2. 吉林农业大学动物生产及产品质量安全教育部重点实验室, 长春 130118;
3. 吉林省动物营养与饲料科学重点实验室, 长春 130118
2. Key Laboratory of Animal Production and Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China;
3. Jilin Key Laboratory of Animal Nutrition and Feed Science, Changchun 130118, China
胃饥饿素(Ghrelin),又称生长激素释放肽,是一种由28个氨基酸组成的多肽,由胃底黏膜泌酸腺X/A样细胞产生,约占胃黏膜细胞总数的20%[1]。作为一种多功能肽,Ghrelin广泛分布在下丘脑、垂体、肠道、肾脏、胰脏、胎盘等中枢和外周器官[2]。Ghrelin主要以2种形式存在:去酰基化Ghrelin(des-acyl-ghrelin,DAG)和酰基化Ghrelin(acyl-ghrelin,AG)[3]。Ghrelin作为生长激素促分泌素受体(growth hormone secretagogue receptor,GHSR)的内源性配体,除具有促进垂体释放生长激素(growth hormone,GH)的作用外[4],还是连接中枢神经系统和参与营养代谢的外周组织的重要方式[2],在促进摄食、改善胃肠功能、调节脂类代谢和能量平衡等方面也具有广泛作用。研究发现,Ghrelin与其受体GHSR-1a结合后,GHSR-1a会通过释放神经肽Y和影响下丘脑弓状核神经元的刺鼠相关蛋白来促使动物产生饥饿感,从而促进摄食[5]。不仅如此,通过向小鼠脑内注射Ghrelin,可促进脂肪细胞中与脂肪储存相关酶及蛋白的表达[6],且对脂质代谢存在外周效应,包括增加白色脂肪组织质量、刺激肝脏的脂肪生成等[7]。此外,Ghrelin对提高机体免疫力、改善内分泌功能、治疗心血管疾病等方面均具有重要作用[3, 7-8]。Ghrelin的分泌是一个较为复杂的过程,包括mRNA转录、转录后的翻译、修饰、分泌及在体内的转运等,营养物质的摄入、体内激素水平等因素的变化都会影响到Ghrelin合成和释放的过程[9-10]。目前对于Ghrelin生理功能方面的研究与应用已较为成熟,但关于合成及其分泌过程的相关研究较少。因此,进一步探究Ghrelin合成和释放的机制及其影响因素,对改善动物健康、提高动物生产性能具有重要作用,对Ghrelin在动物生产中的应用也有着重要意义。
1 Ghrelin的合成、分泌及转运 1.1 Ghrelin基因的转录与翻译从Ghrelin基因到Ghrelin肽的过程,需要在Ghrelin基因完成转录后,成熟的Ghrelin mRNA翻译后生成Ghrelin前体蛋白原(Preproghrelin)[11]。人Ghrelin基因定位在3号染色体(3p25-26)上[12],研究表明,Ghrelin基因中有2个不同的转录起始位点,相对于ATG起始密码子来说,一个发生在-80位,另一个发生在-555位,会产生2个不同的mRNA转录本(转录本-A和转录本-B),其中转录本-A是胃中Ghrelin mRNA的主要表现形式,而转录本-B上呈现的人类Ghrelin基因中存在1个短的非编码第一外显子[13]。对人和大鼠Ghrelin基因核心启动子序列的研究发现,其上游刺激因子(upstream stimulatory factor,USF)可与Ghrelin启动子内多种具有活性的E-box序列结合,以调节Ghrelin基因的表达,当USF与Ghrelin启动子内同样具有活性的TATA-box序列结合时,USF还可以与RNA聚合酶的转录因子相互作用,间接证明了Ghrelin启动子活性可能通过调节某些重要的蛋白质-蛋白质间的相互作用来实现[14-15]。研究发现,Nkx2.2是一种包含对胰腺Ghrelin细胞分泌重要的转录因子的同源结构域,作为Ghrelin启动子的转录因子,具有增加人Ghrelin mRNA表达的作用[16]。Ghrelin启动子中存在正调控区和负调控区,Shiimura等[17]研究表明,人Ghrelin启动子序列的-1 400和-1 800之间的核苷酸是抑制Ghrelin启动子活性的负调控区,而核因子-κB(NF-κB)可能是参与Ghrelin启动子活性负调控的一个重要的转录因子,上述这些转录因子都可能成为调控Ghrelin基因转录的重要靶点。
1.2 Ghrelin的加工与修饰转录和翻译后的Preproghrelin由117个氨基酸组成,在结构上含有1个N-末端分泌信号肽,该信号肽会在内质网中被丝氨酸蛋白酶移除,成为由94个氨基酸组成的Ghrelin前体蛋白(Proghrelin)[18]。Ghrelin需要通过与GHSR-1a结合才能发挥其生理作用[19],为实现这一目的,Ghrelin需要将中链脂肪酸(通常是正辛酸)连接到其丝氨酸-3(Ser-3)上,这是一种独特的翻译后修饰的过程,即酰化,由Ghrelin O-酰基转移酶(Ghrelin O-acyltransferase,GOAT)在内质网中进行[20-21],此过程中需要辛酰基辅酶A(octanoyl-CoA)的参与,将丝氨酸辛酰化,使Proghrelin酰化为酰基化Ghrelin前体蛋白(Acly proghrelin)[22]。激素原转化酶1/3(prohormone convertase 1/3,PC1/3)将Acly proghrelin在单个精氨酸上进行有限的蛋白质水解加工后,形成含有28个氨基酸并具有生物学活性的Ghrelin。
GOAT是一种特异性催化O-酰基酸转移到Ghrelin的Ser-3羟基的酰基转移酶,也是具有多个跨膜结构域的膜结合酶,高度保守[23]。Lim等[24]研究了GOAT mRNA在不同组织中的表达分布,发现GOAT mRNA的表达情况与Ghrelin的分布是相对应的,但在敲除GOAT后,Ghrelin的酰化过程会被完全阻止,说明GOAT是Ghrelin酰化的关键酶。研究发现,应用体外GOAT活性测定的方法,对GOAT底物特异性进行研究,发现Proghrelin中Ser-3及周围的甘氨酸-1(Gly-1)和苯丙氨酸-4(Phe-4)是影响GOAT活性的关键氨基酸[25-26]。Darling等[27]在研究GOAT在Ghrelin中的结合位点时,通过Proghrelin和模拟Ghrelin的N-末端“GSSF”序列的短肽的突变,证实了Ghrelin的N-末端序列的重要性,并确定了Ghrelin结构中前4个氨基酸的侧链对GOAT起主要识别作用。因Ghrelin具有自分泌和旁分泌2种形式,所以GOAT除了酰化Ghrelin的自分泌作用外,对酰化Ghrelin的旁分泌及局部合成作用都可能发挥着重要作用[25, 28]。
激素原转化酶(prohormone convertase,PC)家族作为一类蛋白水解酶,具有催化碱性氨基酸分裂的作用,常见的有PC1/3、PC2等[29]。Walia等[30]通过免疫组化试验证实了胃内Ghrelin免疫阳性细胞中PC1/3与Ghrelin共定位,而未见PC2的免疫染色现象。Seim等[31]研究发现,只有在缺失PC1/3的小鼠胃中才存在完整的Proghrelin,并证明了PC1/3是胃内Proghrelin转化为Ghrelin的关键转化酶,但在胰腺中却发现了Ghrelin免疫阳性细胞中PC1/3及PC2的共定位情况,一些数据也表明在胰腺中PC2同样在Proghrelin的加工与修饰中发挥重要作用,并且可能在局部释放Ghrelin机制中发挥作用,但具体机制尚不清楚[32]。
1.3 Ghrelin在体内的转运研究发现,血液中DAG和AG的比例约为9 : 1[33],Ghrelin在胃分泌颗粒细胞中形成后,经血液运输到靶器官发挥作用。但AG结构十分不稳定,会影响其跨室转运,特别是跨越血脑屏障[34]。因此,为确保Ghrelin可以顺利通过并充分发挥其作用,还需经过循环酯酶的快速脱酰基作用去除辛烷基,将AG转化为不活跃的去酰基化形式,即DAG[35]。在多种循环酯酶的检测中,丁酰胆碱酯酶(butyrylcholinesterase,BChE)是AG脱酰基的关键酶,主要由哺乳动物的肝脏合成并分泌,广泛存在于机体的大脑、肠、胃、脾脏、肾脏等部位[36]。研究表明,循环中的BChE可以在Ghrelin穿过血脑屏障之前将其水解变成DAG[37]。此外,有研究发现中枢BChE可以调节下丘脑局部产生的Ghrelin,并且对下丘脑各核团有直接影响[38]。最后在BChE作用下,DAG会顺利进入血液,通过血液循环被运送到相应的靶器官,再与这些部位原生质膜的GOAT会发生局部再酰化反应,使Ghrelin再次具有生物学活性,发挥其相应的生物学作用[21]。
2 营养物质对Ghrelin分泌的调控动物在正常生理状态下,Ghrelin水平在摄食之前会有所升高,但在进食后会迅速下降,而食物中的营养物质是产生该作用的主要原因[39]。动物所摄入的葡萄糖、脂类、氨基酸以及微量元素等营养物质,都会影响到动物体内Ghrelin水平。
2.1 葡萄糖葡萄糖是调节体内Ghrelin水平的重要因素之一。静脉注射或口服葡萄糖对胃内Ghrelin mRNA表达及血浆中DAG的酰化都具有明显的抑制作用[40]。Sakata等[41]在体外培养的小鼠胃黏膜原代细胞中添加不同浓度的D-葡萄糖,发现D-葡萄糖浓度较高时Ghrelin释放量减少,但在D-葡萄糖浓度较低时Ghrelin释放量则明显增加。低糖诱导Ghrelin分泌可能与ATP敏感性K+(KATP)通道有关,研究发现在低葡萄糖浓度下,在MGN3-1细胞(一种Ghrelin分泌细胞)培养液中加入KATP通道抑制剂会抑制Ghrelin的分泌,并且,电压依赖性钙离子(Ca2+)通道也会参与这个过程[42]。在不同的葡萄糖环境中,调节葡萄糖应答的各种葡萄糖转运体、通道和酶都可能参与调节Ghrelin分泌,但它们在此过程中的确切作用仍有待研究[43-44]。
2.2 脂类脂类物质对Ghrelin分泌的调控较为复杂,Ghrelin的酰化过程需要有脂肪酸的参与,从乙酸衍生到十四酸(C14 : 0)的脂肪酸都可能会影响到Ghrelin的酰化过程,其中辛酸(C8 : 0)是参与该反应的主要脂肪酸[45]。不同类型的脂肪酸对Ghrelin酰化的影响机制也不尽相同,研究发现摄取中链脂肪酸(MCFAs)或中链三酰甘油(MCTs)可增加胃内AG含量,并且修饰Ghrelin酰基的碳链长度与摄取MCFAs的碳链长度一致,表明摄入的MCFAs直接参与Ghrelin的酰基修饰过程[46]。此外,Lu等[47]通过向幽门结扎小鼠灌胃富含长链脂肪酸(LCFA)的脂质后,血清及胃中Ghrelin水平显著降低。在研究LCFA抑制Ghrelin分泌机制中发现,胃中产生Ghrelin的细胞表面存在大量的G蛋白偶联受体120(G protein coupled receptor 120,GPR120),作为调节体内外Ghrelin分泌的信号,同时GPR120也是LCFA的受体,所以与进食相关的LCFA增加会与Ghrelin细胞上的GPR120相互作用,从而抑制Ghrelin的分泌[48-49]。
2.3 氨基酸研究发现,一定水平的循环氨基酸会影响体内Ghrelin的分泌[50]。不同的氨基酸对Ghrelin的影响也有所不同。Fukumori等[51]将蛋氨酸及生理盐水混合液连续注入泌乳奶牛的颈静脉,发现血浆中增加的蛋氨酸水平促进了Ghrelin的分泌。此外,胃肠内分泌细胞上的味觉感受器会感知营养物质,并控制激素信号的传递[52]。Vancleef等[53]研究发现,一些功能性氨基酸会通过其特定种类的氨基酸味觉受体,刺激MGN3-1细胞中Ghrelin的分泌,例如L-苯丙氨酸可通过钙敏感受体(CaSR)感知Ghrelin,谷氨酸钠通过味觉受体1型成员1(TAS1R1)和味觉受体1型成员3(TAS1R3)感知Ghrelin等,但由于体内环境复杂,这些局部营养感知机制在体内可能会被间接抑制Ghrelin释放的机制所推翻,其中可能涉及胰岛素或其他信号,还有待进一步研究。
2.4 微量元素铜、锌作为具有促生长作用的微量元素,对动物体内Ghrelin水平以及合成过程均存在一定影响。Zhang等[54]发现,在断奶仔猪饲粮中添加四碱式氯化锌可提高其血浆Ghrelin水平,并促进垂体GH的分泌,进而促进生长。但这种促生长作用可能与采食量无关,Yin等[55]研究表明,氧化锌可刺激胃黏膜细胞产生Ghrelin,但不影响Ghrelin mRNA表达水平,其原因可能是氧化锌在转录后水平上刺激了胃中Ghrelin分泌。G蛋白偶联受体39(GPR39),也是Ghrelin受体家族的成员之一[56]。锌离子(Zn2+)作为一种激动剂,可通过刺激磷脂酶C(PLC)活性和生成环磷酸腺苷(cAMP),从而激活GPR39[57],这可能是Zn2+提高机体内Ghrelin水平的方式之一,但需要进一步的试验来证明这一点。
在铜对机体Ghrelin分泌调节方面,Yang等[58]研究发现,在生长猪饲粮中添加铜可以促进生长猪胃底腺的颈部和基底部Ghrelin免疫阳性细胞的发育,并能促进Ghrelin mRNA的表达。黄元龙[59]研究表明,在绵羊饲粮中添加硫酸铜可提高其皱胃中Ghrelin mRNA及蛋白表达,但具体的作用途径和机制尚未阐明。核转录因子激活蛋白-1(activator protein-1,AP-1)是Ghrelin上游调控因子的结合位点之一[58]。有研究指出,添加低浓度铜可提高AP-1的结合能力[60],其主要机制为铜会诱导c-Jun N-末端激酶/应激激活蛋白激酶和p38通路磷酸化和活化水平增加,从而激活丝裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)途径,最终激活转录[61],这可能是铜调节Ghrelin转录的方式之一。
3 激素对Ghrelin分泌的调控 3.1 生长抑素(somatostatin,SS)SS是胃黏膜中产生的一种多肽,它会以旁分泌的方式抑制Ghrelin的分泌[62]。胃中产生Ghrelin的细胞是封闭型内分泌细胞,与管腔之间没有连续性,并且与胃中产生SS的分泌细胞直接接触,若SS分泌水平升高,则会影响Ghrelin的释放过程[63]。Fukuhara等[64]研究发现,静脉注射SS可降低大鼠血浆中Ghrelin水平,并且对其抑制作用具有剂量和时间的依赖性。Silva等[65]对SS的2种类似物SOM230和奥曲肽进行研究,发现2种物质均对禁食小鼠体内AG的分泌产生了明显的抑制作用,其中奥曲肽对其抑制作用更强。SS受体可能是影响Ghrelin分泌时发挥作用的关键[66]。不仅如此,杜改梅等[67]通过分析断奶前后小鼠胃中GOAT基因的表达规律,提出在胃中SS可能会通过抑制GOAT的表达调控胃酸的分泌,但该试验中并未证实是否是通过调节Ghrelin从而影响到胃酸的分泌。Gahete等[68]通过在培养的小鼠脾细胞中对SS进行基因敲除,发现GOAT的mRNA表达量明显升高,证明了SS对GOAT的表达存在一定的抑制作用,这也是SS调节Ghrelin分泌的途径之一。
3.2 瘦素在结构上,产生瘦素的细胞主要位于胃黏膜的底部,大量的Ghrelin细胞被其紧密包围,故瘦素会以与SS类似的方式在结构上抑制Ghrelin的旁分泌[69]。在体内,空腹状态下血浆中Ghrelin水平与瘦素水平呈负相关趋势[70]。Zhao等[71]试验表明,瘦素会以剂量依赖性的方式直接抑制大鼠胃Ghrelin mRNA的表达,并证明了禁食状态下胃Ghrelin mRNA表达水平的升高,部分原因是通过降低胃瘦素水平来实现。同时瘦素作为长期调节能量平衡、抑制食物摄入并导致体重减轻的介质,在中枢性食欲控制中与Ghrelin的调节是反向的[72]。Nour等[73]研究表明,瘦素可通过磷脂酰肌醇-3激酶(PI3K)-磷酸二酯酶3(PDE3)途径抑制Ghrelin的分泌,并且这种相互作用可能在调节摄食中发挥重要作用。
3.3 胰岛素在机体正常情况下,注射胰岛素后血浆中Ghrelin水平会降低,其原因可能是果糖会提高机体Ghrelin水平,而胰岛素会以激素活性的形式抵抗和影响果糖的摄取能力,以减少酰基Ghrelin水平[74-75]。正常人注射胰岛素后,与胰岛素抵抗个体相比,胰岛素敏感个体的总Ghrelin水平以及AG水平均显著降低,表明Ghrelin的修饰过程可能受到胰岛素敏感性的影响[76]。Seim等[11]从睾丸和LNCaP前列腺癌细胞系中克隆得到与人类Ghrelin基因内含子2中的隐含外显子相对应的胰岛素应答转录因子,命名为in2c-ghrelin,添加胰岛素会显著增加in2c-ghrelin的表达量,该转录因子同时可编码Ghrelin,表明胰岛素可能通过调节Ghrelin的转录因子参与Ghrelin的合成过程。Song等[77]发现,与哺乳动物相比,通过皮下注射胰岛素的方法可增加鸡腺胃中Ghrelin的表达,胰岛素在增加外周Ghrelin的表达时,会下调下丘脑Ghrelin和GHSR-1a的表达水平,从而抑制了中枢Ghrelin/GHSR-1a系统的激活,其机制可能与PI3K途径有关[78]。
3.4 胰高血糖素样肽-1(glucagon-like peptide-1,GLP-1)GLP-1具有促进胰岛素分泌、调节动物摄食的作用[79]。研究表明,进食会促进GLP-1的分泌,向体内注射天然的GLP-1,可明显抑制进食一段时间后血浆Ghrelin水平升高的情况,并且通过对血浆中葡萄糖、胰岛素、GLP-1和Ghrelin水平的测定,发现血浆中Ghrelin水平与胰岛素水平呈负相关,说明GLP-1对Ghrelin的抑制作用可能是通过促进胰岛素的分泌间接实现[80]。胰高血糖素样肽-1受体(GLP-1R)在外周和中枢神经系统中均有表达,研究发现GLP-1对Ghrelin的抑制作用与其受体活性有关[81]。Hong等[82]通过向由饮食诱导的肥胖小鼠脑内注射Exendin-4(EX-4,一种GLP-1激动剂),发现小鼠的下丘脑、胃和血浆中Ghrelin均被抑制,但下丘脑和胃中的哺乳动物雷帕霉素靶蛋白(mTOR)信号活性显著增强,当mTORC1信号转导的机制靶点被阻断时,GLP-1和EX-4的作用显著减弱,证实mTORC1是GLP-1R被激活后诱导Ghrelin下调的关键信号通路。
4 影响Ghrelin分泌的其他因素除上述因素外,神经系统调节也是动物机体对于体内Ghrelin水平调节的重要方式。研究人员证实,切除迷走神经后,可使动物因禁食而引起的Ghrelin水平升高消失,并短时间降低体内Ghrelin水平[83]。Mundinger等[84]通过电刺激激活肠交感神经,发现可显著提高大鼠门静脉Ghrelin水平,证明交感神经也可直接刺激Ghrelin分泌,去甲肾上腺素(noradrenaline,NE)可能起到关键作用。Zhao等[85]研究发现,在Ghrelin分泌细胞培养基中添加NE可刺激Ghrelin的分泌,但通过利血平降低小鼠交感神经元肾上腺素能神经递质后,小鼠因禁食引起的Ghrelin水平升高被阻断。Mani等[86]研究表明,NE会通过释放细胞内Ca2+来实现,在这过程中,cAMP及其下游鸟苷酸交换蛋白(EPAC)的激活,也起到重要作用。
5 小结尽管目前对于Ghrelin生理作用的研究有了一定进展,但对调节Ghrelin合成及分泌的分子机制的认识还相对滞后,对于Ghrelin分泌整体过程的系统性研究也相对较少,很多问题还缺乏一致性的结论。Ghrelin合成和分泌的进一步探究,可为更精确地调控Ghrelin的表达、实现Ghrelin的功能奠定基础,也为阐明动物的促生长机制提供理论依据。
[1] |
DATE Y, KOJIMA M, HOSODA H, et al. Ghrelin, a novel growth hormone-releasing acylated peptide, is synthesized in a distinct endocrine cell type in the gastrointestinal tracts of rats and humans[J]. Endocrinology, 2000, 141(11): 4255-4261. DOI:10.1210/endo.141.11.7757 |
[2] |
KHATIB N, GAIDHANE S, GAIDHANE A M, et al. Ghrelin:ghrelin as a regulatory peptide in growth hormone secretion[J]. Journal of Clinical and Diagnostic Research:JCDR, 2014, 8(8): MC13-MC17. |
[3] |
TAKIGUCHI S, MURAKAMI K, YANAGIMOTO Y, et al. Clinical application of ghrelin in the field of surgery[J]. Surgery Today, 2015, 45(7): 801-807. DOI:10.1007/s00595-014-1040-z |
[4] |
FAIM F, PASSAGLIA P, BATALHAO M, et al. Role of ghrelin on growth hormone/insulin-like growth factor-1 axis during endotoxemia[J]. Growth Hormone & IGF Research, 2019, 48-49: 36-44. |
[5] |
HUANG H H, CHEN C Y. Alpha-melanocyte stimulating hormone in ghrelin-elicited feeding and gut motility[J]. Journal of the Chinese Medical Association, 2019, 82(2): 87-91. DOI:10.1097/JCMA.0000000000000007 |
[6] |
THEANDER-CARRILLO C, WIEDMER P, CETTOUR-ROSE P, et al. Ghrelin action in the brain controls adipocyte metabolism[J]. Journal of Clinical Investigation, 2006, 116(7): 1983-1993. DOI:10.1172/JCI25811 |
[7] |
LV Y, LIANG T T, WANG G X, et al. Ghrelin, a gastrointestinal hormone, regulates energy balance and lipid metabolism[J]. Bioscience Reports, 2018, 38(5): BSR20181061. DOI:10.1042/BSR20181061 |
[8] |
马兴彬, 许伟华. Ghrelin与胃肠疾病关系的研究进展[J]. 世界华人消化杂志, 2013, 21(3): 239-243. MA X B, XU W H. Relationship between Ghrelin and gastrointestinal diseases[J]. World Chinese Journal of Digestology, 2013, 21(3): 239-243 (in Chinese). |
[9] |
LI Z R, MULHOLLAND M, ZHANG W Z. Ghrelin O-acyltransferase (GOAT) and energy metabolism[J]. Science China Life Sciences, 2016, 59(3): 281-291. DOI:10.1007/s11427-015-4973-6 |
[10] |
AL MASSADI O, NOGUEIRAS R, DIEGUEZ C, et al. Ghrelin and food reward[J]. Neuropharmacology, 2019, 148: 131-138. DOI:10.1016/j.neuropharm.2019.01.001 |
[11] |
SEIM I, LUBIK A A, LEHMAN M L, et al. Cloning of a novel insulin-regulated ghrelin transcript in prostate cancer[J]. Journal of Molecular Endocrinology, 2013, 50(2): 179-191. |
[12] |
SEIM I, COLLET C, HERINGTON A C, et al. Revised genomic structure of the human ghrelin gene and identification of novel exons, alternative splice variants and natural antisense transcripts[J]. BMC Genomics, 2007, 8: 298. DOI:10.1186/1471-2164-8-298 |
[13] |
KOJIMA M, KANGAWA K. Ghrelin:from gene to physiological function[J]. Results and Problems in Cell Differentiation, 2010, 50: 185-205. |
[14] |
KANAMOTO N, AKAMIZU T, TAGAMI T, et al. Genomic structure and characterization of the 5'-flanking region of the human ghrelin gene[J]. Endocrinology, 2004, 145(9): 4144-4153. DOI:10.1210/en.2003-1718 |
[15] |
SATO T, NAKAMURA Y, SHⅡMURA Y, et al. Structure, regulation and function of ghrelin[J]. The Journal of Biochemistry, 2012, 151(2): 119-128. DOI:10.1093/jb/mvr134 |
[16] |
HILL J T, CHAO C S, ANDERSON K R, et al. .Nkx2.2 activates the ghrelin promoter in pancreatic islet cells[J]. Molecular Endocrinology, 2010, 24(2): 381-390. DOI:10.1210/me.2009-0360 |
[17] |
SHⅡMURA Y, OHGUSU H, SATO T, et al. Regulation of the human ghrelin promoter activity by transcription factors, NF-κB and Nkx2.2[J]. International Journal of Endocrinology, 2015, 580908. |
[18] |
ZHU X R, CAO Y, VOODG K, et al. On the processing of proghrelin to ghrelin[J]. Journal of Biological Chemistry, 2006, 281(50): 38867-38870. DOI:10.1074/jbc.M607955200 |
[19] |
VERHULST P J, DEPOORTERE I. Ghrelin's second life:from appetite stimulator to glucose regulator[J]. World Journal of Gastroenterology, 2012, 18(25): 3183-3195. |
[20] |
DEPOORTERE I. GI functions of GPR39:novel biology[J]. Current Opinion in Pharmacology, 2012, 12(6): 647-652. DOI:10.1016/j.coph.2012.07.019 |
[21] |
MURTUZA M I, ISOKAWA M. Endogenous ghrelin-O-acyltransferase (GOAT) acylates local ghrelin in the hippocampus[J]. Journal of Neurochemistry, 2018, 144(1): 58-67. DOI:10.1111/jnc.14244 |
[22] |
LEMARIÉ F, BEAUCHAMP E, LEGRAND P, et al. Revisiting the metabolism and physiological functions of caprylic acid (C8:0) with special focus on ghrelin octanoylation[J]. Biochimie, 2015, 120: 40-48. |
[23] |
YANG J, BROWN M S, LIANG G S, et al. Identification of the acyltransferase that octanoylates ghrelin, an appetite-stimulating peptide hormone[J]. Cell, 2008, 132(3): 387-396. DOI:10.1016/j.cell.2008.01.017 |
[24] |
LIM C T, KOLA B, GROSSMAN A, et al. The expression of ghrelin O-acyltransferase (GOAT) in human tissues[J]. Endocrine Journal, 2011, 58(8): 707-710. DOI:10.1507/endocrj.K11E-117 |
[25] |
YONEYAMA-HIROZANE M, DEGUCHI K, HIRAKAWA T, et al. Identification and characterization of a new series of ghrelin O-acyl transferase inhibitors[J]. SLAS Discovery:Advancing Life Sciences R & D, 2017, 23(2): 154-163. |
[26] |
DELPORTE C. Structure and physiological actions of ghrelin[J]. Scientifica, 2013, 2013: 518909. |
[27] |
DARLING J E, ZHAO F, LOFTUS R J, et al. Structure-activity analysis of human ghrelin o-acyltransferase reveals chemical determinants of ghrelin selectivity and acyl group recognition[J]. Biochemistry, 2015, 54(4): 11-19. |
[28] |
HOUGLAND J L. Ghrelin octanoylation by ghrelin O-acyltransferase:unique protein biochemistry underlying metabolic signaling[J]. Biochemical Society Transactions, 2019, 47(1): 169-178. DOI:10.1042/BST20180436 |
[29] |
MOHAN H, GASNER M, RAMESH N, et al. Ghrelin, ghrelin-O-acyl transferase, nucleobindin-2/nesfatin-1 and prohormone convertases in the pancreatic islets of Sprague Dawley rats during development[J]. Journal of Molecular Histology, 2016, 47(3): 325-336. DOI:10.1007/s10735-016-9673-4 |
[30] |
WALIA P, ASADI A, KIEFFER T J, et al. Ontogeny of ghrelin, obestatin, preproghrelin, and prohormone convertases in rat pancreas and stomach[J]. Pediatric Research, 2008, 65(1): 39-44. |
[31] |
SEIM I, JEFFERY P L, DE AMORIM L, et al. Ghrelin O-acyltransferase (GOAT) is expressed in prostate cancer tissues and cell lines and expression is differentially regulated in vitro by ghrelin[J]. Reproductive Biology and Endocrinology, 2013, 11: 70. DOI:10.1186/1477-7827-11-70 |
[32] |
NAKAJIMA K, MAEDA N, OISO S, et al. Decreased plasma octanoylated ghrelin levels in mice by oleanolic acid[J]. Journal of Oleo Science, 2019, 68(1): 103-109. DOI:10.5650/jos.ess18148 |
[33] |
PATTERSON M, MURPHY K G, LE ROUX C W, et al. Characterization of ghrelin-like immunoreactivity in human plasma[J]. Journal of Clinical Endocrinology and Metabolism, 2005, 90(4): 2205-2211. DOI:10.1210/jc.2004-1641 |
[34] |
HA Z Y, MATHEW S, YEONG K Y. Butyrylcholinesterase:a multifaceted pharmacological target and tool[J]. Current Protein & Peptide Science, 2020, 21(1): 99-109. |
[35] |
CLEVERDON E R, MCGOVERN-GOOCH K R, HOUGLAND J L. The octanoylated energy regulating hormone ghrelin:an expanded view of ghrelin's biological interactions and avenues for controlling ghrelin signaling[J]. Molecular Membrane Biology, 2017, 33(6/7/8): 111-124. |
[36] |
BRIMIJOIN S, CHEN V P, PANG Y P, et al. Physiological roles for butyrylcholinesterase:a BChE-ghrelin axis[J]. Chemico-Biological Interactions, 2016, 259: 271-275. DOI:10.1016/j.cbi.2016.02.013 |
[37] |
CHEN V P, GAO Y, GENG L Y, et al. Plasma butyrylcholinesterase regulates ghrelin to control aggression[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(12): 2251-2256. |
[38] |
CHEN N P, GAO Y, GENG L, et al. Butyrylcholinesterase regulates central ghrelin signaling and has an impact on food intake and glucose homeostasis[J]. International Journal of Obesity, 2017, 41(9): 1413-1419. DOI:10.1038/ijo.2017.123 |
[39] |
CUMMINGS D E, PURNELL J Q, FRAYO R S, et al. A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans[J]. Diabetes, 2001, 50(8): 1714-1719. DOI:10.2337/diabetes.50.8.1714 |
[40] |
TONG J, PRIGEON R L, DAVIS H W, et al. Ghrelin suppresses glucose-stimulated insulin secretion and deteriorates glucose tolerance in healthy humans[J]. Diabetes, 2010, 59(9): 2145-2151. DOI:10.2337/db10-0504 |
[41] |
SAKATA I, PARK W M, WALKER A K, et al. Glucose-mediated control of ghrelin release from primary cultures of gastric mucosal cells[J]. American Journal of Physiology:Endocrinology and Metabolism, 2012, 302(10): E1300-E1310. DOI:10.1152/ajpendo.00041.2012 |
[42] |
OYA M, KITAGUCHI T, HARADA K, et al. Low glucose-induced ghrelin secretion is mediated by an ATP-sensitive potassium channel[J]. Journal of Endocrinology, 2015, 226(1): 25-34. DOI:10.1530/JOE-15-0090 |
[43] |
DEZAKI K. Ghrelin function in insulin release and glucose metabolism[J]. Endocrine development, 2013, 25: 135-43. DOI:10.1159/000346064 |
[44] |
ALAMRI B N, SHIN K, CHAPPE V, et al. The role of ghrelin in the regulation of glucose homeostasis[J]. Hormone Molecular Biology and Clinical Investigation, 2016, 26(1): 3-11. |
[45] |
AUCLAIR N, PATEY N, MELBOUCI L, et al. Acylated ghrelin and the regulation of lipid metabolism in the intestine[J]. Scientific Reports, 2019, 9: 17975. DOI:10.1038/s41598-019-54265-0 |
[46] |
NISHI Y, MIFUNE H, KOJIMA M. Ghrelin acylation by ingestion of medium-chain fatty acids[J]. Methods in Enzymology, 2012, 514: 303-315. DOI:10.1016/B978-0-12-381272-8.00019-2 |
[47] |
LU X P, ZHAO X L, FENG J Y, et al. Postprandial inhibition of gastric ghrelin secretion by long-chain fatty acid through GPR120 in isolated gastric ghrelin cells and mice[J]. American Journal of Physiology-Gastrointestinal and Liver Physiology, 2012, 303(3): G367-G376. DOI:10.1152/ajpgi.00541.2011 |
[48] |
BANDO M, IWAKURA H, KOYAMA H, et al. High incorporation of long-chain fatty acids contributes to the efficient production of acylated ghrelin in ghrelin-producing cells[J]. FEBS Letters, 2016, 590(7): 992-1001. DOI:10.1002/1873-3468.12132 |
[49] |
GONG Z, YOSHIMURA M, AIZAWA S, et al. G protein-coupled receptor 120 signaling regulates ghrelin secretion in vivo and in vitro[J]. American Journal of Physiology Endocrinology and Metabolism, 2014, 306(1): E28-E35. DOI:10.1152/ajpendo.00306.2013 |
[50] |
SUGINO T, KAWAKITA Y, FUKUMORI R, et al. Effects of glucose and amino acids on ghrelin secretion in sheep[J]. Animal Science Journal, 2010, 81(2): 199-204. DOI:10.1111/j.1740-0929.2009.00733.x |
[51] |
FUKUMORI R, YOKOTANI A, SUGINO T, et al. Effects of amino acids infused into the vein on ghrelin-induced GH, insulin and glucagon secretion in lactating cows[J]. Animal Science Journal, 2011, 82(2): 267-273. DOI:10.1111/j.1740-0929.2010.00838.x |
[52] |
ELSABAGH M, ISHIKAKE M, SAKAMOTO Y, et al. Postruminal supply of amino acids enhances ghrelin secretion and lipid metabolism in feed-deprived sheep[J]. Animal Science Journal, 2018, 89(12): 1663-1672. DOI:10.1111/asj.13114 |
[53] |
VANCLEEF L, VAN DEN BROECK T, THIJS T, et al. Chemosensory signalling pathways involved in sensing of amino acids by the ghrelin cell[J]. Scientific Reports, 2015, 5: 15725. DOI:10.1038/srep15725 |
[54] |
ZHANG B K, GUO Y M. The growth-promoting effect of tetrabasic zinc chloride is associated with elevated concentration of growth hormone and Ghrelin[J]. Asian-Australasian Journal of Animal Sciences, 2008, 21(10): 1473-1478. DOI:10.5713/ajas.2008.80057 |
[55] |
YIN J D, LI X L, LI D F, et al. Dietary supplementation with zinc oxide stimulates ghrelin secretion from the stomach of young pigs[J]. Journal of Nutritional Biochemistry, 2009, 20(10): 783-790. DOI:10.1016/j.jnutbio.2008.07.007 |
[56] |
QIAO J W, ZHAO H S, ZHANG Y, et al. GPR39 is region-specifically expressed in mouse oviduct correlating with the Zn2+ distribution[J]. Theriogenology, 2016, 88: 98-105. |
[57] |
POPOVICS P, STEWART A J. GPR39:a Zn2+-activated G protein-coupled receptor that regulates pancreatic, gastrointestinal and neuronal functions[J]. Cellular and Molecular Life Sciences, 2011, 68(1): 85-95. DOI:10.1007/s00018-010-0517-1 |
[58] |
YANG W Y, WANG J G, ZHU X Y, et al. High lever dietary copper promote ghrelin gene expression in the fundic gland of growing pigs[J]. Biological Trace Element Research, 2012, 150(1/2/3): 154-157. |
[59] |
黄元龙.日粮铜水平对绵羊生长激素释放调节多肽的影响[D].硕士学位论文.长春: 吉林农业大学, 2018. HUANG Y L.Effect of dietary copper level on growth hormone releasing regulatory polypeptide in sheep[D].Master's Thesis.Changchun: Jilin Agricultural University, 2018.(in Chinese) |
[60] |
LUNG S, LI H H, BONDY S C, et al. Low concentrations of copper in drinking water increase AP-1 binding in the brain[J]. Toxicology and Industrial Health, 2013, 31(12): 1178-1184. |
[61] |
MATTIE M D, MCELWEE M K, FREEDMAN J H. Mechanism of copper-activated transcription:activation of AP-1, and the JNK/SAPK and p38 signal transduction pathways[J]. Journal of Molecular Biology, 2008, 383(5): 1008-1018. DOI:10.1016/j.jmb.2008.08.080 |
[62] |
REYNAUD Y, FAKHRY J, FOTHERGILL L, et al. The chemical coding of 5-hydroxytryptamine containing enteroendocrine cells in the mouse gastrointestinal tract[J]. Cell and Tissue Research, 2016, 364(3): 489-497. DOI:10.1007/s00441-015-2349-7 |
[63] |
HUNNE B, STEBBING M J, MCQUADE R M, et al. Distributions and relationships of chemically defined enteroendocrine cells in the rat gastric mucosa[J]. Cell and Tissue Research, 2019, 378(1): 33-48. DOI:10.1007/s00441-019-03029-3 |
[64] |
FUKUHARA S, SUZUKI H, MASAOKA T, et al. Enhanced ghrelin secretion in rats with cysteamine-induced duodenal ulcers[J]. American Journal of Physiology:Gastrointestinal and Liver Physiology, 2005, 289(1): G138-G145. DOI:10.1152/ajpgi.00298.2004 |
[65] |
SILVA A P, BETHMANN K, RAULF F, et al. Regulation of ghrelin secretion by somatostatin analogs in rats[J]. European Journal of Endocrinology, 2005, 152(6): 887-894. DOI:10.1530/eje.1.01914 |
[66] |
STENGEL A, GOEBEL M, WANG L X, et al. Abdominal surgery inhibits circulating Acyl ghrelin and ghrelin-O-acyltransferase levels in rats:role of the somatostatin receptor 2[J]. Gastroenterology, 2011, 140(5 suppl. 1): S-808. |
[67] |
杜改梅, 吴结革, 胡志华, 等. 断奶前后小鼠胃GOAT基因表达及其与胃酸分泌、胃泌素和生长抑素的关系[J]. 江苏农业学报, 2016, 32(3): 626-630. DU G M, WU J G, HU Z H. Expression of gastric GOAT mRNA and the relationship with gastric acid secretion, gastric gastrin and SS in pre- and post-weaning mice[J]. Jiangsu Journal of Agricultural Sciences, 2016, 32(3): 626-630 (in Chinese). DOI:10.3969/j.issn.1000-4440.2016.03.022 |
[68] |
GAHETE M D, CÓRDOBA-CHACÓN J, SALVATORI R, et al. Metabolic regulation of ghrelin O-acyl transferase (GOAT) expression in the mouse hypothalamus, pituitary, and stomach[J]. Molecular and Cellular Endocrinology, 2010, 317(1/2): 154-160. |
[69] |
KLOK M D, JAKOBSDOTTIR S, DRENT M L. The role of leptin and ghrelin in the regulation of food intake and body weight in humans:a review[J]. Obesity Reviews, 2007, 8(1): 21-34. DOI:10.1111/j.1467-789X.2006.00270.x |
[70] |
KIYICI S, BASARAN N F, CAVUN S, et al. Central injection of CDP-choline suppresses serum ghrelin levels while increasing serum leptin levels in rats[J]. European Journal of Pharmacology, 2015, 764: 264-270. DOI:10.1016/j.ejphar.2015.07.014 |
[71] |
ZHAO Z, SAKATA I, OKUBO Y, et al. Gastric leptin, but not estrogen and somatostatin, contributes to the elevation of ghrelin mRNA expression level in fasted rats[J]. Journal of Endocrinology, 2008, 196(3): 529-538. |
[72] |
PINKNEY J. The role of ghrelin in metabolic regulation[J]. Current Opinion in Clinical Nutrition and Metabolic Care, 2014, 17(6): 497-502. DOI:10.1097/MCO.0000000000000101 |
[73] |
NOUR H A, EL SAWAF A L, ELEWA S M, et al. Strength and independence of associations between ghrelin, leptin, adiponectin and insulin in stimulating basic functions to energy metabolism[J]. Alexandria Journal of Medicine, 2014, 50(1): 49-59. DOI:10.1016/j.ajme.2013.05.005 |
[74] |
孙艺璇. 脑肠肽与胰岛素分泌[J]. 同济大学学报(医学版), 2014, 35(3): 133-136. SUN Y X. Braingutpeptides in regulation of insulin secretion[J]. Journal of Tongji University(Medical Science), 2014, 35(3): 133-136 (in Chinese). DOI:10.3969/j.issn1008-0392.2014.03.031 |
[75] |
VAN NAME M, GIANNINI C, SANTORO N, et al. Blunted suppression of acyl-ghrelin in response to fructose ingestion in obese adolescents:the role of insulin resistance[J]. Obesity, 2015, 23(3): 653-661. DOI:10.1002/oby.21019 |
[76] |
BLIJDORP K, VAN DER LELY A J, VAN DEN HEUVEL-EIBRINK M M, et al. Desacyl ghrelin is influenced by changes in insulin concentration during an insulin tolerance test[J]. Growth Hormone & IGF Research, 2013, 23(5): 193-195. |
[77] |
SONG X X, JIAO H C, ZHAO J P, et al. Dexamethasone and insulin stimulate ghrelin secretion of broilers in a different way[J]. General and Comparative Endocrinology, 2018, 268: 14-21. DOI:10.1016/j.ygcen.2018.07.009 |
[78] |
UENO M, CARVALHEIRA J B C, OLIVEIRA R L G S, et al. Expression of concern:circulating ghrelin concentrations are lowered by intracerebroventricular insulin[J]. Diabetologia, 2017. DOI:10.1007/s00125-017-4357-5 |
[79] |
PAGE L C, GASTALDELLI A, GRAY S M, et al. Interaction of GLP-1 and Ghrelin on Glucose Tolerance in Healthy Humans[J]. Diabetes, 2018, 67(10): 1976-1985. DOI:10.2337/db18-0451 |
[80] |
HAGEMANN D, HOLST J J, GETHMANN A, et al. Glucagon-like peptide 1(GLP-1) suppresses ghrelin levels in humans via increased insulin secretion[J]. Regulatory Peptides, 2007, 143(1/2/3): 64-68. |
[81] |
RONVEAUX C C, TOMÉ D, RAYBOULD H E. Glucagon-like peptide 1 interacts with ghrelin and leptin to regulate glucose metabolism and food intake through vagal afferent neuron signaling[J]. The Journal of Nutrition, 2015, 145(4): 672-680. DOI:10.3945/jn.114.206029 |
[82] |
HONG X S, ZHANG H, LIANG H B, et al. Exendin-4 decreases ghrelin levels through mTOR signaling[J]. Molecular and Cellular Endocrinology, 2016, 437: 201-212. DOI:10.1016/j.mce.2016.08.039 |
[83] |
HOSODA H, KANGAWA K. The autonomic nervous system regulates gastric ghrelin secretion in rats[J]. Regulatory Peptides, 2008, 146(1/2/3): 12-18. |
[84] |
MUNDINGER T O, CUMMINGS D E, TABORSKY G J, J r. Direct stimulation of ghrelin secretion by sympathetic nerves[J]. Endocrinology, 2006, 147(6): 2893-2901. DOI:10.1210/en.2005-1182 |
[85] |
ZHAO T J, SAKATA I, LI R L, et al. Ghrelin secretion stimulated by β1-adrenergic receptors in cultured ghrelinoma cells and in fasted mice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(36): 15868-15873. DOI:10.1073/pnas.1011116107 |
[86] |
MANI B K, CHUANG J C, KJALARSDOTTIR L, et al. Role of calcium and EPAC in norepinephrine-induced ghrelin secretion[J]. Endocrinology, 2014, 155(1): 98-107. DOI:10.1210/en.2013-1691 |