2. 中国科学院大学, 北京 100049;
3. 湖南畜禽安全生产协同创新中心, 长沙 410128
2. University of Chinese Academy of Sciences, Beijing 100094, China;
3. Hunan Co-Innovation Center for Production Safety, Changsha 410128, China
锌是反刍家畜必需的微量元素,参与机体多种重要的生物过程,尤其是对调节肠道免疫应答和维持肠道内平衡至关重要。肠道的屏障功能和免疫应答受锌的添加方式和肠上皮细胞的增殖等因素的影响。锌在胃肠道屏障功能方面发挥重要作用[1],可改善肠道屏障功能,降低肠道通透性[2]。缺锌导致的腹泻和黏膜屏障功能障碍[2-4],可以通过补充氧化锌(ZnO)得以改善[3],并且有显著的治疗效果[4]。
近年来,已有少量研究探讨了有机锌和无机锌在反刍动物体内的有效性或相对生物利用率[5-6]。相对于无机锌,有机锌有更高的存留率[7]和组织浓度[8]。给腹泻的新生犊牛饲喂氧化锌和蛋氨酸螯合锌(Zn-Met)可以不同程度地缓解腹泻,并且蛋氨酸螯合锌组的体重显著增加[9];有机锌来源的蛋氨酸螯合锌能更有效地提高羔羊[10]以及肉牛[11]的抗氧化应激能力和抗体滴度,进而产生更高的细胞和体液免疫应答。
虽然在饲粮中添加有机锌对反刍动物肠道发育和免疫功能影响的研究不少,但是在妊娠期饲粮中添加有机锌对子代生长期肠道发育和免疫的影响还鲜见报道。来自单胃动物的研究发现,从妊娠第80天至分娩后第14天,在母猪饲粮中添加40 mg/kg的蛋氨酸螯合锌,增加了断奶仔猪空肠的黏膜厚度和绒毛高度/隐窝深度,同时提高了母乳中锌的含量[12]。因此,本试验通过研究妊娠期母羊饲粮中添加不同锌源对母羊和羔羊体液免疫及羔羊肠道组织形态、黏膜免疫功能的影响,旨在为妊娠期反刍家畜饲粮中锌的补饲方式提供科学依据。
1 材料与方法 1.1 试验设计选取体重(38.1±9.7) kg、胎次(第2~3胎)相近的怀双羔湘东黑山羊21只,随机分为3组,每组7个重复,每个重复1只羊。各组分别在基础饲粮中添加60 mg/kg的硫酸锌(ZnSO4)、蛋氨酸螯合锌(锌含量16%)和甘氨酸螯合锌(Zn-Gly,锌含量29%)。基础饲粮中锌含量为22 mg/kg,各试验饲粮中锌含量均为82 mg/kg。其中,蛋氨酸螯合锌螯合强度为2 : 1,甘氨酸螯合锌螯合强度为1 : 1。
饲粮参照NRC(2004)妊娠期母羊营养需要量进行配制。试验饲粮组成及营养水平见表 1。预试期7 d,正试期45 d(妊娠第106天至分娩结束)。产羔后所有泌乳母羊均饲喂相同的饲粮,不再添加锌,以消除锌对哺乳期母羊及后代生长发育的影响。羔羊出生后第60天断奶,第100天进行屠宰。泌乳母羊和断奶羔羊饲粮组成及营养水平见表 2。
![]() |
表 1 试验饲粮组成及营养水平(风干基础) Table 1 Composition and nutrient levels of experimental diets (air-dry basis) |
![]() |
表 2 泌乳母羊和断奶羔羊饲粮组成及营养水平(风干基础) Table 2 Composition and nutrient levels of diets for lactating goats and weaning goats (air-dry basis) |
试验在湖南省浏阳市高坪镇(远丰黑山羊养殖场)进行。试验期间,妊娠母羊单笼饲喂。产羔后,将泌乳母羊和羔羊分开饲养,哺乳时将羔羊放在泌乳山羊的羊圈内,哺乳期喂相同饲粮,分别于每天08:00和18:00饲喂,限制饲养,饲粮无剩余,自由饮水。按养殖场的常规方法对怀孕母羊和分娩期间的羊羔进行免疫接种和消毒。羔羊出生和屠宰时称重并记录。
1.3 营养成分分析采集具有代表性的饲粮和粪样,依照中华人民共和国农业行业标准——《肉羊饲养标准》(NY/T 816—2004)[14]中的方法测定其中营养成分含量。能量使用全自动氧弹量热仪(PARR-6400,美国Parr Instrument公司)测定,粗蛋白质(CP)含量采用全自动凯氏定氮仪(KDY-9830,北京瑞邦兴业科技有限公司)测定,粗脂肪(EE)含量采用全自动脂肪分析仪(ANKOMXT15i,美国ANKOM Technology公司)测定,中性洗涤纤维(NDF)和酸性洗涤纤维(ADF)含量采用自动纤维分析仪(FT12,德国Gerhardt公司)测定。
1.4 样品收集与保存在母羊产前第10天及羔羊出生后的第30、60和100天,利用真空采血管[加入含乙二胺四乙酸二钾(EDTA-K2)抗凝剂]从颈静脉采血大约10 mL,室温静置30 min,4 ℃、3 000 r/min离心15 min,取血浆,-20 ℃保存备用。
羔羊宰杀后采集1 cm×1 cm的空肠中段和回肠中段肠段,生理盐水清洗后,放入装有30 mL 4%福尔马林的离心管中,常温保存,用于肠道组织形态学观察;采集2 cm×2 cm的空肠中段和回肠中段肠段,用盖玻片刮取肠黏膜,用锡箔纸包好投入液氮速冻后放入-80 ℃冰箱保存,用于肠道黏膜免疫球蛋白和细胞因子含量检测。
1.5 指标测定 1.5.1 血浆和肠道黏膜中免疫球蛋白和细胞因子含量的测定分别在母羊产前第10天及羔羊出生后的第30、60和100天对血浆中细胞因子[(白细胞介素-2(IL-2)、白细胞介素-4(IL-4)、白细胞介素-6(IL-6)、白细胞介素-22(IL-22)、白细胞介素-23(IL-23)]和免疫球蛋白[(免疫球蛋白A(IgA)、免疫球蛋白G(IgG)、免疫球蛋白M(IgM)]以及肠道黏膜中细胞因子(IL-4、IL-6、IL-22、IL-23)和免疫球蛋白[分泌型免疫球蛋白A(sIgA)、IgG、IgM]含量进行测定。采用酶联免疫吸附试验(ELISA)法,试剂盒购自江苏雨桐生物科技有限公司。将组织匀浆样本离心后取上清进行测定,在酶标包被板上标准品准确加样50 μL,待测样品孔中先加样品稀释液40 μL,然后再加待测样品10 μL(样品最终稀释度为5倍)。将样品加于酶标板孔底部,混匀后用封板膜封板置37 ℃温箱中温育30 min,洗涤后拍干,加入酶标试剂50 μL,经过孵育和洗涤后加入显色剂进行显色15 min后加入终止液。以空白调零,450 nm波长依序测量各孔的吸光度(OD)值。使用多功能酶标仪(Infinite M200 PRO,奥地利Tecan公司)进行测量。
1.5.2 肠道组织切片制作和组织形态学观察将空肠和回肠固定样品截取大小不超过5 mm×5 mm,厚度为2 mm左右,然后依次放入75%、80%、90%、100%、100%的乙醇中进行脱水处理;在乙醇与二甲苯(1 : 1)混合液浸没放置2 h,浸入二甲苯中2次,每次10 min,直至透明;分别在二甲苯和石蜡(1 : 1)混合液和2杯石蜡中各放置1 h后,将组织样放入包埋盒中进行包埋;用旋转切片机从每个切片上切出5 μm厚的横切面。将切片置于聚赖氨酸涂层的载玻片上,然后采用苏木精-伊红染色法制作成切片后,在光学显微镜下观察肠道组织形态,用显微镜(Leica MD-4000B,德国Leica Microsystems公司)观察并拍照,每张切片随机选取3个视野,对3处视野并用LeicaQwin图像分析系统进行分析。图像由Motic Images Plus 6.0软件进行测量和计算小肠绒毛高度、隐窝深度、绒毛宽度及绒毛高度/隐窝深度。
1.6 数据处理数据用SPSS 18.0软件进行单因子方差分析(one-way ANOVA),并采用LSD法进行多重比较,结果用平均值±标准误(mean±SE)表示,以P<0.05为差异显著性判断标准。
2 结果 2.1 饲粮中添加不同锌源对妊娠母羊采食量的影响由表 3可知,饲粮中添加不同锌源对妊娠母羊采食量无显著影响(P>0.05)。
![]() |
表 3 饲粮中添加不同锌源对妊娠母羊采食量的影响 Table 3 Effects of dietary different zinc sources on feed intake of pregnant goats |
由表 4可知,妊娠母羊产前第10天,甘氨酸螯合锌组血浆IL-6和IL-8含量显著高于硫酸锌组和蛋氨酸螯合锌组(P < 0.05)。各组之间血浆IL-4、IL-10、IL-22、IL-23、IgA、IgG和IgM含量差异不显著(P>0.05)。
![]() |
表 4 饲粮中添加不同锌源对妊娠母羊产前第10天血浆细胞因子和免疫球蛋白含量的影响 Table 4 Effects of dietary different zinc sources on contents of cytokines and immunoglobulins in plasma of pregnant goats on day 10 before delivery |
由表 5可知,羔羊出生后第30天,蛋氨酸螯合锌组血浆IgG含量显著高于甘氨酸螯合锌组(P < 0.05),各组之间血浆IL-4、IL-6、IL-22、IL-23、IL-2、IgA和IgM含量差异不显著(P>0.05)。羔羊出生后第60天,硫酸锌组和蛋氨酸螯合锌组血浆IL-4含量显著高于甘氨酸螯合锌组(P < 0.05),蛋氨酸螯合锌组血浆IL-6、IL-22含量显著高于硫酸锌组和甘氨酸螯合锌组(P < 0.05),甘氨酸螯合锌组血浆IgG含量显著高于蛋氨酸螯合锌组和硫酸锌组(P < 0.05),各组之间血浆IL-2、IL-23、IgA和IgM含量差异不显著(P>0.05)。羔羊出生后第100天,各组之间血浆细胞因子和免疫球蛋白含量均差异不显著(P>0.05)。
![]() |
表 5 妊娠母羊饲粮中添加不同锌源对不同发育阶段羔羊血浆细胞因子和免疫球蛋白含量的影响 Table 5 Effects of dietary different zinc sources of pregnant goats on contents of cytokines and immunoglobulins in plasma of kid goats at different developmental stages |
由表 6可知,各组之间羔羊空肠和回肠的绒毛宽度、绒毛高度、隐窝深度和绒毛高度/隐窝深度无显著差异(P>0.05)。
![]() |
表 6 妊娠母羊饲粮中添加不同锌源对羔羊肠道组织形态的影响 Table 6 Effects of dietary different zinc sources of pregnant goats on intestinal morphology of kid goats |
由表 7可知,蛋氨酸螯合锌组和甘氨酸螯合锌组空肠黏膜IL-6、IL-22、IL-23和IgG含量显著高于硫酸锌组(P < 0.05),甘氨酸螯合锌组空肠黏膜IL-4含量显著高于硫酸锌组和蛋氨酸螯合锌组(P < 0.05),蛋氨酸螯合锌组空肠黏膜sIgA含量显著高于硫酸锌组和甘氨酸螯合锌组(P < 0.05)。各组之间空肠黏膜IgM含量无显著差异(P>0.05)。
![]() |
表 7 妊娠母羊饲粮中添加不同锌源对羔羊肠道黏膜免疫球蛋白和细胞因子含量的影响 Table 7 Effects of dietary different zinc sources of pregnant goats on contents of immunoglobulins and cytokines in intestinal mucosa of kid goats |
蛋氨酸螯合锌组和甘氨酸螯合锌组回肠黏膜IL-4、IL-6、IL-23、IgM和IgG含量显著高于硫酸锌组(P < 0.05),蛋氨酸螯合锌组回肠黏膜sIgA含量显著高于硫酸锌组和甘氨酸螯合锌组(P < 0.05),且蛋氨酸螯合锌组回肠黏膜IgM和sIgA含量显著高于甘氨酸螯合锌组(P < 0.05)。各组回间空肠黏膜IL-22含量无显著差异(P>0.05)。
3 讨论肠道是机体最大的免疫系统,也是营养物质进行消化吸收的重要场所,断奶和固体进食等额外刺激均会对羔羊肠道产生刺激,进而引起应激反应[15],导致腹泻,影响羔羊肠道发育,降低免疫力。肠道免疫功能主要通过肠黏膜机械屏障、化学屏障、生物屏障和免疫屏障体现。其中,最重要的是机械屏障和免疫屏障,免疫球蛋白和细胞因子的含量能够反映肠道免疫屏障功能。截止到目前,在妊娠反刍家畜饲粮中添加不同形态锌对羔羊肠道黏膜免疫屏障的影响研究报道相对较少。
本试验中,妊娠母羊产前第10天,甘氨酸螯合锌组母羊血浆IL-6和IL-8含量增加,表明甘氨酸螯合锌激活了母羊体内的巨噬细胞,巨噬细胞可以通过T辅助细胞激活B细胞,产生响应[16]。
免疫球蛋白是反映机体免疫功能的重要指标,主要包括IgG、IgM和IgA。IgA是外分泌体液中的主要抗体,是机体免疫中不可缺少的。本研究发现,羔羊出生后第30天,蛋氨酸螯合锌组血浆IgG含量高于另外2组,而血液中含量最多的免疫球蛋白就是IgG,作为血液中的重要抗体,IgG能够阻止抗原穿过黏膜进入组织中,起到保护肠道黏膜的作用[17]。因此可推测,妊娠母羊饲粮中添加蛋氨酸螯合锌可以提高1月龄羔羊的被动免疫功能。研究表明,在第21天断奶的羔羊,断奶应激在之后21 d仍存在[18]。在羔羊出生后第60天断奶,可能会产生应激反应,易造成免疫功能降低,诱发疾病。然而本研究发现,羔羊出生后第60天,蛋氨酸螯合锌和硫酸锌组血浆IL-4含量高于甘氨酸螯合锌组,甘氨酸螯合锌组和硫酸锌组血浆IL-6和IL-22含量高于蛋氨酸螯合锌组,且甘氨酸螯合锌组血浆IgG含量最高。IL-4是典型的多效性抗炎细胞因子[19-20],抑制IgA分泌,诱导活化B细胞产生IgG和IgM[21-22],由此可见,有机锌添加显著提高了断奶羔羊的抗炎因子和免疫球蛋白IgG的分泌,改善机体的体液免疫和被动免疫。羔羊出生后第100天,各组血浆细胞因子和免疫球蛋白含量无显著差异,可能与羔羊体内免疫系统已经完善有关。
肠道免疫屏障主要由肠黏膜上皮构成,可阻止肠腔内细菌和毒素的入侵。肠绒毛高度的增加能够使小肠吸收营养物质的面积增大,隐窝深度反映上皮细胞的生成率,绒毛高度/隐窝深度则综合反映小肠的功能状态。本研究中,母羊妊娠期饲粮中添加不同锌源对羔羊空肠和回肠绒毛高度和隐窝深度无显著影响,这与已有研究结果[23]一致;但是在羔羊空肠中,蛋氨酸螯合锌组的绒毛高度/隐窝深度低于硫酸锌组,表明蛋氨酸螯合锌并不利于促进羔羊空肠的消化吸收。
通过测定羔羊肠道黏膜中免疫球蛋白和免疫因子含量发现,甘氨酸螯合锌组空肠黏膜IL-4含量显著高于硫酸锌组和蛋氨酸螯合锌组,甘氨酸螯合锌组和蛋氨酸螯合锌组回肠黏膜IL-4含量显著高于硫酸锌组,说明在妊娠母羊饲粮中添加有机锌能够提高肠道抗炎因子的分泌量,起到抗炎的作用,更有利于羔羊肠道健康。已有研究发现,微生物在肠道早期定植过程中易诱发炎症的发生。IL-22和IL-23作为功能性连接的细胞因子,二者构成一个涉及肠道淋巴细胞的通路,并且在缺乏适应性免疫系统的动物肠上皮细胞中产生抑制炎症的作用[24],IL-22[25]和IL-23[26]在肠黏膜固有层中高表达,有助于形成成熟的共生菌群并且维持组织稳态。在小鼠炎症性肠病的研究中,发现在肠道感染时,IL-23通过诱导IL-6等细胞因子的分泌来引发肠道炎症[27]。本试验中,甘氨酸螯合锌组和蛋氨酸螯合锌组空肠黏膜IL-6、IL-22和IL-23含量显著高于硫酸锌组,且蛋氨酸螯合锌组空肠黏膜IL-22含量高于甘氨酸螯合锌组;甘氨酸螯合锌组和蛋氨酸螯合锌组回肠黏膜IL-6和IL-23含量均显著高于硫酸锌组,且蛋氨酸螯合锌组回肠黏膜IL-22含量高于甘氨酸螯合锌组。以上结果表明,妊娠期添加有机锌相对于无机锌更有利于羔羊维持肠黏膜共生菌群的稳定,抑制炎症的发生,并且蛋氨酸螯合锌优于甘氨酸螯合锌。
肠道淋巴细胞分泌的sIgA是肠道黏膜免疫的主要抗体,其覆盖在肠道黏膜表面,保护肠道免受病毒微生物的攻击,对激活黏膜免疫和维持肠道内环境稳态有着重要作用,肠腔中的sIgA可以与相应抗原结合,抑制细菌增殖和中和毒素,保护肠道黏膜[28]。IgG和IgM是由肠道黏膜上皮细胞分泌的免疫球蛋白,在炎症反应的发病机制中起到保护肠道黏膜的作用。免疫球蛋白含量与羔羊肠道健康直接相关。本研究发现,在羔羊空肠黏膜中,蛋氨酸螯合锌组的sIgA含量显著高于硫酸锌组和甘氨酸螯合锌组,IgM含量也高于高于硫酸锌组和甘氨酸螯合锌组,而蛋氨酸螯合锌组和甘氨酸螯合锌组的IgG含量显著高于硫酸锌组;在羔羊回肠黏膜中,蛋氨酸螯合锌组和甘氨酸螯合锌组的IgM和IgG含量显著高于硫酸锌组,蛋氨酸螯合锌组的sIgA含量显著高于硫酸锌组和甘氨酸螯合锌组,进一步说明了有机锌改善肠道黏膜免疫功能优于硫酸锌,且蛋氨酸螯合锌稍优于甘氨酸螯合锌,这与之前的众多研究结果[6, 11, 29]一致,而蛋氨酸螯合锌组与甘氨酸螯合锌组的差异可能是由于有机锌螯合强度不同导致的[30-31]。
4 结论妊娠母羊饲粮中添加蛋氨酸螯合锌和甘氨酸螯合锌能够改善羔羊体液免疫和肠道黏膜免疫功能,且蛋氨酸螯合锌优于甘氨酸螯合锌。
[1] |
HE Y, YUAN X M, ZUO H, et al. Berberine induces ZIP14 expression and modulates zinc redistribution to protect intestinal mucosal barrier during polymicrobial sepsis[J]. Life Sciences, 2019, 5(4): 496-513. |
[2] |
SHANNON M C, HILL G M. Trace mineral supplementation for the intestinal health of young monogastric animals[J]. Frontiers in Veterinary Science, 2019, 6(73): 1-7. |
[3] |
SKROVANEK S, DIGUILIO K, BAILEY R, et al. Zinc and gastrointestinal disease[J]. World Journal of Gastrointestinal Pathophysiology, 2014, 5(4): 496-513. DOI:10.4291/wjgp.v5.i4.496 |
[4] |
PRASAD A S. Discovery of human zinc deficiency:its impact on human health and disease[J]. Advances in Nutrition, 2013, 4(2): 176-190. DOI:10.3945/an.112.003210 |
[5] |
GARG A K, MUDGAL V, DASS R S. Effect of organic zinc supplementation on growth, nutrient utilization and mineral profile in lambs[J]. Animal Feed Science and Technology, 2008, 144(1/2): 82-96. |
[6] |
WANG R L, LIANG J G, LU L, et al. Effect of zinc source on performance, zinc status, immune response, and rumen fermentation of lactating cows[J]. Biological Trace Element Research, 2013, 152(1): 16-24. DOI:10.1007/s12011-012-9585-4 |
[7] |
SETHY K, BEHERA K, MISHRA S K, et al. Effect of organic zinc supplementation on growth, metabolic profile and antioxidant status of Ganjam sheep[J]. Indian Journal of Animal Research, 2018, 52(6): 839-842. |
[8] |
CAO J, HENRY P R, GUO R, et al. Chemical characteristics and relative bioavailability of supplemental organic zinc sources for poultry and ruminants[J]. Journal of Animal Science, 2000, 78(8): 2039-2054. DOI:10.2527/2000.7882039x |
[9] |
GLOVER A D, PUSCHNER B, ROSSOW H A, et al. A double-blind block randomized clinical trial on the effect of zinc as a treatment for diarrhea in neonatal Holstein calves under natural challenge conditions[J]. Preventive Veterinary Medicine, 2013, 112(3/4): 338-347. |
[10] |
NAGALAKSHMI D, DHANALAKSHMI K, HIMABINDU D. Effect of dose and source of supplemental zinc on immune response and oxidative enzymes in lambs[J]. Veterinary Research Communications, 2009, 33(7): 631-644. DOI:10.1007/s11259-009-9212-9 |
[11] |
MANDAL G P, DASS R S, ISORE D P, et al. Effect of zinc supplementation from two sources on growth, nutrient utilization and immune response in male crossbred cattle (Bos indicus×Bos taurus) bulls[J]. Animal Feed Science and Technology, 2007, 138(1): 1-12. DOI:10.1016/j.anifeedsci.2006.09.014 |
[12] |
METZLER-ZEBELI B U, CAINE W R, MCFALL M, et al. Supplementation of diets for lactating sows with zinc amino acid complex and gastric nutriment-intubation of suckling pigs with zinc methionine on mineral status, intestinal morphology and bacterial translocation in lipopolysaccharide-challenged weaned pigs[J]. Journal of Animal Physiology and Animal Nutrition, 2010, 94(2): 237-249. DOI:10.1111/j.1439-0396.2008.00904.x |
[13] |
MARQUES R S, COOKE R F, RODRIGUES M C, et al. Effects of organic or inorganic cobalt, copper, manganese, and zinc supplementation to late-gestating beef cows on productive and physiological responses of the offspring[J]. Journal of Animal Science, 2016, 94(3): 1215-1226. DOI:10.2527/jas.2015-0036 |
[14] |
中华人民共和国农业部. 中华人民共和国农业行业标准——肉羊饲养标准(NY/T 816-2004)[J]. 湖南饲料, 2004(6): 9-15. Ministry of Agriculture of the People's Republic of China. Agricultural industry standard of the People's Republic of China——sheep feeding standard (NY/T 816-2004)[J]. Hunan Feed, 2004(6): 9-15 (in Chinese). |
[15] |
ENRÍQUEZ D, HÖETZEL M J, UNGERFELD R. Minimising the stress of weaning of beef calves:a review[J]. Acta Veterinaria Scandinavica, 2011, 53(1): 28. DOI:10.1186/1751-0147-53-28 |
[16] |
BOSWELL H S, SHARROW S O, SINGER A. Role of accessory cells in B cell activation.1.Macrophage presentation of tnp-ficoll:evidence for macrophage B cell interaction[J]. Journal of Immunology, 1980, 124(2): 989-996. |
[17] |
ALLAIRE J M, CROWLEY S M, LAW H T, et al. The intestinal epithelium:central coordinator of mucosal immunity[J]. Trends in immunology, 2018, 39(9): 677-696. DOI:10.1016/j.it.2018.04.002 |
[18] |
ZHANG Q, LI C, NIU X L, et al. An intensive milk replacer feeding program benefits immune response and intestinal microbiota of lambs during weaning[J]. Bmc Veterinary Research, 2018, 14(1): 366. DOI:10.1186/s12917-018-1691-x |
[19] |
HART P H, VITTI G F, BURGESS D R, et al. Potential antiinflammatory effects of interleukin-4 suppression of human monocyte tumor necrosis factor-alpha, interleukin-1, and prostaglandin-e2[J]. Proceedings of the National Academy of Sciences of the United States of America, 1989, 86(10): 3803-3807. DOI:10.1073/pnas.86.10.3803 |
[20] |
CHOMARAT P, BANCHEREAU J. An update on interleukin-4 and its receptor[J]. European Cytokine Network, 1997, 8(4): 333-344. |
[21] |
LIANG H E, REINHARDT R L, BANDO J K, et al. Divergent expression patterns of IL-4 and IL-13 define unique functions in allergic immunity[J]. Nature Immunology, 2012, 13(1): 58-66. DOI:10.1038/ni.2182 |
[22] |
OH C K, GEBA G P, MOLFINO N. Investigational therapeutics targeting the IL-4/IL-13/STAT-6 pathway for the treatment of asthma[J]. European Respiratory Review, 2010, 19(115): 46-54. DOI:10.1183/09059180.00007609 |
[23] |
PAYNE R L, BIDNER T D, FAKLER T M, et al. Growth and intestinal morphology of pigs from sows fed two zinc sources during gestation and lactation[J]. Journal of Animal Science, 2006, 84(8): 2141-2149. DOI:10.2527/jas.2005-627 |
[24] |
MAO K R, BAPTISTA A P, TAMOUTOUNOUR S, et al. Innate and adaptive lymphocytes sequentially shape the gut microbiota and lipid metabolism[J]. Nature, 2018, 554(7691): 255-259. DOI:10.1038/nature25437 |
[25] |
UENO A, GHOSH A, HUNG D, et al. Th17 plasticity and its changes associated with inflammatory bowel disease[J]. World Journal of Gastroenterology, 2015, 21(43): 12283-12295. DOI:10.3748/wjg.v21.i43.12283 |
[26] |
MALOY K J. The interleukin-23/interleukin-17 axis in intestinal inflammation[J]. Journal of internal medicine, 2008, 263(6): 584-590. DOI:10.1111/j.1365-2796.2008.01950.x |
[27] |
KULLBERG M C, JANKOVIC D, FENG C G, et al. IL-23 plays a key role in Helicobacter hepaticus-induced T cell-dependent colitis[J]. Journal of Experimental Medicine, 2006, 203(11): 2485-2494. DOI:10.1084/jem.20061082 |
[28] |
BRANDTZAEG P. Current understanding of gastrointestinal immunoregulation and its relation to food allergy[J]. Annals of the New York Academy of Sciences, 2002, 964(1): 13-45. |
[29] |
MALLAKI M, NOROUZIAN M A, KHADEM A A. Effect of organic zinc supplementation on growth, nutrient utilization, and plasma zinc status in lambs[J]. Turkish Journal of Veterinary and Animal Sciences, 2015, 39(1): 75-80. |
[30] |
SPEARS J W, SCHLEGEL P, SEAL M C, et al. Bioavailability of zinc from zinc sulfate and different organic zinc sources and their effects on ruminal volatile fatty acid proportions[J]. Livestock Production Science, 2004, 90(2/3): 211-217. |
[31] |
梁建光, 吕林, 罗绪刚. 有机锌源的理化特性及其体外瘤胃发酵的稳定性研究[J]. 畜牧兽医学报, 2008, 39(10): 1355-1366. LIANG J G, LYU L, LUO X G, et al. Physical and chemical characteristics of supplemental organic zinc sources and their stabilities in vitro fermentation rumen[J]. Chinese Journal of Animal and Veterinary Sciences, 2008, 39(10): 1355-1366 (in Chinese). DOI:10.3321/j.issn:0366-6964.2008.10.011 |