2. 中国科学院大学, 北京 100049;
3. 环江毛南族自治县农业农村局, 环江 547199
2. University of Chinese Academy of Sciences, Beijing 100049, China;
3. Agricultural and Rural Bureau, Huanjiang Maonan Autonomous County, Huanjiang 547199, China
早期断奶应激引起的仔猪生长缓慢、腹泻率和死亡率高等问题制约了养猪业的健康可持续发展[1]。通过营养调控手段改善仔猪肠道健康、提高其生长性能是解决上述问题的重要途径。有研究表明,益生菌、合生元等益生物质可改善动物的肠道健康,降低腹泻率,进而提高生长性能[2-3]。因此,研发益生菌、合生元等功能性饲料添加剂对保障仔猪健康具有重要意义。丁酸梭菌(Clostridium butyricum,CB)是一种重要的益生菌,对酸、胆酸盐和抗生素等的耐受性较强[4],其代谢产物丁酸可为肠上皮细胞的再生和修复提供能量[5]。饲粮添加CB可显著提高断奶仔猪的平均日采食量(ADFI)和平均日增重(ADG),显著降低腹泻率[6]。合生元是由益生菌和益生元组合而成的一种微生态制剂,由木寡糖和地衣芽孢杆菌[7]、益生菌和低聚木糖(XOS)[8]组成的合生元能够增强仔猪的肠道健康,提高其生长性能。本课题组前期研究发现,饲粮中添加一定剂量的XOS可增强仔猪的肠道健康,减少腹泻,并促进其生长[9];可增加仔猪肌肉中粗蛋白质、氨基酸和脂肪酸的含量[10];还可改善育肥猪的肉品质和营养价值[11]。但由CB和XOS组成的合生元对环江香猪的饲喂效果如何,尚未见报道。因此,本试验拟研究饲粮添加益生菌和合生元对环江香猪生长性能和血浆生化参数的影响,为其在环江香猪健康养殖中的应用提供依据。
1 材料与方法 1.1 试验材料CB活菌数≥1×109 CFU/g;XOS主要成分为木二糖、木三糖和木四糖等,含量≥35%。
1.2 试验动物、分组与饲养管理动物试验在广西壮族自治区环江毛南族自治县环江香猪原种保种场开展。试验选取生产时间和窝产仔数相近的新生仔猪24窝,随机分为3组,每组8个重复。对照组饲喂基础饲粮,试验组分别在基础饲粮中添加0.05% CB(益生菌组)和0.05% CB+0.02% XOS(合生元组),添加剂量根据前人研究结果[6, 9]以及产品推荐剂量确定。仔猪10日龄前随母猪哺乳;10~35日龄随母猪哺乳,同时补充教槽饲粮;36~65日龄饲喂保育前期饲粮。
基础饲粮的常规营养水平参照《猪饲养标准》(NY/T 65—2004)、预混料参考NRC(2012)仔猪营养需求标准配制,其组成及营养水平见表 1。每天喂料3次,自由采食和饮水。其他饲养管理与免疫程序按猪场常规饲养管理方法进行。
![]() |
表 1 基础饲粮组成及营养水平(风干基础) Table 1 Composition and nutrient levels of basal diets (air-dry basis) |
试验期间记录每窝仔猪每日的采食量,分别于10、35和65日龄称取空腹体重,计算ADFI、ADG和料重比(F/G)。试验期间记录每窝仔猪每天的腹泻情况,计算腹泻率。
1.4 血浆生化参数测定分别于35和65日龄随机从每窝选取接近平均体重的仔猪1头,前腔静脉采血10 mL,肝素抗凝,3 000 r/min离心15 min,分离血浆。用Cobras c311型全自动生化分析仪测定血浆中谷草转氨酶(AST)、谷丙转氨酶(ALT)和碱性磷酸酶(ALP)的活性以及总蛋白(TP)、白蛋白(ALB)、氨(NH3)、尿素氮(UN)、总胆固醇(TC)、甘油三酯(TG)、低密度脂蛋白-胆固醇(LDL-C)和高密度脂蛋白-胆固醇(HDL-C)的含量,按照试剂盒(北京利德曼公司提供)说明书进行操作。
1.5 数据统计与分析试验数据采用SPSS 22.0软件进行单因素方差分析(one-way ANOVA),并采用Duncan氏法进行组间多重比较,以“平均值±标准差”表示。P < 0.05表示差异显著。
2 结果与分析 2.1 饲粮添加益生菌和合生元对环江香猪生长性能和腹泻率的影响由表 2可知,与对照组相比,益生菌组和合生元组10~35日龄阶段仔猪的腹泻率显著降低(P < 0.05),36~65日龄和10~65日龄阶段仔猪的ADFI和ADG显著增加且腹泻率显著降低(P < 0.05),65日龄仔猪的体重显著增加(P < 0.05)。与益生菌组相比,合生元组10~35日龄、36~65日龄和10~65日龄阶段仔猪的腹泻率显著降低(P < 0.05),36~65日龄和10~65日龄阶段仔猪的ADFI和ADG显著增加(P < 0.05)。
![]() |
表 2 饲粮添加益生菌和合生元对环江香猪生长性能和腹泻率的影响 Table 2 Effects of dietary supplementation with probiotics and synbiotics on growth performance and diarrhea rate of Huanjiang mini-piglets (n=8) |
由表 3可知,与对照组相比,35日龄时,益生菌组和合生元组血浆TP含量和ALP活性显著升高、ALP活性显著降低(P < 0.05),合生元组血浆LDL-C含量显著升高(P < 0.05);65日龄时,益生菌组和合生元组血浆TP、ALB和TG含量以及ALP活性显著升高(P < 0.05)、ALP和AST活性显著降低(P < 0.05),合生元组血浆TC和LDL-C含量显著升高(P < 0.05)。另外,合生元组35日龄血浆LDL-C含量、65日龄血浆LDL-C和TC含量以及ALP活性显著高于益生菌组(P < 0.05)。
![]() |
表 3 饲粮添加益生菌和合生元对环江香猪血浆生化参数的影响 Table 3 Effects of dietary supplementation with probiotics and synbiotics on plasma biochemical parameters of Huanjiang mini-piglets (n=8) |
现有研究表明,合生元可通过增加肠道内有益菌的相对丰度,提高微生物代谢产物短链脂肪酸(SCFA)的含量发挥益生作用,从而增加仔猪的ADFI和ADG[12]。本研究发现,饲粮添加益生菌或合生元后,仔猪各阶段腹泻率均显著降低,断奶后的ADFI和ADG以及65日龄体重均显著增加,表明饲粮添加益生菌或合生元可显著增强环江香猪的肠道健康,提高其生长性能。已有研究表明,饲粮添加6×109 CFU/kg CB可显著增加断奶仔猪的ADFI、ADG和末重,显著降低腹泻率和F/G[13];饲粮添加由XOS和益生菌组成的合生元制剂可显著降低仔猪黄白痢的发生率[8]。益生菌和合生元可能通过以下途径发挥作用:1)CB能产生酶、维生素、脂肪酸和丁酸梭菌素等物质,从而发挥促生长、提高饲料转化率和维持肠道健康等功能[14];2)XOS能促进双歧杆菌和乳酸菌的增殖,进而抑制有害菌在肠上皮细胞上的黏附[15];3)CB能促进双歧杆菌、乳酸菌和粪杆菌等有益菌的繁殖[11]。另外,本研究还发现,合生元较益生菌的效果更好,表明CB和XOS可产生协同效应,这与邓文等[16]的报道一致。不过,合生元的促生长效果优于益生菌的具体机制还有待进一步研究。
血浆TP、ALB、UN和NH3含量是衡量机体氮代谢的主要指标。血浆TP和ALB含量可反映机体对蛋白质的吸收和代谢水平,ALB含量与动物的生长速度呈正相关[17]。本研究中,饲粮添加益生菌或合生元后,35日龄时血浆TP含量以及65日龄时血浆TP和ALB含量均显著升高,提示此阶段仔猪对蛋白质的消化能力增强。AST和ALT是动物机体内重要的转氨酶,其活性是反映肝脏和心脏功能的重要指标,可影响多种氨基酸的代谢[18]。本研究中,饲粮添加益生菌或合生元后,35日龄时血浆ALT活性和65日龄时血浆ALT和AST活性均显著降低,表明环江香猪心脏和肝脏功能正常,机体对氨基酸的利用率提高,这与Wang等[13]的报道一致。血液中的ALP主要来源于肝脏和骨骼。在临床上,ALP主要用于肝脏疾病的诊断。患病时肝细胞过度生成ALP,经淋巴管和肝窦进入血液,同时由于肝内胆管胆汁排泄障碍,反流入血而引起血液ALP活性明显升高[19]。ALP作为消化代谢的关键酶,还能促进磷酸钙在骨骼内的蓄积,是反映骨生成状况和钙、磷代谢的重要指标[20]。本研究中,饲粮添加益生菌或合生元后,35和65日龄时血浆ALP活性显著升高。这可促进机体对钙、磷的吸收,增强骨骼钙化,从而有利于此阶段仔猪的骨骼发育。
血浆TC、TG、HDL-C和LDL-C含量是衡量机体脂类代谢强弱的重要指标。血浆TG和TC含量可反映机体对脂肪代谢的强弱,脂肪组织发育和脂肪沉积取决于血浆TG含量,血浆TG含量降低提示脂肪沉积可能下降[21];HDL-C和LDL-C是运输胆固醇的载体,LDL-C将肝脏合成的胆固醇转运至肝外组织,而HDL-C则把胆固醇运回肝脏代谢转化为其他物质,从而维持机体内脂类代谢的稳定[22]。本试验中,饲粮添加益生菌显著提高了65日龄时血浆TG含量,饲粮添加合生元显著提高了35日龄时血浆LDL-C含量以及65日龄时血浆TG、TC和LDL-C含量,提示益生菌或合生元可在一定程度上增强环江香猪的脂代谢,提高机体的脂肪沉积能力。
4 结论饲粮添加益生菌或合生元均可改善环江香猪氮代谢和脂代谢相关的血浆生化参数,降低腹泻率,进而提高生长性能。
[1] |
HUANG C, SONG P X, FAN P X, et al. Dietary sodium butyrate decreases postweaning diarrhea by modulating intestinal permeability and changing the bacterial communities in weaned piglets[J]. The Journal of Nutrition, 2015, 145(12): 2774-2780. DOI:10.3945/jn.115.217406 |
[2] |
CAO G T, TAO F, HU Y H, et al. Positive effects of a Clostridium butyricum-based compound probiotic on growth performance, immune responses, intestinal morphology, hypothalamic neurotransmitters, and colonic microbiota in weaned piglets[J]. Food & Function, 2019, 10(5): 2926-2934. |
[3] |
MAIR C, PLITZNER C, DOMIG K J, et al. Original Article:impact of inulin and a multispecies probiotic formulation on performance, microbial ecology and concomitant fermentation patterns in newly weaned piglets[J]. Journal of Animal Physiology and Animal Nutrition, 2010, 94(5): e164-e177. DOI:10.1111/j.1439-0396.2010.01000.x |
[4] |
KONG Q, HE G Q, JIA J L, et al. Oral administration of Clostridium butyricum for modulating gastrointestinal microflora in mice[J]. Current Microbiology, 2011, 62(2): 512-517. DOI:10.1007/s00284-010-9737-8 |
[5] |
LI H H, LI Y P, ZHU Q, et al. Dietary supplementation with Clostridium butyricum helps to improve the intestinal barrier function of weaned piglets challenged with enterotoxigenic Escherichia coli K88[J]. Journal of Applied Microbiology, 2018, 125(4): 964-975. DOI:10.1111/jam.13936 |
[6] |
郑有秀, 王超, 邹晓庭, 等. 丁酸梭菌对断奶仔猪生长性能、肠道结构和免疫功能的影响[J]. 动物营养学报, 2018, 30(7): 2683-2689. ZHENG Y X, WANG C, ZOU X T, et al. Effects of Clostridium butyricum on growth performance, intestinal structure and immune function of weaned piglets[J]. Chinese Journal of Animal Nutrition, 2018, 30(7): 2683-2689 (in Chinese). DOI:10.3969/j.issn.1006-267x.2018.07.028 |
[7] |
应琳琳, 张杨. 木寡糖-地衣芽孢杆菌合生元对保育猪生产性能的影响[J]. 中国饲料, 2015(21): 41-43. YING L L, ZHANG Y. Effects of xylooligosaccharide-Bacillus licheniformis synbiotics on production performance of nursery pigs[J]. China Feed, 2015(21): 41-43 (in Chinese). |
[8] |
姜晓明, 王大会, 赵献军, 等. 益生菌·低聚木糖制剂对仔猪生长性能和黄白痢的预防效果[J]. 西北农业学报, 2009, 18(6): 59-62. JIANG X M, WANG D H, ZHAO X J, et al. The research of probiotics·xylo-oligosaccharide effect on flavo-white diarrhea precautionand growth performance of piglets[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2009, 18(6): 59-62 (in Chinese). |
[9] |
谭兵兵.低聚木糖对断奶仔猪生长性能、血浆生化参数和肠道微生态的影响[D].硕士学位论文.南宁: 广西大学, 2015. TAN B B.Effects of xylo-oligosaccharide on growth performance, plasma biochemical parameters and intestinal microecology of weaned piglets[D].Master's Thesis.Nanning: Guangxi University, 2015.(in Chinese) |
[10] |
郭秋平, 文超越, 王文龙, 等. 低聚木糖对仔猪生长性能、肌肉组织营养成分含量及肌纤维类型组成的影响[J]. 动物营养学报, 2017, 29(8): 2769-2776. GUO Q P, WEN C Y, WANG W L, et al. Effects of xylooligosaccharide on growth performance, muscle nutrient content and muscle fiber type composition of piglets[J]. Chinese Journal of Animal Nutrition, 2017, 29(8): 2769-2776 (in Chinese). DOI:10.3969/j.issn.1006-267x.2017.08.020 |
[11] |
邢廷杰, 韩丽, 解培峰, 等. 饲粮添加低聚木糖对肥育猪血浆生化参数和肉品质的影响[J]. 中国畜牧杂志, 2018, 54(9): 94-99. XING T J, HAN L, XIE P F, et al. Effects of dietary supplementation with xylo-oligosaccharide on plasma biochemical parameters and meat quality in finishing pigs[J]. Chinese Journal of Animal Science, 2018, 54(9): 94-99 (in Chinese). |
[12] |
戴兆来, 董红军, 林勇, 等. 合生元组合筛选及对仔猪生产性能和腹泻的影响[J]. 南京农业大学学报, 2008, 31(2): 81-85. DAI Z L, DONG H J, LIN Y, et al. Screening of lactic acid bacteria and prebiotics for synbiotics and their effects on piglets[J]. Journal of Nanjing Agricultural University, 2008, 31(2): 81-85 (in Chinese). DOI:10.3969/j.issn.1671-7465.2008.02.014 |
[13] |
WANG K L, CAO G T, ZHANG H R, et al. Effects of Clostridium butyricum and Enterococcus faecalis on growth performance, immune function, intestinal morphology, volatile fatty acids, and intestinal flora in a piglet model[J]. Food & Function, 2019, 10(12): 7844-7854. |
[14] |
杨晓伟. 丁酸梭菌对仔猪生长性能、肠道菌群、抗氧化功能和免疫功能的影响[J]. 饲料研究, 2020, 43(5): 44-48. YANG X W. Effect of Clostridium butyricum on growth performance, intestinal flora, antioxidant function and immune function of piglets[J]. Feed Research, 2020, 43(5): 44-48 (in Chinese). |
[15] |
问鑫, 卢萍. 低聚木糖的作用机理及其在断奶仔猪生产中的应用[J]. 中国饲料, 2018(19): 24-27. WEN X, LU P. The mechanism of xylo-oligosaccharide and application in weaning piglet[J]. China Feed, 2018(19): 24-27 (in Chinese). |
[16] |
邓文, 焦玉萍, 徐彬, 等. 丁酸梭菌和低聚木糖对肉鸡生产性能酸梭菌和低聚木糖对肉鸡生产性能、屠宰性能和肉品质的影响[J]. 中国家禽, 2017, 39(7): 24-28. DENG W, JIAO Y P, XU B, et al. Effect of Clostridium botulinum and xylo-oligosaccharides on production performance, slaughter performance and meat quality of broilers[J]. China Poultry, 2017, 39(7): 24-28 (in Chinese). |
[17] |
周笑犁, 汤文杰, 孔祥峰, 等. 精氨酸对环江香猪营养物质消化率和血液指标的影响[J]. 华北农学报, 2012, 27(4): 234-238. ZHOU X L, TANG W J, KONG X F, et al. Effects of arginine on nutrient digestibility and blood parameters in huanjiang mini-pigs[J]. Acta Agriculturae Boreali-Sinica, 2012, 27(4): 234-238 (in Chinese). |
[18] |
LIU Y Y, KONG X F, JIANG G L, et al. Effects of dietary protein/energy ratio on growth performance, carcass trait, meat quality, and plasma metabolites in pigs of different genotypes[J]. Journal of Animal Science and Biotechnology, 2015, 6(1): 36. |
[19] |
FERNANDEZ N J, Kidney B A. Alkaline phosphatase:beyond the liver[J]. Veterinary Clinical Pathology, 2007, 36(3): 223-233. |
[20] |
王秋颖. 碱性磷酸酶特性及其应用的研究进展[J]. 中国畜牧兽医, 2011, 38(1): 157-161. WANG Q Y. Advances on characteristic and application of alkaline phosphatase[J]. China Animal Husbandry & Veterinary Medicine, 2011, 38(1): 157-161 (in Chinese). |
[21] |
周根来, 陶勇, 倪黎纲, 等. 日粮营养水平对育肥苏姜猪血清生化指标和肉质相关基因的影响[J]. 福建农业学报, 2019, 34(6): 668-677. ZHOU G L, TAO Y, NI L G, et al. Serum biochemistry and expression of carcass trait-related gene of sujiang pigs as affected by dietary makeup at final growth stage[J]. Fujian Journal of Agricultural Sciences, 2019, 34(6): 668-677 (in Chinese). |
[22] |
SHARMAN M J, FERNANDEZ M L, ZERN T L, et al. Replacing dietary carbohydrate with protein and fat decreases the concentrations of small LDL and the inflammatory response induced by atherogenic diets in the guinea pig[J]. The Journal of Nutritional Biochemistry, 2008, 19(11): 732-738. |