghrelin)[22]。激素原转化酶1/3(prohormone convertase 1/3,PC1/3)将Acly proghrelin在单个精氨酸上进行有限的蛋白质水解加工后,形成含有28个氨基酸并具有生物学活性的Ghrelin。

GOAT是一种特异性催化O-酰基酸转移到Ghrelin的Ser-3羟基的酰基转移酶,也是具有多个跨膜结构域的膜结合酶,高度保守[23]。Lim等[24]研究了GOAT mRNA在不同组织中的表达分布,发现GOAT mRNA的表达情况与Ghrelin的分布是相对应的,但在敲除GOAT后,Ghrelin的酰化过程会被完全阻止,说明GOAT是Ghrelin酰化的关键酶。研究发现,应用体外GOAT活性测定的方法,对GOAT底物特异性进行研究,发现Proghrelin中Ser-3及周围的甘氨酸-1(Gly-1)和苯丙氨酸-4(Phe-4)是影响GOAT活性的关键氨基酸[25-26]。Darling等[27]在研究GOAT在Ghrelin中的结合位点时,通过Proghrelin和模拟Ghrelin的N-末端“GSSF”序列的短肽的突变,证实了Ghrelin的N-末端序列的重要性,并确定了Ghrelin结构中前4个氨基酸的侧链对GOAT起主要识别作用。因Ghrelin具有自分泌和旁分泌2种形式,所以GOAT除了酰化Ghrelin的自分泌作用外,对酰化Ghrelin的旁分泌及局部合成作用都可能发挥着重要作用[25, 28]

激素原转化酶(prohormone convertase,PC)家族作为一类蛋白水解酶,具有催化碱性氨基酸分裂的作用,常见的有PC1/3、PC2等[29]。Walia等[30]通过免疫组化试验证实了胃内Ghrelin免疫阳性细胞中PC1/3与Ghrelin共定位,而未见PC2的免疫染色现象。Seim等[31]研究发现,只有在缺失PC1/3的小鼠胃中才存在完整的Proghrelin,并证明了PC1/3是胃内Proghrelin转化为Ghrelin的关键转化酶,但在胰腺中却发现了Ghrelin免疫阳性细胞中PC1/3及PC2的共定位情况,一些数据也表明在胰腺中PC2同样在Proghrelin的加工与修饰中发挥重要作用,并且可能在局部释放Ghrelin机制中发挥作用,但具体机制尚不清楚[32]

1.3 Ghrelin在体内的转运

研究发现,血液中DAG和AG的比例约为9 : 1[33],Ghrelin在胃分泌颗粒细胞中形成后,经血液运输到靶器官发挥作用。但AG结构十分不稳定,会影响其跨室转运,特别是跨越血脑屏障[34]。因此,为确保Ghrelin可以顺利通过并充分发挥其作用,还需经过循环酯酶的快速脱酰基作用去除辛烷基,将AG转化为不活跃的去酰基化形式,即DAG[35]。在多种循环酯酶的检测中,丁酰胆碱酯酶(butyrylcholinesterase,BChE)是AG脱酰基的关键酶,主要由哺乳动物的肝脏合成并分泌,广泛存在于机体的大脑、肠、胃、脾脏、肾脏等部位[36]。研究表明,循环中的BChE可以在Ghrelin穿过血脑屏障之前将其水解变成DAG[37]。此外,有研究发现中枢BChE可以调节下丘脑局部产生的Ghrelin,并且对下丘脑各核团有直接影响[38]。最后在BChE作用下,DAG会顺利进入血液,通过血液循环被运送到相应的靶器官,再与这些部位原生质膜的GOAT会发生局部再酰化反应,使Ghrelin再次具有生物学活性,发挥其相应的生物学作用[21]

2 营养物质对Ghrelin分泌的调控

动物在正常生理状态下,Ghrelin水平在摄食之前会有所升高,但在进食后会迅速下降,而食物中的营养物质是产生该作用的主要原因[39]。动物所摄入的葡萄糖、脂类、氨基酸以及微量元素等营养物质,都会影响到动物体内Ghrelin水平。

2.1 葡萄糖

葡萄糖是调节体内Ghrelin水平的重要因素之一。静脉注射或口服葡萄糖对胃内Ghrelin mRNA表达及血浆中DAG的酰化都具有明显的抑制作用[40]。Sakata等[41]在体外培养的小鼠胃黏膜原代细胞中添加不同浓度的D-葡萄糖,发现D-葡萄糖浓度较高时Ghrelin释放量减少,但在D-葡萄糖浓度较低时Ghrelin释放量则明显增加。低糖诱导Ghrelin分泌可能与ATP敏感性K+(KATP)通道有关,研究发现在低葡萄糖浓度下,在MGN3-1细胞(一种Ghrelin分泌细胞)培养液中加入KATP通道抑制剂会抑制Ghrelin的分泌,并且,电压依赖性钙离子(Ca2+)通道也会参与这个过程[42]。在不同的葡萄糖环境中,调节葡萄糖应答的各种葡萄糖转运体、通道和酶都可能参与调节Ghrelin分泌,但它们在此过程中的确切作用仍有待研究[43-44]

2.2 脂类

脂类物质对Ghrelin分泌的调控较为复杂,Ghrelin的酰化过程需要有脂肪酸的参与,从乙酸衍生到十四酸(C14 : 0)的脂肪酸都可能会影响到Ghrelin的酰化过程,其中辛酸(C8 : 0)是参与该反应的主要脂肪酸[45]。不同类型的脂肪酸对Ghrelin酰化的影响机制也不尽相同,研究发现摄取中链脂肪酸(MCFAs)或中链三酰甘油(MCTs)可增加胃内AG含量,并且修饰Ghrelin酰基的碳链长度与摄取MCFAs的碳链长度一致,表明摄入的MCFAs直接参与Ghrelin的酰基修饰过程[46]。此外,Lu等[47]通过向幽门结扎小鼠灌胃富含长链脂肪酸(LCFA)的脂质后,血清及胃中Ghrelin水平显著降低。在研究LCFA抑制Ghrelin分泌机制中发现,胃中产生Ghrelin的细胞表面存在大量的G蛋白偶联受体120(G protein coupled receptor 120,GPR120),作为调节体内外Ghrelin分泌的信号,同时GPR120也是LCFA的受体,所以与进食相关的LCFA增加会与Ghrelin细胞上的GPR120相互作用,从而抑制Ghrelin的分泌[48-49]

2.3 氨基酸

研究发现,一定水平的循环氨基酸会影响体内Ghrelin的分泌[50]。不同的氨基酸对Ghrelin的影响也有所不同。Fukumori等[51]将蛋氨酸及生理盐水混合液连续注入泌乳奶牛的颈静脉,发现血浆中增加的蛋氨酸水平促进了Ghrelin的分泌。此外,胃肠内分泌细胞上的味觉感受器会感知营养物质,并控制激素信号的传递[52]。Vancleef等[53]研究发现,一些功能性氨基酸会通过其特定种类的氨基酸味觉受体,刺激MGN3-1细胞中Ghrelin的分泌,例如L-苯丙氨酸可通过钙敏感受体(CaSR)感知Ghrelin,谷氨酸钠通过味觉受体1型成员1(TAS1R1)和味觉受体1型成员3(TAS1R3)感知Ghrelin等,但由于体内环境复杂,这些局部营养感知机制在体内可能会被间接抑制Ghrelin释放的机制所推翻,其中可能涉及胰岛素或其他信号,还有待进一步研究。

2.4 微量元素

铜、锌作为具有促生长作用的微量元素,对动物体内Ghrelin水平以及合成过程均存在一定影响。Zhang等[54]发现,在断奶仔猪饲粮中添加四碱式氯化锌可提高其血浆Ghrelin水平,并促进垂体GH的分泌,进而促进生长。但这种促生长作用可能与采食量无关,Yin等[55]研究表明,氧化锌可刺激胃黏膜细胞产生Ghrelin,但不影响Ghrelin mRNA表达水平,其原因可能是氧化锌在转录后水平上刺激了胃中Ghrelin分泌。G蛋白偶联受体39(GPR39),也是Ghrelin受体家族的成员之一[56]。锌离子(Zn2+)作为一种激动剂,可通过刺激磷脂酶C(PLC)活性和生成环磷酸腺苷(cAMP),从而激活GPR39[57],这可能是Zn2+提高机体内Ghrelin水平的方式之一,但需要进一步的试验来证明这一点。

在铜对机体Ghrelin分泌调节方面,Yang等[58]研究发现,在生长猪饲粮中添加铜可以促进生长猪胃底腺的颈部和基底部Ghrelin免疫阳性细胞的发育,并能促进Ghrelin mRNA的表达。黄元龙[59]研究表明,在绵羊饲粮中添加硫酸铜可提高其皱胃中Ghrelin mRNA及蛋白表达,但具体的作用途径和机制尚未阐明。核转录因子激活蛋白-1(activator protein-1,AP-1)是Ghrelin上游调控因子的结合位点之一[58]。有研究指出,添加低浓度铜可提高AP-1的结合能力[60],其主要机制为铜会诱导c-Jun N-末端激酶/应激激活蛋白激酶和p38通路磷酸化和活化水平增加,从而激活丝裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)途径,最终激活转录[61],这可能是铜调节Ghrelin转录的方式之一。

3 激素对Ghrelin分泌的调控 3.1 生长抑素(somatostatin,SS)

SS是胃黏膜中产生的一种多肽,它会以旁分泌的方式抑制Ghrelin的分泌[62]。胃中产生Ghrelin的细胞是封闭型内分泌细胞,与管腔之间没有连续性,并且与胃中产生SS的分泌细胞直接接触,若SS分泌水平升高,则会影响Ghrelin的释放过程[63]。Fukuhara等[64]研究发现,静脉注射SS可降低大鼠血浆中Ghrelin水平,并且对其抑制作用具有剂量和时间的依赖性。Silva等[65]对SS的2种类似物SOM230和奥曲肽进行研究,发现2种物质均对禁食小鼠体内AG的分泌产生了明显的抑制作用,其中奥曲肽对其抑制作用更强。SS受体可能是影响Ghrelin分泌时发挥作用的关键[66]。不仅如此,杜改梅等[67]通过分析断奶前后小鼠胃中GOAT基因的表达规律,提出在胃中SS可能会通过抑制GOAT的表达调控胃酸的分泌,但该试验中并未证实是否是通过调节Ghrelin从而影响到胃酸的分泌。Gahete等[68]通过在培养的小鼠脾细胞中对SS进行基因敲除,发现GOAT的mRNA表达量明显升高,证明了SS对GOAT的表达存在一定的抑制作用,这也是SS调节Ghrelin分泌的途径之一。

3.2 瘦素

在结构上,产生瘦素的细胞主要位于胃黏膜的底部,大量的Ghrelin细胞被其紧密包围,故瘦素会以与SS类似的方式在结构上抑制Ghrelin的旁分泌[69]。在体内,空腹状态下血浆中Ghrelin水平与瘦素水平呈负相关趋势[70]。Zhao等[71]试验表明,瘦素会以剂量依赖性的方式直接抑制大鼠胃Ghrelin mRNA的表达,并证明了禁食状态下胃Ghrelin mRNA表达水平的升高,部分原因是通过降低胃瘦素水平来实现。同时瘦素作为长期调节能量平衡、抑制食物摄入并导致体重减轻的介质,在中枢性食欲控制中与Ghrelin的调节是反向的[72]。Nour等[73]研究表明,瘦素可通过磷脂酰肌醇-3激酶(PI3K)-磷酸二酯酶3(PDE3)途径抑制Ghrelin的分泌,并且这种相互作用可能在调节摄食中发挥重要作用。

3.3 胰岛素

在机体正常情况下,注射胰岛素后血浆中Ghrelin水平会降低,其原因可能是果糖会提高机体Ghrelin水平,而胰岛素会以激素活性的形式抵抗和影响果糖的摄取能力,以减少酰基Ghrelin水平[74-75]。正常人注射胰岛素后,与胰岛素抵抗个体相比,胰岛素敏感个体的总Ghrelin水平以及AG水平均显著降低,表明Ghrelin的修饰过程可能受到胰岛素敏感性的影响[76]。Seim等[11]从睾丸和LNCaP前列腺癌细胞系中克隆得到与人类Ghrelin基因内含子2中的隐含外显子相对应的胰岛素应答转录因子,命名为in2c-ghrelin,添加胰岛素会显著增加in2c-ghrelin的表达量,该转录因子同时可编码Ghrelin,表明胰岛素可能通过调节Ghrelin的转录因子参与Ghrelin的合成过程。Song等[77]发现,与哺乳动物相比,通过皮下注射胰岛素的方法可增加鸡腺胃中Ghrelin的表达,胰岛素在增加外周Ghrelin的表达时,会下调下丘脑GhrelinGHSR-1a的表达水平,从而抑制了中枢Ghrelin/GHSR-1a系统的激活,其机制可能与PI3K途径有关[78]

3.4 胰高血糖素样肽-1(glucagon-like peptide-1,GLP-1)

GLP-1具有促进胰岛素分泌、调节动物摄食的作用[79]。研究表明,进食会促进GLP-1的分泌,向体内注射天然的GLP-1,可明显抑制进食一段时间后血浆Ghrelin水平升高的情况,并且通过对血浆中葡萄糖、胰岛素、GLP-1和Ghrelin水平的测定,发现血浆中Ghrelin水平与胰岛素水平呈负相关,说明GLP-1对Ghrelin的抑制作用可能是通过促进胰岛素的分泌间接实现[80]。胰高血糖素样肽-1受体(GLP-1R)在外周和中枢神经系统中均有表达,研究发现GLP-1对Ghrelin的抑制作用与其受体活性有关[81]。Hong等[82]通过向由饮食诱导的肥胖小鼠脑内注射Exendin-4(EX-4,一种GLP-1激动剂),发现小鼠的下丘脑、胃和血浆中Ghrelin均被抑制,但下丘脑和胃中的哺乳动物雷帕霉素靶蛋白(mTOR)信号活性显著增强,当mTORC1信号转导的机制靶点被阻断时,GLP-1和EX-4的作用显著减弱,证实mTORC1是GLP-1R被激活后诱导Ghrelin下调的关键信号通路。

4 影响Ghrelin分泌的其他因素

除上述因素外,神经系统调节也是动物机体对于体内Ghrelin水平调节的重要方式。研究人员证实,切除迷走神经后,可使动物因禁食而引起的Ghrelin水平升高消失,并短时间降低体内Ghrelin水平[83]。Mundinger等[84]通过电刺激激活肠交感神经,发现可显著提高大鼠门静脉Ghrelin水平,证明交感神经也可直接刺激Ghrelin分泌,去甲肾上腺素(noradrenaline,NE)可能起到关键作用。Zhao等[85]研究发现,在Ghrelin分泌细胞培养基中添加NE可刺激Ghrelin的分泌,但通过利血平降低小鼠交感神经元肾上腺素能神经递质后,小鼠因禁食引起的Ghrelin水平升高被阻断。Mani等[86]研究表明,NE会通过释放细胞内Ca2+来实现,在这过程中,cAMP及其下游鸟苷酸交换蛋白(EPAC)的激活,也起到重要作用。

5 小结

尽管目前对于Ghrelin生理作用的研究有了一定进展,但对调节Ghrelin合成及分泌的分子机制的认识还相对滞后,对于Ghrelin分泌整体过程的系统性研究也相对较少,很多问题还缺乏一致性的结论。Ghrelin合成和分泌的进一步探究,可为更精确地调控Ghrelin的表达、实现Ghrelin的功能奠定基础,也为阐明动物的促生长机制提供理论依据。

参考文献
[1]
DATE Y, KOJIMA M, HOSODA H, et al. Ghrelin, a novel growth hormone-releasing acylated peptide, is synthesized in a distinct endocrine cell type in the gastrointestinal tracts of rats and humans[J]. Endocrinology, 2000, 141(11): 4255-4261. DOI:10.1210/endo.141.11.7757
[2]
KHATIB N, GAIDHANE S, GAIDHANE A M, et al. Ghrelin:ghrelin as a regulatory peptide in growth hormone secretion[J]. Journal of Clinical and Diagnostic Research:JCDR, 2014, 8(8): MC13-MC17.
[3]
TAKIGUCHI S, MURAKAMI K, YANAGIMOTO Y, et al. Clinical application of ghrelin in the field of surgery[J]. Surgery Today, 2015, 45(7): 801-807. DOI:10.1007/s00595-014-1040-z
[4]
FAIM F, PASSAGLIA P, BATALHAO M, et al. Role of ghrelin on growth hormone/insulin-like growth factor-1 axis during endotoxemia[J]. Growth Hormone & IGF Research, 2019, 48-49: 36-44.
[5]
HUANG H H, CHEN C Y. Alpha-melanocyte stimulating hormone in ghrelin-elicited feeding and gut motility[J]. Journal of the Chinese Medical Association, 2019, 82(2): 87-91. DOI:10.1097/JCMA.0000000000000007
[6]
THEANDER-CARRILLO C, WIEDMER P, CETTOUR-ROSE P, et al. Ghrelin action in the brain controls adipocyte metabolism[J]. Journal of Clinical Investigation, 2006, 116(7): 1983-1993. DOI:10.1172/JCI25811
[7]
LV Y, LIANG T T, WANG G X, et al. Ghrelin, a gastrointestinal hormone, regulates energy balance and lipid metabolism[J]. Bioscience Reports, 2018, 38(5): BSR20181061. DOI:10.1042/BSR20181061
[8]
马兴彬, 许伟华. Ghrelin与胃肠疾病关系的研究进展[J]. 世界华人消化杂志, 2013, 21(3): 239-243.
MA X B, XU W H. Relationship between Ghrelin and gastrointestinal diseases[J]. World Chinese Journal of Digestology, 2013, 21(3): 239-243 (in Chinese).
[9]
LI Z R, MULHOLLAND M, ZHANG W Z. Ghrelin O-acyltransferase (GOAT) and energy metabolism[J]. Science China Life Sciences, 2016, 59(3): 281-291. DOI:10.1007/s11427-015-4973-6
[10]
AL MASSADI O, NOGUEIRAS R, DIEGUEZ C, et al. Ghrelin and food reward[J]. Neuropharmacology, 2019, 148: 131-138. DOI:10.1016/j.neuropharm.2019.01.001
[11]
SEIM I, LUBIK A A, LEHMAN M L, et al. Cloning of a novel insulin-regulated ghrelin transcript in prostate cancer[J]. Journal of Molecular Endocrinology, 2013, 50(2): 179-191.
[12]
SEIM I, COLLET C, HERINGTON A C, et al. Revised genomic structure of the human ghrelin gene and identification of novel exons, alternative splice variants and natural antisense transcripts[J]. BMC Genomics, 2007, 8: 298. DOI:10.1186/1471-2164-8-298
[13]
KOJIMA M, KANGAWA K. Ghrelin:from gene to physiological function[J]. Results and Problems in Cell Differentiation, 2010, 50: 185-205.
[14]
KANAMOTO N, AKAMIZU T, TAGAMI T, et al. Genomic structure and characterization of the 5'-flanking region of the human ghrelin gene[J]. Endocrinology, 2004, 145(9): 4144-4153. DOI:10.1210/en.2003-1718
[15]
SATO T, NAKAMURA Y, SHⅡMURA Y, et al. Structure, regulation and function of ghrelin[J]. The Journal of Biochemistry, 2012, 151(2): 119-128. DOI:10.1093/jb/mvr134
[16]
HILL J T, CHAO C S, ANDERSON K R, et al. .Nkx2.2 activates the ghrelin promoter in pancreatic islet cells[J]. Molecular Endocrinology, 2010, 24(2): 381-390. DOI:10.1210/me.2009-0360
[17]
SHⅡMURA Y, OHGUSU H, SATO T, et al. Regulation of the human ghrelin promoter activity by transcription factors, NF-κB and Nkx2.2[J]. International Journal of Endocrinology, 2015, 580908.
[18]
ZHU X R, CAO Y, VOODG K, et al. On the processing of proghrelin to ghrelin[J]. Journal of Biological Chemistry, 2006, 281(50): 38867-38870. DOI:10.1074/jbc.M607955200
[19]
VERHULST P J, DEPOORTERE I. Ghrelin's second life:from appetite stimulator to glucose regulator[J]. World Journal of Gastroenterology, 2012, 18(25): 3183-3195.
[20]
DEPOORTERE I. GI functions of GPR39:novel biology[J]. Current Opinion in Pharmacology, 2012, 12(6): 647-652. DOI:10.1016/j.coph.2012.07.019
[21]
MURTUZA M I, ISOKAWA M. Endogenous ghrelin-O-acyltransferase (GOAT) acylates local ghrelin in the hippocampus[J]. Journal of Neurochemistry, 2018, 144(1): 58-67. DOI:10.1111/jnc.14244
[22]
LEMARIÉ F, BEAUCHAMP E, LEGRAND P, et al. Revisiting the metabolism and physiological functions of caprylic acid (C8:0) with special focus on ghrelin octanoylation[J]. Biochimie, 2015, 120: 40-48.
[23]
YANG J, BROWN M S, LIANG G S, et al. Identification of the acyltransferase that octanoylates ghrelin, an appetite-stimulating peptide hormone[J]. Cell, 2008, 132(3): 387-396. DOI:10.1016/j.cell.2008.01.017
[24]
LIM C T, KOLA B, GROSSMAN A, et al. The expression of ghrelin O-acyltransferase (GOAT) in human tissues[J]. Endocrine Journal, 2011, 58(8): 707-710. DOI:10.1507/endocrj.K11E-117
[25]
YONEYAMA-HIROZANE M, DEGUCHI K, HIRAKAWA T, et al. Identification and characterization of a new series of ghrelin O-acyl transferase inhibitors[J]. SLAS Discovery:Advancing Life Sciences R & D, 2017, 23(2): 154-163.
[26]
DELPORTE C. Structure and physiological actions of ghrelin[J]. Scientifica, 2013, 2013: 518909.
[27]
DARLING J E, ZHAO F, LOFTUS R J, et al. Structure-activity analysis of human ghrelin o-acyltransferase reveals chemical determinants of ghrelin selectivity and acyl group recognition[J]. Biochemistry, 2015, 54(4): 11-19.
[28]
HOUGLAND J L. Ghrelin octanoylation by ghrelin O-acyltransferase:unique protein biochemistry underlying metabolic signaling[J]. Biochemical Society Transactions, 2019, 47(1): 169-178. DOI:10.1042/BST20180436
[29]
MOHAN H, GASNER M, RAMESH N, et al. Ghrelin, ghrelin-O-acyl transferase, nucleobindin-2/nesfatin-1 and prohormone convertases in the pancreatic islets of Sprague Dawley rats during development[J]. Journal of Molecular Histology, 2016, 47(3): 325-336. DOI:10.1007/s10735-016-9673-4
[30]
WALIA P, ASADI A, KIEFFER T J, et al. Ontogeny of ghrelin, obestatin, preproghrelin, and prohormone convertases in rat pancreas and stomach[J]. Pediatric Research, 2008, 65(1): 39-44.
[31]
SEIM I, JEFFERY P L, DE AMORIM L, et al. Ghrelin O-acyltransferase (GOAT) is expressed in prostate cancer tissues and cell lines and expression is differentially regulated in vitro by ghrelin[J]. Reproductive Biology and Endocrinology, 2013, 11: 70. DOI:10.1186/1477-7827-11-70
[32]
NAKAJIMA K, MAEDA N, OISO S, et al. Decreased plasma octanoylated ghrelin levels in mice by oleanolic acid[J]. Journal of Oleo Science, 2019, 68(1): 103-109. DOI:10.5650/jos.ess18148
[33]
PATTERSON M, MURPHY K G, LE ROUX C W, et al. Characterization of ghrelin-like immunoreactivity in human plasma[J]. Journal of Clinical Endocrinology and Metabolism, 2005, 90(4): 2205-2211. DOI:10.1210/jc.2004-1641
[34]
HA Z Y, MATHEW S, YEONG K Y. Butyrylcholinesterase:a multifaceted pharmacological target and tool[J]. Current Protein & Peptide Science, 2020, 21(1): 99-109.
[35]
CLEVERDON E R, MCGOVERN-GOOCH K R, HOUGLAND J L. The octanoylated energy regulating hormone ghrelin:an expanded view of ghrelin's biological interactions and avenues for controlling ghrelin signaling[J]. Molecular Membrane Biology, 2017, 33(6/7/8): 111-124.
[36]
BRIMIJOIN S, CHEN V P, PANG Y P, et al. Physiological roles for butyrylcholinesterase:a BChE-ghrelin axis[J]. Chemico-Biological Interactions, 2016, 259: 271-275. DOI:10.1016/j.cbi.2016.02.013
[37]
CHEN V P, GAO Y, GENG L Y, et al. Plasma butyrylcholinesterase regulates ghrelin to control aggression[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(12): 2251-2256.
[38]
CHEN N P, GAO Y, GENG L, et al. Butyrylcholinesterase regulates central ghrelin signaling and has an impact on food intake and glucose homeostasis[J]. International Journal of Obesity, 2017, 41(9): 1413-1419. DOI:10.1038/ijo.2017.123
[39]
CUMMINGS D E, PURNELL J Q, FRAYO R S, et al. A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans[J]. Diabetes, 2001, 50(8): 1714-1719. DOI:10.2337/diabetes.50.8.1714
[40]
TONG J, PRIGEON R L, DAVIS H W, et al. Ghrelin suppresses glucose-stimulated insulin secretion and deteriorates glucose tolerance in healthy humans[J]. Diabetes, 2010, 59(9): 2145-2151. DOI:10.2337/db10-0504
[41]
SAKATA I, PARK W M, WALKER A K, et al. Glucose-mediated control of ghrelin release from primary cultures of gastric mucosal cells[J]. American Journal of Physiology:Endocrinology and Metabolism, 2012, 302(10): E1300-E1310. DOI:10.1152/ajpendo.00041.2012
[42]
OYA M, KITAGUCHI T, HARADA K, et al. Low glucose-induced ghrelin secretion is mediated by an ATP-sensitive potassium channel[J]. Journal of Endocrinology, 2015, 226(1): 25-34. DOI:10.1530/JOE-15-0090
[43]
DEZAKI K. Ghrelin function in insulin release and glucose metabolism[J]. Endocrine development, 2013, 25: 135-43. DOI:10.1159/000346064
[44]
ALAMRI B N, SHIN K, CHAPPE V, et al. The role of ghrelin in the regulation of glucose homeostasis[J]. Hormone Molecular Biology and Clinical Investigation, 2016, 26(1): 3-11.
[45]
AUCLAIR N, PATEY N, MELBOUCI L, et al. Acylated ghrelin and the regulation of lipid metabolism in the intestine[J]. Scientific Reports, 2019, 9: 17975. DOI:10.1038/s41598-019-54265-0
[46]
NISHI Y, MIFUNE H, KOJIMA M. Ghrelin acylation by ingestion of medium-chain fatty acids[J]. Methods in Enzymology, 2012, 514: 303-315. DOI:10.1016/B978-0-12-381272-8.00019-2
[47]
LU X P, ZHAO X L, FENG J Y, et al. Postprandial inhibition of gastric ghrelin secretion by long-chain fatty acid through GPR120 in isolated gastric ghrelin cells and mice[J]. American Journal of Physiology-Gastrointestinal and Liver Physiology, 2012, 303(3): G367-G376. DOI:10.1152/ajpgi.00541.2011
[48]
BANDO M, IWAKURA H, KOYAMA H, et al. High incorporation of long-chain fatty acids contributes to the efficient production of acylated ghrelin in ghrelin-producing cells[J]. FEBS Letters, 2016, 590(7): 992-1001. DOI:10.1002/1873-3468.12132
[49]
GONG Z, YOSHIMURA M, AIZAWA S, et al. G protein-coupled receptor 120 signaling regulates ghrelin secretion in vivo and in vitro[J]. American Journal of Physiology Endocrinology and Metabolism, 2014, 306(1): E28-E35. DOI:10.1152/ajpendo.00306.2013
[50]
SUGINO T, KAWAKITA Y, FUKUMORI R, et al. Effects of glucose and amino acids on ghrelin secretion in sheep[J]. Animal Science Journal, 2010, 81(2): 199-204. DOI:10.1111/j.1740-0929.2009.00733.x
[51]
FUKUMORI R, YOKOTANI A, SUGINO T, et al. Effects of amino acids infused into the vein on ghrelin-induced GH, insulin and glucagon secretion in lactating cows[J]. Animal Science Journal, 2011, 82(2): 267-273. DOI:10.1111/j.1740-0929.2010.00838.x
[52]
ELSABAGH M, ISHIKAKE M, SAKAMOTO Y, et al. Postruminal supply of amino acids enhances ghrelin secretion and lipid metabolism in feed-deprived sheep[J]. Animal Science Journal, 2018, 89(12): 1663-1672. DOI:10.1111/asj.13114
[53]
VANCLEEF L, VAN DEN BROECK T, THIJS T, et al. Chemosensory signalling pathways involved in sensing of amino acids by the ghrelin cell[J]. Scientific Reports, 2015, 5: 15725. DOI:10.1038/srep15725
[54]
ZHANG B K, GUO Y M. The growth-promoting effect of tetrabasic zinc chloride is associated with elevated concentration of growth hormone and Ghrelin[J]. Asian-Australasian Journal of Animal Sciences, 2008, 21(10): 1473-1478. DOI:10.5713/ajas.2008.80057
[55]
YIN J D, LI X L, LI D F, et al. Dietary supplementation with zinc oxide stimulates ghrelin secretion from the stomach of young pigs[J]. Journal of Nutritional Biochemistry, 2009, 20(10): 783-790. DOI:10.1016/j.jnutbio.2008.07.007
[56]
QIAO J W, ZHAO H S, ZHANG Y, et al. GPR39 is region-specifically expressed in mouse oviduct correlating with the Zn2+ distribution[J]. Theriogenology, 2016, 88: 98-105.
[57]
POPOVICS P, STEWART A J. GPR39:a Zn2+-activated G protein-coupled receptor that regulates pancreatic, gastrointestinal and neuronal functions[J]. Cellular and Molecular Life Sciences, 2011, 68(1): 85-95. DOI:10.1007/s00018-010-0517-1
[58]
YANG W Y, WANG J G, ZHU X Y, et al. High lever dietary copper promote ghrelin gene expression in the fundic gland of growing pigs[J]. Biological Trace Element Research, 2012, 150(1/2/3): 154-157.
[59]
黄元龙.日粮铜水平对绵羊生长激素释放调节多肽的影响[D].硕士学位论文.长春: 吉林农业大学, 2018.
HUANG Y L.Effect of dietary copper level on growth hormone releasing regulatory polypeptide in sheep[D].Master's Thesis.Changchun: Jilin Agricultural University, 2018.(in Chinese)
[60]
LUNG S, LI H H, BONDY S C, et al. Low concentrations of copper in drinking water increase AP-1 binding in the brain[J]. Toxicology and Industrial Health, 2013, 31(12): 1178-1184.
[61]
MATTIE M D, MCELWEE M K, FREEDMAN J H. Mechanism of copper-activated transcription:activation of AP-1, and the JNK/SAPK and p38 signal transduction pathways[J]. Journal of Molecular Biology, 2008, 383(5): 1008-1018. DOI:10.1016/j.jmb.2008.08.080
[62]
REYNAUD Y, FAKHRY J, FOTHERGILL L, et al. The chemical coding of 5-hydroxytryptamine containing enteroendocrine cells in the mouse gastrointestinal tract[J]. Cell and Tissue Research, 2016, 364(3): 489-497. DOI:10.1007/s00441-015-2349-7
[63]
HUNNE B, STEBBING M J, MCQUADE R M, et al. Distributions and relationships of chemically defined enteroendocrine cells in the rat gastric mucosa[J]. Cell and Tissue Research, 2019, 378(1): 33-48. DOI:10.1007/s00441-019-03029-3
[64]
FUKUHARA S, SUZUKI H, MASAOKA T, et al. Enhanced ghrelin secretion in rats with cysteamine-induced duodenal ulcers[J]. American Journal of Physiology:Gastrointestinal and Liver Physiology, 2005, 289(1): G138-G145. DOI:10.1152/ajpgi.00298.2004
[65]
SILVA A P, BETHMANN K, RAULF F, et al. Regulation of ghrelin secretion by somatostatin analogs in rats[J]. European Journal of Endocrinology, 2005, 152(6): 887-894. DOI:10.1530/eje.1.01914
[66]
STENGEL A, GOEBEL M, WANG L X, et al. Abdominal surgery inhibits circulating Acyl ghrelin and ghrelin-O-acyltransferase levels in rats:role of the somatostatin receptor 2[J]. Gastroenterology, 2011, 140(5 suppl. 1): S-808.
[67]
杜改梅, 吴结革, 胡志华, 等. 断奶前后小鼠胃GOAT基因表达及其与胃酸分泌、胃泌素和生长抑素的关系[J]. 江苏农业学报, 2016, 32(3): 626-630.
DU G M, WU J G, HU Z H. Expression of gastric GOAT mRNA and the relationship with gastric acid secretion, gastric gastrin and SS in pre- and post-weaning mice[J]. Jiangsu Journal of Agricultural Sciences, 2016, 32(3): 626-630 (in Chinese). DOI:10.3969/j.issn.1000-4440.2016.03.022
[68]
GAHETE M D, CÓRDOBA-CHACÓN J, SALVATORI R, et al. Metabolic regulation of ghrelin O-acyl transferase (GOAT) expression in the mouse hypothalamus, pituitary, and stomach[J]. Molecular and Cellular Endocrinology, 2010, 317(1/2): 154-160.
[69]
KLOK M D, JAKOBSDOTTIR S, DRENT M L. The role of leptin and ghrelin in the regulation of food intake and body weight in humans:a review[J]. Obesity Reviews, 2007, 8(1): 21-34. DOI:10.1111/j.1467-789X.2006.00270.x
[70]
KIYICI S, BASARAN N F, CAVUN S, et al. Central injection of CDP-choline suppresses serum ghrelin levels while increasing serum leptin levels in rats[J]. European Journal of Pharmacology, 2015, 764: 264-270. DOI:10.1016/j.ejphar.2015.07.014
[71]
ZHAO Z, SAKATA I, OKUBO Y, et al. Gastric leptin, but not estrogen and somatostatin, contributes to the elevation of ghrelin mRNA expression level in fasted rats[J]. Journal of Endocrinology, 2008, 196(3): 529-538.
[72]
PINKNEY J. The role of ghrelin in metabolic regulation[J]. Current Opinion in Clinical Nutrition and Metabolic Care, 2014, 17(6): 497-502. DOI:10.1097/MCO.0000000000000101
[73]
NOUR H A, EL SAWAF A L, ELEWA S M, et al. Strength and independence of associations between ghrelin, leptin, adiponectin and insulin in stimulating basic functions to energy metabolism[J]. Alexandria Journal of Medicine, 2014, 50(1): 49-59. DOI:10.1016/j.ajme.2013.05.005
[74]
孙艺璇. 脑肠肽与胰岛素分泌[J]. 同济大学学报(医学版), 2014, 35(3): 133-136.
SUN Y X. Braingutpeptides in regulation of insulin secretion[J]. Journal of Tongji University(Medical Science), 2014, 35(3): 133-136 (in Chinese). DOI:10.3969/j.issn1008-0392.2014.03.031
[75]
VAN NAME M, GIANNINI C, SANTORO N, et al. Blunted suppression of acyl-ghrelin in response to fructose ingestion in obese adolescents:the role of insulin resistance[J]. Obesity, 2015, 23(3): 653-661. DOI:10.1002/oby.21019
[76]
BLIJDORP K, VAN DER LELY A J, VAN DEN HEUVEL-EIBRINK M M, et al. Desacyl ghrelin is influenced by changes in insulin concentration during an insulin tolerance test[J]. Growth Hormone & IGF Research, 2013, 23(5): 193-195.
[77]
SONG X X, JIAO H C, ZHAO J P, et al. Dexamethasone and insulin stimulate ghrelin secretion of broilers in a different way[J]. General and Comparative Endocrinology, 2018, 268: 14-21. DOI:10.1016/j.ygcen.2018.07.009
[78]
UENO M, CARVALHEIRA J B C, OLIVEIRA R L G S, et al. Expression of concern:circulating ghrelin concentrations are lowered by intracerebroventricular insulin[J]. Diabetologia, 2017. DOI:10.1007/s00125-017-4357-5
[79]
PAGE L C, GASTALDELLI A, GRAY S M, et al. Interaction of GLP-1 and Ghrelin on Glucose Tolerance in Healthy Humans[J]. Diabetes, 2018, 67(10): 1976-1985. DOI:10.2337/db18-0451
[80]
HAGEMANN D, HOLST J J, GETHMANN A, et al. Glucagon-like peptide 1(GLP-1) suppresses ghrelin levels in humans via increased insulin secretion[J]. Regulatory Peptides, 2007, 143(1/2/3): 64-68.
[81]
RONVEAUX C C, TOMÉ D, RAYBOULD H E. Glucagon-like peptide 1 interacts with ghrelin and leptin to regulate glucose metabolism and food intake through vagal afferent neuron signaling[J]. The Journal of Nutrition, 2015, 145(4): 672-680. DOI:10.3945/jn.114.206029
[82]
HONG X S, ZHANG H, LIANG H B, et al. Exendin-4 decreases ghrelin levels through mTOR signaling[J]. Molecular and Cellular Endocrinology, 2016, 437: 201-212. DOI:10.1016/j.mce.2016.08.039
[83]
HOSODA H, KANGAWA K. The autonomic nervous system regulates gastric ghrelin secretion in rats[J]. Regulatory Peptides, 2008, 146(1/2/3): 12-18.
[84]
MUNDINGER T O, CUMMINGS D E, TABORSKY G J, J r. Direct stimulation of ghrelin secretion by sympathetic nerves[J]. Endocrinology, 2006, 147(6): 2893-2901. DOI:10.1210/en.2005-1182
[85]
ZHAO T J, SAKATA I, LI R L, et al. Ghrelin secretion stimulated by β1-adrenergic receptors in cultured ghrelinoma cells and in fasted mice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(36): 15868-15873. DOI:10.1073/pnas.1011116107
[86]
MANI B K, CHUANG J C, KJALARSDOTTIR L, et al. Role of calcium and EPAC in norepinephrine-induced ghrelin secretion[J]. Endocrinology, 2014, 155(1): 98-107. DOI:10.1210/en.2013-1691