动物营养学报    2021, Vol. 33 Issue (3): 1555-1564    PDF    
不同精粗比饲粮对育肥前期牦牛生长性能、血清生化指标及瘤胃发酵参数的影响
戴东文1,2,3 , 王书祥1,2,3 , 周振明4 , 王迅1,2,3 , 杨英魁1,2,3 , 柴沙驼1,2,3     
1. 青海大学畜牧兽医科学院, 西宁 810016;
2. 青海省高原放牧家畜营养与饲料科学重点实验室, 西宁 810016;
3. 青海省牦牛工程技术研究中心, 西宁 810016;
4. 中国农业大学动物科技学院动物营养国家重点实验室, 北京 100193
摘要: 本试验旨在研究不同精粗比饲粮对育肥前期牦牛生长性能、血清生化指标及瘤胃发酵参数的影响。选取3周岁、体重[(164.9±12.9)kg]相近、体况良好的公牦牛48头,随机分为4组,每组12头。4组牦牛分别饲喂精粗比为35:55(C35组)、50:50(C50组)、65:35(C65组)和80:20(C80组)的试验饲粮。预试期为15 d,正试期为90 d。结果表明:1)C65和C80组的平均日增重(ADG)和干物质采食量(DMI)显著高于C35组(P < 0.05),C35组的料重比(F/G)显著高于其他3组(P < 0.05)。2)C65和C80组的血清葡萄糖含量显著高于C35和C50组(P < 0.05),C65组的血清总蛋白显含量著高于C35组(P < 0.05),C65组的血清尿素氮含量显著低于C35和C80组(P < 0.05),C80组的血清谷丙转氨酶和谷草转氨酶活性显著高于其他3组(P < 0.05)。3)C80组的瘤胃液pH显著低于其他3组(P < 0.05),C65组的瘤胃液氨态氮含量显著低于C30和C80组(P < 0.05),C80组的瘤胃液总挥发性脂肪酸含量显著高于其他3组(P < 0.05),C35和C80组的瘤胃液乙酸含量显著高于C50和C65组(P < 0.05),C65和C80组的瘤胃液丙酸、丁酸和异丁酸含量显著高于C35和C50组(P < 0.05),C65组的瘤胃液乙酸/丙酸显著低于其他3组(P < 0.05)。综上所述,综合育肥前期牦牛生长性能、血清生化指标及瘤胃发酵参数,饲粮精粗比为65:35时效果最佳。
关键词: 牦牛    精粗比    生长性能    血清生化指标    瘤胃发酵参数    
Effects of Diets with Different Concentrate-Roughage Ratios on Growth Performance, Serum Biochemical Indexes and Rumen Fermentation Parameters of Yak in Early Stage of Fattening
DAI Dongwen1,2,3 , WANG Shuxiang1,2,3 , ZHOU Zhenming4 , WANG Xun1,2,3 , YANG Yingkui1,2,3 , CHAI Shatuo1,2,3     
1. Qinghai Academy of Animal Husbandry and Veterinary Sciences in Qinghai University, Xi'ning 810016, China;
2. Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Xi'ning 810016, China;
3. Yak Engineering Technology Research Center of Qinghai Province, Xi'ning 810016, China;
4. State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
Abstract: This experiment was conducted to investigate the effects of diet with different concentrate-roughage ratios on growth performance, serum biochemical indexes and rumen fermentation parameters of yak in early stage of fattening. Forty-eight 3-year-old male yaks with good body condition and similar body weight [(164.9±12.9) kg] were randomly divided into 4 groups with 12 yak per group. Yak in four groups were fed diets with different concentrate-roughage ratios of 35:65 (C35 group), 50:50 (C50 group), 65:35 (C65 group) and 80:20 (C80 group), respectively. The pre-experimental period lasted for 15 days, and the experimental period lasted for 90 days. The results showed as follows: 1) the average daily gain (ADG) and dry matter intake (DMI) of C65 and C80 groups were significantly higher than those of C35 group (P < 0.05), and the feed to gain ratio (F/G) of C35 group was significantly higher than that of other 3 groups (P < 0.05). 2) The serum glucose content of C65 and C80 groups was significantly higher than that of C35 and C50 groups (P < 0.05), the serum total protein content of C65 group was significantly higher than that of C35 group (P < 0.05), the serum urea nitrogen content of C65 group was significantly lower than that of C35 and C80 groups (P < 0.05), and the activities of alanine transaminase and aspartate aminotransferase in serum of C80 group were significantly higher than those of other 3 groups (P < 0.05). 3) The rumen fluid pH of C80 group was significantly lower than that of other 3 groups (P < 0.05), the rumen fluid ammonia nitrogen content of C65 group was significantly lower than that of C30 and C80 groups (P < 0.05), the rumen fluid total volatile fatty acid content of C80 group was significantly higher than that of other 3 groups (P < 0.05), the rumen fluid acetic acid content of C35 and C80 groups was significantly higher than that of C50 and C65 groups (P < 0.05), the contents of propionic acid, butyric acid and isobutyric acid in rumen fluid of C65 and C80 groups were significantly higher than those of C35 and C50 groups (P < 0.05), and the rumen fluid acetic acid/propionic acid of C65 group was significantly lower than that of other 3 groups (P < 0.05). To sum up, the concentrate-roughage ratio of 65:35 produces the optimal results according to growth performance, serum biochemical indexes and rumen fermentation parameters of yak in early stage of fattening.
Key words: yak    concentrate-roughage ratio    growth performance    serum biochemical indexes    rumen fermentation parameters    

牦牛主要分布于青藏高原及周围地区,是当地的主要畜种,也是当地牧民重要的生产生活资料[1]。近些年来,鉴于市场需求、生态保护及养殖收益等因素的考虑,牦牛养殖从传统放牧逐渐向规模化全舍饲化育肥模式发展。饲粮精粗比是影响反刍动物健康状况、生产性能、饲料利用率和瘤胃微生物区系的参数[2];精料比例过高会导致瘤胃代谢紊乱,诱发瘤胃酸中毒及腹泻等多种代谢性疾病[3];粗料比例过低,会降低反刍动物的采食量及营养物质的吸收,不利于反刍动物生长性能的提高[4]。近些年来,饲粮精粗比合理搭配已成为研究热点,目前饲粮精粗比在奶牛、山羊、其他肉牛品种等已有大量研究[5-8]。但是,目前有关于牦牛合理的饲粮精粗比研究报道较少,实际生产中饲喂饲粮精粗比例较高或较低的现象普遍存在,两者均会影响养殖的经济效益,因此,适宜的饲粮精粗比是提高牦牛生产效率及饲料利用率的重要措施。本研究旨在探讨不同精粗比饲粮对育肥前期牦牛生长性能、血清生化指标及瘤胃发酵的影响,以期找出育肥前期牦牛适宜的饲粮精粗比,为牦牛精准舍饲化养殖提供理论依据。

1 材料与方法 1.1 试验动物与试验设计

试验于2019年9—12月在青海省贵南县老扎西养殖基地进行。选取健康、体况良好和体重[(164.9±12.9) kg]相近的3周岁公牦牛48头,随机分为4组,每组12头。4组牦牛分别饲喂精粗比为35 ∶ 55(C35组)、50 ∶ 50(C50组)、65 ∶ 35(C65组)和80 ∶ 20(C80组)的试验饲粮。预试期为15 d,正试期为90 d。

1.2 试验饲粮与饲养管理

饲粮参考我国《肉牛饲养标准》(NY/T 815—2004)[9]及结合《牦牛营养研究论文集》[10]中相关文献配制,试验饲粮组成及营养水平见表 1。燕麦干草饲喂前采用粉草机揉搓成3~6 cm的草段,便于与精料混合饲喂。试验前所有牦牛统一编号,驱虫健胃,单栏饲养,试验期间每天08:00和17:00进行饲喂,饲草自由采食,自由饮水,各组间饲养方式及环境一致。预试期测定牦牛采食量,保证第2天饲喂前饲草有剩余。

表 1 试验饲粮组成及营养水平(干物质基础) Table 1 Composition and nutrient levels of experimental diets (DM basis)  
1.3 样品采集 1.3.1 饲粮样品

正试期每隔30 d,将收集的饲粮样品混合均匀后采用四分法取样,65 ℃烘至恒重,粉碎后装于自封袋中,-20 ℃保存待测。

1.3.2 血清样品

正式试验第90天,晨饲前颈静脉采血10 mL,静置30 min,在高速冷冻离心机(H1850R,湘仪)中1 259×g、4 ℃离心10 min,吸取血清装于2 mL冻存管中,置于-20 ℃保存,用于检测血清生化指标。

1.3.3 瘤胃液样品

正式试验第90天,晨饲前采用胃管式采样器采集瘤胃液150 mL,4层纱布过滤后立即测定pH,剩余瘤胃液样品分装至15 mL离心管中,置于-80 ℃冻存备用,用于测定瘤胃发酵参数。

1.4 指标测定与方法 1.4.1 饲粮营养成分的测定

饲粮中干物质(DM)含量采用GB/T 6435—2014[13]中的方法测定,粗蛋白质(CP)含量采用GB/T 6432—2018[14]中的方法测定,钙(Ca)含量采用GB/T 6436—2002[15]中的方法测定,磷(P)含量采用GB/T 6437—2002[16]中的方法测定。中性洗涤纤维(NDF)、酸性洗涤纤维(ADF)含量采用Van Soest等[17]的方法测定,所用仪器为ANKOM 200i半自动纤维分析仪。

1.4.2 生长性能的测定

正试期开始前和结束时,饲喂前空腹称重试验牦牛,计算平均日增重(ADG)和料重比(F/G)。每天记录投料量与剩余料量,计算干物质采食量(DMI)。

1.4.3 血清生化指标的测定

血清葡萄糖(GLU)和甘油三酯(TG)含量采用酶连续法测定,总胆固醇(TC)含量采用胆固醇氧化酶法测定,总蛋白(TP)含量采用双缩脲法测定,白蛋白(ALB)含量采用溴甲酚绿法测定,球蛋白(GLB)含量为TP与ALB含量之差,尿素氮(UN)含量采用尿素酶法测定,谷丙转氨酶(ALT)、谷草转氨酶(AST)和碱性磷酸酶(ALP)活性采用比色法测定,使用仪器为全自动生化仪(贝克曼库尔特AU5831,美国)。

1.4.4 瘤胃发酵参数的测定

使用HANNA HI221型台式酸度计测定瘤胃液pH,测定前对酸度计使用相应标准液进行校正;参照冯宗慈等[18]改进的比色法测定瘤胃液氨态氮(NH3-N)含量,仪器为紫外可见分光光度计(TU-1810),预热30 min,在波长625 nm处测定溶液吸光度(OD)值,利用标准曲线测定NH3-N含量;瘤胃液微生物蛋白(MCP)含量采用考马斯亮蓝法[19]在595 nm波长处比色测定(试剂盒购于南京建成生物工程研究所)。

瘤胃液挥发性脂肪酸(VFA)含量测定参考文献[20-21],使用日本岛津GC-2014型气相色谱仪测定。测定条件为:火焰离子化检测仪(FID)检测器,色谱柱为毛细管柱(FFAP,30.00 m×0.32 mm×0.50 μm);升温条件为:初始60 ℃,以10 ℃/min升温至120 ℃,保留2 min,以15 ℃/min升温至180 ℃,保留5 min,汽化室温度250 ℃;FID温度250 ℃;进样量1 μL,载气为高纯氮气(99.99%),压力0.7 MPa;氢气压力0.4 MPa,空气压力0.4 MPa,毛细管柱压力0.6~0.8 MPa,分流比40 ∶ 1。

1.5 数据分析

试验数据用Excel 2017初步整理后,采用SPSS 24.0进行单因素方差分析(one-way ANOVA),并用Duncan氏法进行组间的多重比较,P < 0.05表示差异显著,结果均以平均值和均值标准误(SEM)表示。

2 结果 2.1 不同精粗比饲粮对育肥前期牦牛生长性能的影响

表 2可知,各组的初始体重差异不显著(P=0.734)。C50、C65和C80组的终末体重显著高于C35组(P < 0.05),C65和C80组的总增重、ADG和DMI显著高于C35组(P < 0.05),C35组的F/G显著高于其他3组(P < 0.05)。此外,C80组的ADG和DMI略低于C65组(P>0.05),C80组的F/G略高于C65组(P>0.05)。

表 2 不同精粗比饲粮对育肥前期牦牛生长性能的影响 Table 2 Effects of diets with different concentrate-roughage ratios on growth performance of yak in early stage of fattening
2.2 不同精粗比饲粮对育肥前期牦牛血清生化指标的影响

表 3可知,各组的血清TC、TG、ALB、GLB含量和ALP活性无显著差异(P>0.05)。C65和C80组的血清GLU含量显著高于C35和C50组(P < 0.05),C65组的血清TP含量显著高于C35组(P < 0.05),C65组的血清UN含量显著低于C35和C80组(P < 0.05),C80组的血清ALT和AST活性显著高于其他3组(P < 0.05)。此外,C80组的血清GLU含量略低于C65组(P>0.05)。

表 3 不同精粗比饲粮对育肥前期牦牛血清生化指标的影响 Table 3 Effects of diets with different concentrate-roughage ratios on serum biochemical indexes of yak in early stage of fattening
2.3 不同精粗比饲粮对育肥前期牦牛瘤胃发酵参数的影响

表 4可知,C80组的瘤胃液pH显著低于其他3组(P < 0.05),C65组的瘤胃液NH3-N含量显著低于C30和C80组(P < 0.05),C80组的瘤胃液总挥发性脂肪酸(TVFA)含量显著高于其他3组(P < 0.05),C35和C80组的瘤胃液乙酸含量显著高于C50和C65组(P < 0.05),C65和C80组的瘤胃液丙酸、丁酸和异丁酸含量显著高于C35和C50组(P < 0.05),C65组的瘤胃液乙酸/丙酸显著低于其他3组(P < 0.05)。此外,C80组的瘤胃液MCP含量略低于C65组(P>0.05)。

表 4 不同精粗比饲粮对育肥前期牦牛瘤胃发酵参数的影响 Table 4 Effects of diets with different concentrate-roughage ratios on rumen fermentation parameters of yak in early stage of fattening
3 讨论 3.1 不同精粗比饲粮对育肥前期牦牛生长性能的影响

育肥前期亦为生长育肥期,此阶段肉牛生长发育最快,相对生长强度大,是肉牛育肥的重要时期,也是肉牛育肥的关键时期[22]。反刍动物的瘤胃是营养吸收和消化代谢的重要场所,适宜的饲粮精粗比能够通过调控瘤胃微生物区系和胃肠道消化酶活性来提高反刍动物的生长性能和饲料消化利用率[6, 23]。本试验结果表明,育肥前期牦牛ADG随着饲粮精粗比的提高先增加后降低,C65组的ADG最高(818.67 g)。高林青等[24]研究发现,饲粮精粗比为40 ∶ 60组湖羊的ADG显著低于精粗比为50 ∶ 50、60 ∶ 40、70 ∶ 30组,其中,饲粮精粗比为60 ∶ 40组的ADG最高。徐相亭等[25]研究了不同精粗比饲粮对杜泊绵羊生长性能、血清生化指标的影响,结果表明饲粮精粗比为60 ∶ 40时杜泊绵羊的ADG显著高于饲粮精粗比为70 ∶ 30和50 ∶ 50组。以上研究与本试验结果基本一致,表明过高的精料水平不能使育肥前期牦牛产生较高的生长性能,可能是高精料下,大量的碳水化合物发酵降低了瘤胃内pH,C80组的瘤胃液pH接近6.0也验证了这点,阻碍瘤胃内微生物繁衍,进而降低了营养物质表观消化率,导致不能获得较高的生长性能[26]。反刍动物的DMI受多种因素影响,其与饲粮的精粗比关系较大[27]。本试验结果表明,育肥前期牦牛的DMI随饲粮精粗比的提高先增加后降低,C65组的DMI最高,这与Johnson等[28]、程光民等[29]的研究结果相一致,原因可能是反刍动物DMI与其能量摄入量有关,C80组饲粮的能量水平高,较低的DMI就可以满足育肥前期牦牛的能量需要[30]

3.2 不同精粗比饲粮对育肥前期牦牛血清生化指标的影响

血清生化指标的变化客观反映了动物机体健康、营养水平及机体代谢情况。血清GLU是动物机体代谢、生长发育的主要能量来源,当机体能量摄入不足时,血清GLU含量下降。本试验结果表明,血清GLU含量随着饲粮精粗比的提高先增加后减少,C65组的血清GLU含量最高(4.71 mmol/L)。这与高林青等[24]的研究结果相一致,说明在适合的范围内提高饲粮的精料水平,机体糖代谢增强,进而提高了其生长速度;但当饲粮的精料水平过高时,可能瘤胃中精料快速降解发酵,瘤胃pH迅速下降,瘤胃一直处于酸性条件下,会使得瘤胃中革兰氏阴性菌裂解释放出脂多糖(LPS)[31],进而影响机体的能量代谢。

血清TP含量一定程度上直接反映了动物对蛋白质的消化吸收和饲粮蛋白质营养状况。本试验结果表明,C65组的血清TP含量显著高于C35组。朱昊鹏等[32]研究表明,提高饲粮的精料水平对锦江黄牛血清TP含量无显著影响,其研究结果与本试验结果不一致,可能是不同的牛品种、生理阶段、饲粮差异等导致的。血清UN含量是衡量动物蛋白质代谢与氨基酸平衡情况的重要指标。当血清UN含量降低,表明蛋白质利用率提高[33]。本试验中,血清UN含量随着饲粮精粗比的升高先降低后增加,C65组最低,这与王文娟等[34]、崔晓鹏等[35]研究结果相一致,可能是在适宜范围内提高饲粮精料水平一方面促进了瘤胃微生物的生长,加快了对氨的吸收;另一方面提高了机体对蛋白质的利用率。C80组的血清UN含量反而上升,可能是高精料下提高了饲粮中蛋白质成分,瘤胃氨释放速度变快,瘤胃微生物利用氨的速率有限,导致血清UN含量上升,C80组血清NH3-N含量高于C65组,也从侧面证实了这一点。血清AST和ALT活性是反映动物机体蛋白质代谢、肝脏功能的重要指标,蛋白质代谢水平增加或肝脏功能受损都会导致二者活性上升[36]。本试验中,血清AST和ALT活性随着饲粮精粗比的升高有一定增加趋势,其中C80组显著高于其他3组。这可能是适宜范围内提高饲粮精料水平促进了蛋白质的代谢,而高精料对机体的肝脏代谢造成了一些不利的影响。

3.3 不同精粗比饲粮对育肥前期牦牛瘤胃发酵参数的影响

瘤胃中VFA主要来自饲粮碳水化合物的发酵,主要包括乙酸、丙酸和丁酸,是反刍动物的主要能量来源[37]。秦正君等[38]研究发现,提高饲粮中精料水平会降低瘤胃液pH。本试验中,C80组的瘤胃液pH显著低于其他3组,与以上研究结果相似。这可能是高精料饲粮在瘤胃微生物的降解下产生大量的VFA,导致瘤胃液pH下降。瘤胃NH3-N是瘤胃氮代谢过程中外源蛋白质和内源含氮物质降解的重要产物,同时也是瘤胃微生物合成MCP的原料。本试验中,NH3-N含量随着饲粮精料水平升高先降低后上升,其中C80组的NH3-N含量显著高于C65组,可能饲粮精料水平的提高使得瘤胃微生物增加,提高了NH3-N的利用率,而高精料下影响了瘤胃微生物的生长与定殖,MCP合成速率下降,C80组的MCP含量略低于C65组,也验证这一点。Polyorach等[39]和Giger-Reverdin等[40]研究发现,提高饲粮中精料水平,瘤胃中TVFA、丙酸和丁酸含量增加,而乙酸含量降低。杨靖等[41]研究也表明,高精料水平组奶牛瘤胃中乙酸含量和乙酸/丙酸显著低于低精料水平组。本试验中,随着饲粮精粗比的升高,TVFA、丙酸和丁酸含量增加,而C65和C50组的乙酸含量和乙酸/丙酸显著低于C30组,但C80组的乙酸含量和乙酸/丙酸反而上升了,这与以上研究结果不太一致。这可能是C80组饲粮精料水平过高,影响了瘤胃内环境及瘤胃微生物生长与定植,导致发酵不正常。因此,适宜提高饲粮精粗比有利于育肥前期牦牛的生长,精料水平过高反而会降低其生长性能。

4 结论

饲粮精粗比由35 ∶ 55提高到65 ∶ 35,对育肥前期牦牛的生长性能、蛋白质合成、能量利用率、瘤胃TVFA含量和MCP含量有一定的促进作用,但饲粮精粗比过高反而有负面作用。从本试验结果看,育肥前期牦牛的饲粮精粗比为65 ∶ 35时效果最佳。

参考文献
[1]
LONG R J, DING L M, SHANG Z H, et al. The yak grazing system on the Qinghai-Tibetan plateau and its status[J]. The Rangeland Journal, 2008, 30(2): 241-246. DOI:10.1071/RJ08012
[2]
CLARK J H. Lactational responses to postruminal administration of proteins and amino acids[J]. Journal of Dairy Science, 1975, 58(8): 1178-1197. DOI:10.3168/jds.S0022-0302(75)84696-0
[3]
王洪荣. 反刍动物瘤胃酸中毒机制解析及其营养调控措施[J]. 动物营养学报, 2014, 26(10): 3140-3148.
WANG H R. Mechanism analysis and nutritional strategies for prevention of sub-acute ruminal acidosis in ruminants[J]. Chinese Journal of Animal Nutrition, 2014, 26(10): 3140-3148 (in Chinese).
[4]
胡丹丹. 不同精粗比日粮下奶牛瘤胃发酵与菌群结构及血清生化指标变化的研究[D]. 硕士学位论文. 银川: 宁夏大学, 2019.
HU D D.Study the changes of rumen fermentation, fora structure and serum biochemical parameters on dairy cows with different ratios of concentrate and roughage[D].Master's Thesis.Yinchuan: Ningxia University, 2019. (in Chinese)
[5]
LIU H J, XU T W, XU S X, et al. Effect of dietary concentrate to forage ratio on growth performance, rumen fermentation and bacterial diversity of Tibetan sheep under barn feeding on the Qinghai-Tibetan plateau[J]. PeerJ, 2019, 7(2): e7462.
[6]
NUGROHO D, SUNARSO S, SEVILLA C C, et al. The effects of dietary neutral detergent fiber ratio from forage and concentrate on the dietary rumen degradability and growth performance of Philippine native goats (Capra hircus Linn.)[J]. International Journal of Science and Engineering, 2014, 6(1): 75-80.
[7]
WANG L J, LI Y, ZHANG Y G, et al. The effects of different concentrate-to-forage ratio diets on rumen bacterial microbiota and the structures of Holstein cows during the feeding cycle[J]. Animals, 2020, 10(6): 957. DOI:10.3390/ani10060957
[8]
AMAT S, MCKINNON J J, PENNER G B, et al. Effects of dietary sulfur concentration and forage-to-concentrate ratio on ruminal fermentation, sulfur metabolism, and short-chain fatty acid absorption in beef heifers[J]. Journal of Animal Science, 2014, 92(2): 712-723. DOI:10.2527/jas.2013-7254
[9]
王加启, 杨红建, 莫放, 等. NY/T 815-2004肉牛饲养标准[S]. 北京: 中国农业出版社, 2004.
FENG Y L, WANG J Q, YANG H J, et al.NY/T 815-2004 China feeding standard of beef cattle[S].Beijing: China Agricuture Press, 2004. (in Chinese)
[10]
胡令浩. 牦牛营养研究论文集[M]. 西宁: 青海人民出版社, 1997.
HU L H. Yak nutrition by collection research papers[M]. Xining: Qinghai People's Publishing House, 1997 (in Chinese).
[11]
NRC.Nutrient requirements of beef cattle[S].8th ed.Washington, D.C.: National Academy Press, 2016.
[12]
冯仰廉, 陆治年. 奶牛营养需要和饲料成分[M]. 3版. 北京: 中国农业出版社, 2007.
FENG Y L.Nutritional requirements and feed ingredients of dairy cows[M].3rd ed.Beijing: China Agriculture Press, 2007. (in Chinese)
[13]
中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 6435-2014饲料中水分的测定[S]. 北京: 中国标准出版社, 2015.
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China.GB/T 6435-2014 Determination of moisture in feed stuffs[S].Beijing: Standards Press of China, 2015.(in Chinese)
[14]
全国饲料工业标准化技术委员会. GB/T 6432-2018饲料中粗蛋白的测定凯氏定氮法[S]. 北京: 中国标准出版社, 2018.
National Feed Industry Standardization Technical Committee.GB/T 6432-2018 Determination of crude protein in feeds-Kjeldahl method[S].Beijing: Standards Press of China, 2018. (in Chinese)
[15]
中华人民共和国国家质量监督检验检疫总局. GB/T 6436-2002饲料中钙的测定[S]. 北京: 中国标准出版社, 2002.
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China.GB/T 6436-2002 Determination of calcium in feed stuffs[S].Beijing: Standards Press of China 2014. (in Chinese)
[16]
中华人民共和国国家质量监督检验检疫总局. GB/T 6437-2002饲料中总磷的测定分光光度法[S]. 北京: 中国标准出版社, 2002.
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China.GB/T 6436-2002 Determination of phosphorus in feed stuffs-spectphotometry[S].Beijing: Standards Press of China 2002. (in Chinese)
[17]
VAN SOEST P J, ROBERTSON J B, LEWIS B A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal Nutrition[J]. Journal of Dairy Science, 1991, 74(10): 3583-3597. DOI:10.3168/jds.S0022-0302(91)78551-2
[18]
冯宗慈, 高民. 通过比色测定瘤胃液氨氮含量方法的改进[J]. 畜牧与饲料科学, 2010, 31(增刊): 37.
FENG Z C, GAO M. Improvement of the Method of Measuring Ammonia N concentrationof rumen liquid by colorimetric determination[J]. Animal Husbandry and Feed Science, 2010, 31(Suppl.): 37 (in Chinese).
[19]
高雨飞. 高精料日粮条件下烟酸对牛瘤胃微生物区系的影响[D]. 硕士学位论文. 南昌: 江西农业大学, 2016.
GAO Y F.Effects of niacin on microorganism system in the rumen of cattle under high concentrate diet[D].Master's Thesis.Nanchang: Jiangxi Agricultural University, 2016. (in Chinese)
[20]
曹庆云, 周武艺, 朱贵钊, 等. 气相色谱测定羊瘤胃液中挥发性脂肪酸方法研究[J]. 中国饲料, 2006(24): 26-28.
CAO Q Y, ZHOU W Y, ZHU G C, et al. Study on the methods of determination of volatile fatty acid in the rumen liquid of lambs by gas chromatography[J]. China Feed, 2006(24): 26-28 (in Chinese).
[21]
王加启. 反刍动物营养学研究方法[M]. 北京: 现代教育出版社, 2011.
WANG J Q. Ruminant nutrition research method[M]. Beijing: Modern Education Press, 2011 (in Chinese).
[22]
盛英霞. 肉牛育肥的主要技术[J]. 农技服务, 2017, 34(24): 120.
SHENG Y X. Main techniques for fattening beef cattle[J]. Agricultural Technology Service, 2017, 34(24): 120 (in Chinese).
[23]
李斌昌. 日粮精粗比对不同月龄后备奶牛甲烷排放与生长性能和营养物质消化的影响[D]. 硕士学位论文. 兰州: 甘肃农业大学, 2019.
LI B C.Effects of the ratios of concentrates to roughages on methane emission, growth performance and nutrient digestion of replacement heifers at different ages[D].Master's Thesis.Lanzhou: Gansu Agricultural University, 2019.(in Chinese)
[24]
高林青, 占今舜, 胡耀, 等. 不同精粗比全混合日粮对湖羊生长性能、血清激素浓度和屠宰性能的影响[J]. 动物营养学报, 2019, 31(4): 1676-1684.
GAO L Q, ZHAN J S, HU Y, et al. Effects of total mixed ration with different concentration-roughage ratios on growth performance, serum hormone concentrations and slaughter performance of Hu sheep[J]. Chinese Journal of Animal Nutrition, 2019, 31(4): 1676-1684 (in Chinese).
[25]
徐相亭, 王宝亮, 程光民, 等. 不同精粗比日粮对杜泊绵羊生长性能、血清生化指标及经济效益的影响[J]. 中国畜牧兽医, 2016, 43(3): 668-675.
XU X T, WANG B L, CHENG G M, et al. Effect of different dietary concentrate to forage ratios on growth performance, serum biochemical and economic benefits of Dorper sheep[J]. China Animal Husbandry and Veterinary Medicine, 2016, 43(3): 668-675 (in Chinese).
[26]
琚思思, 纪守坤, 段春辉, 等. 不同NDF水平饲粮对羔羊生长性能、营养物质消化、消化道重量及瘤胃乳头发育的影响[J]. 畜牧兽医学报, 2020, 51(7): 1666-1676.
JU S S, JI S K, DUAN C H, et al. Effects of diet with different NDF levels on growth performance, nutrient digestion, digestive tract weight and rumen papilla development of lambs[J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(7): 1666-1676 (in Chinese).
[27]
KENNEDY E, O'DONOVAN M, DELABY L, et al. Effect of herbage allowance and concentrate supplementation on dry matter intake, milk production and energy balance of early lactating dairy cows[J]. Livestock Science, 2008, 117(2/3): 275-286.
[28]
JOHNSON R J, KARUNAJEEWA H. The effects of dietary minerals and electrolytes on the growth and physiology of the young chick[J]. The Journal of Nutrition, 1985, 115(12): 1680-1690. DOI:10.1093/jn/115.12.1680
[29]
程光民, 徐相亭, 刘洪波. 饲粮精粗比对育成期杜寒杂交羊生产性能、血清生化指标及经济效益的影响[J]. 黑龙江畜牧兽医, 2017(1): 125-127, 134.
CHENG G M, XU X T, LIU H B. Effect of concentrate to roughage ratio diets on growth performance, serum biochemical and economic benefits[J]. Heilongjiang Animal Science and Veterinary Medicine, 2017(1): 125-127, 134 (in Chinese).
[30]
LARDY G P, ULMER D N, ANDERSON V L, et al. Effects of increasing level of supplemental barley on forage intake, digestibility, and ruminal fermentation in steers fed medium-quality grass hay[J]. Journal of Animal Science, 2004, 82(12): 3662-3668. DOI:10.2527/2004.82123662x
[31]
KRAUSE K M, OETZEL G R. Inducing subacute ruminal acidosis in lactating dairy cows[J]. Journal of Dairy Science, 2005, 88(10): 3633-3639. DOI:10.3168/jds.S0022-0302(05)73048-4
[32]
朱昊鹏, 郑月, 颜培实. 精料补饲水平对锦江黄牛生长性能和瘤胃液理化指标的影响[J]. 畜牧与兽医, 2017, 49(3): 24-29.
ZHU H P, ZHENG Y, YAN P S. Effects of different concentrate supplemental levels on production performance, rumen fluid physicochemical index of Jinjiang cattle[J]. Animal Husbandry and Veterinary Medicine, 2017, 49(3): 24-29 (in Chinese).
[33]
张峰. 不同氮源对绵羊生长性能、消化代谢及血清生化指标的影响[D]. 硕士学位论文. 保定: 河北农业大学, 2004.
ZHANG F.Effect of different forms nitrogen source on performance the digestion and metabolism and blood biochemical materials in sheep[D].Master's Thesis.Baoding: Agricultural University of Hebei Province, 2004.(in Chinese)
[34]
王文娟, 汪水平, 左福元. 反刍动物淀粉消化与葡萄糖吸收研究进展[J]. 西北农林科技大学学报(自然科学版), 2008, 36(5): 27-34.
WANG W J, WANG S P, ZUO F Y. Research progress on starch digestion and glucose absorption in ruminants[J]. Journal of Northwest A & F University (Natural Science), 2008, 36(5): 27-34 (in Chinese).
[35]
崔晓鹏, 侯生珍, 王志有, 等. 补饲日粮不同精粗比对妊娠后期藏母羊生产性能及血清指标的影响[J]. 饲料工业, 2016, 37(13): 40-44.
CUI X P, HOU S Z, WANG Z Y, et al. Effects of different concentrate to roughage ratios of supplementary feeding diet on production performance and serum biochemical parameters of Tibetan ewes at late stages of pregnancy[J]. Feed Industry, 2016, 37(13): 40-44 (in Chinese).
[36]
孙东峰, 孙满吉, 史印涛, 等. 不同精料补饲水平对放牧肉牛生长性能的影响[J]. 中国饲料, 2012(20): 19-21.
SUN D F, SUN M J, SHI Y T, et al. Effects of different concentrate supplementation levels on the growth performance in grazing beef cattle[J]. China Feed, 2012(20): 19-21 (in Chinese).
[37]
翁秀秀. 饲喂不同日粮奶牛瘤胃发酵和VFA吸收特性及其相关基因表达的研究[D]. 博士学位论文. 兰州: 甘肃农业大学, 2013.
WENG X X.The study on rumen fermentation, volatile fatty acid absorption characteristics and gene expression in dairy cows receiving different types of diets[D].Ph.D.Thesis.Lanzhou: Gansu Agricultural University, 2013.(in Chinese)
[38]
秦正君, 王若勇, 时国峰, 等. 日粮精粗比对奶牛瘤胃发酵及生产性能的影响[J]. 畜牧兽医杂志, 2018, 37(1): 83-85.
QIN Z Q, WANG R Y, SHI G F, et al. Effect of dietary concentration and roughage ratio to rumen fermentation and production performance on dairy cow[J]. Journal of Animal Science and Veterinary Medicine, 2018, 37(1): 83-85 (in Chinese).
[39]
POLYORACH S, WANAPAT M, CHERDTHONG A. Influence of yeast fermented cassava chip protein (YEFECAP) and roughage to concentrate ratio on ruminal fermentation and microorganisms using in vitro gas production technique[J]. Asian-Australasian Journal of Animal Sciences, 2014, 27(1): 36-45. DOI:10.5713/ajas.2013.13298
[40]
GIGER-REVERDIN S, RIGALMA K, DESNOYERS M, et al. Effect of concentrate level on feeding behavior and rumen and blood parameters in dairy goats: relationships between behavioral and physiological parameters and effect of between-animal variability[J]. Journal of Dairy Science, 2014, 97(7): 4367-4378. DOI:10.3168/jds.2013-7383
[41]
杨靖, 崔巧荣, 张力莉, 等. 日粮精粗比对奶牛瘤胃挥发酸模式及血液糖脂代谢相关指标的影响[J]. 中国饲料, 2019(5): 33-35.
YANG J, CUI Q R, ZHANG L L, et al. Effects of dietary concentrate to forage ratio on rumen volatile acid pattern and serum indices related with glucose and lipid metabolism in dairy cows[J]. China Feed, 2019(5): 33-35 (in Chinese).