2. 美国农业部农业研究所, 西拉斐特 479072;
3. 西南大学医学研究院免疫学研究中心, 重庆 402460
2. USDA Agricultural Research Service, West Lafayette 479072, USA;
3. Immunology Research Center, Medical Research Institute, Southwest University, Chongqing 402460, China
随着社会的发展,人们对动物源性产品数量和质量要求不断提高。为了满足人们的需求,养殖业根据畜禽生产性能进行品系筛选,然而在选育过程中,由于片面重视高生产性能,忽视了其他性状,动物往往因生产或繁殖性状过度表现而出现免疫抑制、功能障碍、代谢紊乱、应激敏感[1-2]和行为异常增加等情况,这损害了动物健康和福利[3]。现代养禽业普遍采用高密度集约化饲养管理模式。在蛋鸡饲养过程中,饲养群体越大,社会等级秩序稳定性越差,动物情绪紧张度越高,导致伤害性行为发生频率增加[4]。饲养过程中的转舍和断喙等管理措施也易诱发蛋鸡出现应激反应,导致动物出现异常行为。研究发现,动物出现应激反应并伴随异常行为时,肠道菌群多样性也遭受破坏,出现肠道炎症,引起机体局部或系统性感染[5]。
最新国内外研究表明,微生物-肠-脑轴可影响宿主的社会行为[6]。肠道菌群被视为一个跨物种的虚拟内分泌器官,其分泌各种生物活性物质,作用于大脑,调节生物的应激反应和相关行为[7]。Münger等[6]提出,肠道菌群和社会行为之间存在密切联系,肠道菌群可影响宿主社会行为,而群体间的社会结构和交流可改变肠道菌群组成。慢性应激会破坏肠稳态和紧密连接,增加肠道通透性,形成“肠漏”,导致大量病原菌和有毒代谢产物渗透进入血液,造成神经炎症、精神障碍和异常行为[8]。同时,研究发现肠道有益菌具有调节免疫[9]、吸收代谢[10]和神经内分泌[7]等功能,例如食品添加剂中的益生菌通过调节肠道微生物群的结构和多样性来影响宿主的微生物-肠-脑轴,从而达到预防或抑制精神疾病的目的[11]。
1 蛋鸡的应激及其异常行为野生动物在经过千百年的人工圈养和选育后被驯化为家畜家禽。在被驯化过程中,为了适应人工饲养环境和管理措施,动物依赖基因序列或非基因序列的改变(如DNA甲基化)而改变基因表达水平,调整物种的生理活动和行为方式。但是,并不是所有畜禽最终都能完全适应环境变化,在某些环境影响下,被沉默的不利基因还可能被唤醒,导致动物不适应人工饲养环境,而出现过度应激或应激性异常行为。
1.1 应激应激是身体对各种紧张性刺激的非特异性反应,是动物得以生存的重要因素之一,可增加动物的适应性和存活率。对个体产生积极作用的应激被定义为恰当应激或正向应激,而产生消极影响性质的应激为负向应激或过度应激。现代蛋鸡养殖采用分阶段饲养制度,这导致蛋鸡一生通常需经历1~2次转群,在陌生环境和与不熟悉鸡混群的共同刺激下鸡易产生急性应激。传统笼养模式下,高密度饲养和有限的活动空间限制了鸡的觅食、探索、栖息、沙浴和筑巢等自然行为,这些自然行为的减少或缺失可共同诱发慢性应激[12]。鸡只产生过度应激时会出现生理障碍和代谢紊乱,尤其会造成胃肠道结构功能以及微生物菌群紊乱,如:1)肠道共生菌的种类和定植数量被破坏,原微生物菌群平衡被打破,有益菌群减少,有害菌群及其毒力增加,诱发肠道炎症;2)病原菌的存活率和侵袭力增加;3)营养物质的吸收受阻;4)扰乱肠道微生物产生γ-氨基丁酸(γ-aminobutyric acid, GABA)、多巴胺(dopamine, DA)和去甲肾上腺素(noradrenaline, NE)等具有神经递质功能的物质;5)破坏肠道屏障功能,增加肠道通透性,使病原菌能够透过肠道屏障,造成宿主的代谢紊乱并诱发败血症;6)损伤上皮细胞,产生自由基并降低抗氧化能力造成氧化应激[13-16],最终影响动物的健康。同时,各种应激源的过度刺激会导致动物表现出啄羽、攻击和同类相食等异常行为。
1.2 啄癖啄羽是一种表现为笼养蛋鸡反复不停地啄彼此羽毛的异常行为。在笼养体系中有80%的蛋鸡会有不同程度的啄羽行为,它包括轻啄和重啄2类。轻啄是反复啄羽毛的尖端和边缘,一般是正常表现[17]。重啄是指鸡用力啄并拉扯羽毛,甚至吃掉羽毛的行为[18]。产蛋后突出的泄殖腔和受损出血的皮肤是啄羽出现的一个诱因,鸡只会攻击受伤的同伴,甚至出现同类相食的现象[19]。啄羽行为能使鸡只大脑释放大量DA,过多的DA通过与神经元受体结合,产生一系列强烈且短暂的快感并使动物上瘾,造成啄羽行为的进一步强化。并且,啄羽行为还能通过学习行为在种群内传播,导致鸡群同类相食、产蛋量下降和死亡率增加[20],给生产造成严重的影响。所以啄羽,尤其是重啄,一直是影响家禽健康和福利的主要原因之一。
1.3 攻击行为陌生的个体被迫混群时,为了建立新的社会优势序列,常引发争斗行为,鸡会直接攻击性叨啄同类的头、趾及肛门等部位,造成不同程度的伤亡,但优势序列重新建立后,整个群体社会关系会保持相对稳定[21]。根据自然法则学说,动物的生产力和其竞争力相关。因现代选育主要针对高生产力的个体,这导致了动物群体处理环境和生理问题的能力减弱,并相对增加了动物的竞争性和攻击性。调查发现,经过20多年人工选择的商业蛋鸡DeKalb XL的产蛋量显著增加,但因攻击行为和同类相食导致的死亡率也相应增加了约10倍[22]。根据“挫折-攻击理论””,即在遇到挫折时会有潜在的攻击性倾向,当鸡群处于如传统笼养等空间限制性环境下,鸡展示它们自然行为的权利被剥夺,面对一成不变的环境,没有新鲜事物的刺激,动机得不到满足,鸡群会因此陷入一种沮丧状态,从而引起应激反应并伴有攻击性[23]。
2 应激调控系统脊椎动物在神经网络及刺激反应上具有高度相似性,均受大脑神经网络和5-羟色胺(5-hydroxytryptamine, 5-HT)、DA等激素分泌量的共同影响,且鸟类核心的“社会行为网络”与哺乳动物类似[24],即鸟类控制情绪和行为(对环境刺激的反应)的大脑结构和功能与哺乳动物相似,例如下丘脑、后背腹嵴(与哺乳动物的杏仁核同源)和中缝核[25],另外鸟类神经递质受体如5-HT受体等的分布也与哺乳动物类似[26]。因此,蛋鸡对应激源的反应与哺乳动物类似,都分别由下丘脑-垂体-肾上腺(hypothalamic-pituitary-adrenal, HPA)轴和交感-髓质-肾上腺(sympathetic-medullary-adrenal, SMA)轴这2个主要的应激反应系统来调控。HPA轴作为一个神经内分泌系统,其功能是调控长时间持续累积的应激反应,而SMA轴的功能是调控一个短期的“战斗或逃避”反应。在应激刺激下,神经内分泌的稳态发生改变,由HPA轴调控释放的皮质酮(corticosterone, CORT)和SMA轴释放的儿茶酚胺神经肽包括DA、肾上腺素(epinephrine, EN)和NE的浓度发生改变,多种激素共同调控动物的病理性生理状态和行为[27]。
2.1 CORT与应激反应强度CORT是肾上腺受到刺激时产生的一种皮质激素,血浆中CORT的浓度常被当作判断应激反应强度的指标。研究表明,CORT可以通过与大脑中的受体结合,影响如下丘脑和中缝核中5-HT的合成、代谢及其受体密度[28],最终调节和改变生物的生理功能和行为。Davies等[29]研究发现,鸟类领地行为的攻击性强弱与CORT浓度有关且在鸡胚胎发育期间暴露于过量的CORT会改变鸡的HPA轴活性和5-HT能系统的功能,使出生3周的鸡攻击频率增加[30]。
2.2 DA与应激反应强度DA参与调节攻击性和防御性行为,DA的浓度也已被用作应激反应的指标[31]。具有攻击性行为的日本鹌鹑的大脑中发现了高浓度的DA[32]。Dennis等[33]指出,给予DA D1受体激动剂后,蛋鸡的攻击性增加,而DA D2受体激动剂作用效果因各自品种的攻击性强度不同而不同。同样,使用DA D2受体拮抗剂后蛋鸡攻击性行为下降,且相应下丘脑中5-HT和EN浓度升高。DA D2受体基因是与人类异常行为有关的为数不多的单位点基因座之一,因此推断它可能与禽类啄癖、同类相食等异常行为有关。
2.3 EN和NE与应激反应强度EN和NE与CORT一样,被称为“应激激素”。急性应激会导致动物血浆中NE浓度增加,其升高程度可以反映应激刺激的强度。研究表明,EN和NE参与并控制行为、情绪和对应激源的适应能力,如通过临床和试验研究发现下丘脑NE释放量增加与血清中CORT浓度和焦虑样行为有关[34]。同时大量证据表明,有抑郁、焦虑等精神疾病的患者,大多出现NE能系统和5-HT能系统紊乱的现象[35], 并且5-HT-NE再摄取途径已成为创伤后应激障碍心理治疗的目标[36]。
2.4 5-HT与应激反应强度无论脊椎还是无脊椎动物,大脑中5-HT对社会行为尤其是攻击性行为起着重要的作用。研究表明, 攻击性强的动物大脑(包括下丘脑)中5-HT浓度较低[37],增加大脑(侧下丘脑和杏仁核)5-HT和/或5-羟吲哚乙酸(5-HIAA,5-HT代谢终产物)浓度可阻止或抑制啮齿动物的掠食性攻击行为[38]。补充色氨酸(5-HT合成前体)可显著降低猪的攻击性行为[39],限制雄性鸡和雌性鸡的伤害性啄斗[40]。此外,5-HT1和5-HT2受体的功能也与攻击性有关,当5-HT受体功能受损或5-HT1受体基因被敲除时攻击性会随之增强[41]。所以脑中5-HT及其代谢物的浓度和5-HT受体的密度,被用作衡量试验动物攻击行为强度的重要指标,也是筛选温良蛋鸡的生物标志物,以此来避免蛋鸡断喙,减轻生产中的痛苦[42]。
研究发现,应激反应如CORT、5-HT浓度的改变会影响肠道菌群的组成[43],同时肠道菌群又会反向影响HPA轴的敏感性、神经发育和行为[44],以此有人提出微生物-肠-脑轴双向交流的概念。
3 微生物-肠-脑轴对鸡应激及其异常行为的影响肠道菌群像一个内分泌器官一样可通过肠-脑轴的双向通讯整合来自代谢、免疫、内分泌和神经通路发出的信号,并通过肠神经、迷走神经等外周神经系统、激素信号、免疫系统和短链脂肪酸(short-chain fatty acids, SCFAs)等微生物代谢产物反向调节微生物-肠-脑轴的病理性生理功能,影响宿主的行为和健康[45]。人类肠道菌群的改变与各种神经变性或神经炎症引起的抑郁和精神紊乱有关[46],也对宿主的攻击行为、焦虑症及相关社会行为有潜在的影响[47]。同样的,肠道菌群被视为一种“虚拟内分泌器官”也会影响禽类的健康[48],并且有研究发现啄羽严重程度不同,蛋鸡肠道内微生物多样性也不同[49]。
3.1 微生物-肠-脑轴改善禽类应激状态及其异常伤害行为研究证明,动物行为异常会引起肠道菌群结构改变。Chen等[50]研究发现,当表达自然行为的能力被抑制时,蛋鸡会产生慢性应激,出现假沙浴行为,肠道微生物群落多样性降低,造成微生物在属和种水平上笼养鸡与散养鸡的显著差异。重啄蛋鸡肠内梭菌属相对丰度比轻啄蛋鸡高,但葡萄球菌和乳酸菌相对丰度较低[51]。肠道菌群与行为之间的影响是相互的,无菌鼠定植特定益生菌后可纠正社会压力引起的HPA轴过度反应[52],显著减弱家鼠类似强迫症行为[53]。鸡作为社会性动物,在新环境下会表现出恐惧、抑郁或焦虑等异常心理,并且为了在陌生群体中建立新的社会秩序常常会攻击同伴。Cheng等[54]研究发现,枯草芽孢杆菌可以减少蛋鸡的攻击行为,显著减少优势蛋鸡的威胁性踢踹次数和啄头、啄羽频率,且优势蛋鸡攻击行为的减弱与饲喂益生菌后血液中5-HT浓度的下降有关。研究还发现,枯草芽孢杆菌可以改善热应激行为和炎症反应,减少喘气、打盹、饮水的次数,增加行走、觅食的时间[55]。因此,人们提出可通过改善人类和蛋鸡等动物[48]肠道菌群和肠稳态来调节肠-脑轴功能,从而防止或减少过度应激诱导的异常行为和精神障碍的出现。
3.2 微生物-肠-脑轴改善蛋鸡的应激状态及其相关异常行为的机制 3.2.1 迷走神经迷走神经是微生物群与大脑沟通的一条途径,是连接脑干孤束核和胃肠道的主要神经通路。Kaelberer等[56]研究发现,迷走神经节神经元可与肠上皮内分泌细胞形成突触,以谷氨酸为神经递质,将肠道刺激信息直接传递给大脑;另外,微生物的代谢产物可刺激肠上皮内分泌细胞的分泌和通过迷走神经间接影响大脑,从而控制行为。Pradhananga等[57]研究发现,肠道共生菌半胱氨酸蛋白酶和大肠杆菌脂多糖(lipopolysaccharide,LPS)可分别通过激活蛋白酶激活受体-2和神经元上Toll样受体4增强迷走神经元的兴奋性,细菌代谢物吲哚可通过刺激肠内分泌细胞分泌神经递质胰高血糖素样肽-1(glucagon-like peptide-1,GLP-1)间接调节迷走神经传入活动[58];同样研究表明,鸡肠腔内分泌细胞,即L细胞,在形态结构与功能上与哺乳动物类似,可以对消化道内的赖氨酸、蛋氨酸等蛋白质及微生物代谢产物做出反应,通过分泌GLP-1控制鸡的食欲及摄食行为[59]。Bravo等[60]研究发现,鼠李糖乳杆菌可减少应激诱导的CORT,矫正焦虑、抑郁等行为,但切除小鼠膈下迷走神经后鼠李糖乳杆菌对行为的矫正作用消失;同样,双歧杆菌NCC3001对小鼠焦虑行为的矫正作用也因膈下迷走神经的切除而消失[61],从而证实了迷走神经这一传导途径。但并不是所有肠道微生物均通过迷走神经这一条途径来影响大脑和行为。
3.2.2 微生物代谢色氨酸是肠道益生菌最常见的代谢产物之一,是5-HT合成的限速底物,它可穿过血脑屏障直接影响中枢5-HT的合成[62],参与宿主情绪和认知调控。研究发现,饲喂富含色氨酸饲粮的动物(如猪、鼠和鸡)会出现下丘脑中5-HT活性(5-HT/5-HIAA)增强,使处于重新混群的动物应激反应强度降低[63]。饲喂益生菌能够增加小鼠纹状体中5-HT的含量以及5-HT相关合成酶的表达[64],改善无菌小鼠的焦虑行为[65]。5-HT对应激的镇静作用在鸡身上同样适用[66],枯草芽孢杆菌可提高肉鸡中缝核中5-HT的浓度,并且使下丘脑中应激相关内分泌物NE和DA浓度显著降低[67]。Van Hierden等[68]研究指出,5-HT可能通过DA能系统发挥作用,通过减少DA神经传递显著降低蛋鸡的啄羽频率。
SCFAs是肠道菌群另一主要代谢产物,包括丁酸盐、丙酸盐及乙酸盐等。SCFAs是肠道和大脑沟通的关键分子,可影响中枢免疫系统发育、神经递质传导等生理过程。SCFAs可调节中枢神经系统中小胶质细胞的成熟和功能,改善无菌小鼠小胶质细胞的缺陷[69];参与神经递质的产生,如哺乳动物主要通过游离脂肪酸受体2(free fatty acid receptor 2,FFAR2)或G蛋白偶联受体41的激活刺激肠内分泌细胞L细胞分泌GLP-1和酪酪肽,但与哺乳动物不同,Zhang等[70]已研究证实SCFAs中乙酸盐对鸡FFAR2刺激作用最强,且SCFAs诱导的GLP-1的分泌主要通过细胞增殖调节因子——细胞外信号调节激酶(extracellular signal-regulated kinase,ERK)和p38丝裂原活化蛋白激酶(p38 mitogen-activated protein kinase,p38 MAPK)通路的激活;通过组蛋白去乙酰化酶治疗无菌(GF)小鼠额皮质组蛋白乙酰化缺失、长期社会压力引起的HPA轴功能亢进和焦虑、抑郁样行为[71-72]。研究表明,在粗暴运输造成的应激下,鸡HPA轴亢进,CORT浓度升高,采食摄水量下降,肠道产SCFAs水平显著降低,而添加乳酸菌可以通过产生乳酸和丙酸盐恢复SCFAs水平[73]。并且,Tian等[74]研究指出,抑郁症患者肠道中SCFAs水平下降,双歧杆菌同样可以提高丁酸盐含量并降低血清CORT浓度,显著减少小鼠的抑郁行为。但由于SCFAs的半衰期很短,微生物代谢所产生的浓度是否足够影响大脑的研究还并不清楚。此外,研究发现肠道菌群内含特定的酶可以促进多酚及其中间代谢物的生物转化,提高多酚的生物利用度,通过调控促炎因子诱导的犬尿氨酸代谢通路(与色氨酸合成5-HT途径互为竞争关系)的活性,调节抑郁症患者大脑中5-HT浓度,减少神经炎症,并改善认知障碍[75]。
3.2.3 免疫调节肠道微生物群对免疫系统的发育至关重要,正常微生物的定植可矫正无菌小鼠的部分免疫功能异常,尤其是改善神经炎症相关的小胶质细胞的整体缺陷[69]。研究表明,异常应激诱导的抑郁患者具有高水平的促炎性因子,这些促炎性因子可通过刺激HPA轴的活性进一步增加动物和人的焦虑样行为,而服用抗炎药物可明显促进患者康复。过度应激能损坏肠黏膜屏障,并且增加肠道通透性,使内毒素进入血液循环系统并激活小胶质细胞,导致长期的神经炎症,使神经递质如5-HT、DA和NE合成受阻,影响大脑活动[76]。而益生菌可以逆转鸡应激导致的连接黏附分子2(junctional adhesion molecule 2,JAM2)、紧密连接蛋白-1(zonula occludens-1,ZO-1)、黏液蛋白2(mucin 2,MUC2)等紧密连接蛋白基因表达的降低[77],阻止鸡热应激肠道中肥大细胞数目的增多,有效减少组胺和类胰蛋白酶的释放量[78],降低肠道通透性。抗菌肽是肠内潘氏细胞分泌的小分子,鸡的主要抗菌肽是防御素和cathelicidin(CATH),益生菌可以显著提高CATH1、CATH2在鸡肠黏膜中的表达[78],益生菌如乳酸菌同样可以产生相应的抑/抗菌物质,如细菌素、有机酸等[79],增强肠道黏膜免疫功能,抵抗LPS和病原菌的入侵,共同阻止内毒素血症的发生。Chang等[79]研究发现,给无特定病原体(SPF)鸡添加混合益生菌可显著增加肠内SCFAs水平,使盲肠扁桃体中抗炎因子白细胞介素-10(interleukin-10,IL-10)和转化生长因子-β(transforming growth factor-β,TGF-β)表达增加,促炎因子干扰素-γ(interferon-γ,IFN-γ)表达减少。同样,添加地衣芽孢杆菌可以使热应激的鸡血清中白细胞介素-1(interleukin-1,IL-1)、肿瘤坏死因子-α(tumor necrosis factor-α,TNF-α)等促炎因子水平正常化,血清CORT浓度降低,从而改善应激行为[78]。研究发现,益生菌也可以通过产生SCFAs和参与色氨酸分解代谢,产生吲哚3醛,介导核转录因子-κB(nuclear factor-kappa B, NF-κB)的激活,抑制促炎因子的表达,同时抑制小胶质细胞的激活并恢复认知功能[80]。
3.2.4 神经营养因子脑源性神经营养因子(neurotrophic factor, BDNF)、神经营养因子3(neurotrophins-3, NT-3)是表达最广泛的神经营养因子,参与调节中枢神经系统中神经元的存活、分化以及突触的传递和可塑性功能。研究发现,体内注射BDNF可以增强雏鸡的记忆力,对被动回避学习有更强的保留力[81],但在鸡隔离应激试验中,出现海马体中BDNF含量下降并伴随重度抑郁行为的出现[82],并且海马体中BDNF的缺失会导致认知和学习能力障碍以及多种精神疾病[83];然而给海马体内低水平BDNF的无菌小鼠定植双歧杆菌或SPF小鼠的粪便可以使BDNF的水平恢复以及应激后行为正常化[44];Tian等[84]研究发现双歧杆菌可以通过5-HT1A-cAMP反应元件结合蛋白(cAMP response element-binding protein,CREB)-BDNF途径增加大脑前额皮质中BDNF的含量,减轻HPA轴亢进反应,逆转周围炎症状态,改善应激诱导的抑郁行为和神经异常;益生菌还可通过增加脑内神经营养因子的含量诱导海马体神经元对BDNF的释放,从而调节动物情绪[85]。
4 小结肠道菌群在宿主对急性和慢性应激的反应中起着重要的作用。社会压力诱导的肠道菌群的变化会导致炎症反应和细菌代谢物的“泄露”,从而影响大脑的功能尤其是HPA轴和SMA轴功能的紊乱。这些变化会对生理和行为稳态造成负面的影响,最终导致包括攻击性增加、异常行为以及精神障碍的出现。大量研究结果表明,膳食中添加的益生菌可以通过调节迷走神经、代谢产物和免疫等机制调节5-HT能系统等,减少动物应激引起的异常行为。但目前该领域的研究主要针对人类和哺乳动物,虽然鸡与哺乳动物部分组织器官具有相似或同源性,但特异性微生物菌群和具体机制研究是否有区别还知之甚少。筛选合适的益生菌,深入研究微生物-肠-脑轴对蛋鸡抗应激和伤害性行为的影响,有助于推广益生菌在禽类饲养管理中的应用,避免断喙等争议性管理手段的使用,减少因密集笼舍饲养或选择性繁育造成的伤害性行为及经济损失。
[1] |
BOTTJE W, KONG B W. Cell biology symposium: feed efficiency: mitochondrial function to global gene expression[J]. Journal of Animal Science, 2013, 91(4): 1582-1593. DOI:10.2527/jas.2012-5787 |
[2] |
KALMAR I D, VANROMPAY D, JANSSENS G P J. Broiler ascites syndrome: collateral damage from efficient feed to meat conversion[J]. The Veterinary Journal, 2013, 197(2): 169-174. DOI:10.1016/j.tvjl.2013.03.011 |
[3] |
CHENG H W, MUIR W M. Mechanisms of aggression and production in chickens: genetic variations in the functions of serotonin, catecholamine, and corticosterone[J]. World's Poultry Science Journal, 2007, 63(2): 233-254. DOI:10.1017/S0043933907001432 |
[4] |
CARVALHO R R, PALME R, DA SILVA VASCONCELLOS A. An integrated analysis of social stress in laying hens: the interaction between physiology, behaviour, and hierarchy[J]. Behavioural Processes, 2018, 149: 43-51. DOI:10.1016/j.beproc.2018.01.016 |
[5] |
LV W J, WU X L, CHEN W Q, et al. The gut microbiome modulates the changes in liver metabolism and in inflammatory processes in the brain of chronic unpredictable mild stress rats[J]. Oxidative Medicine and Cellular Longevity, 2019, 2019: 7902874. |
[6] |
MÜNGER E, MONTIEL-CASTRO A J, LANGHANS W, et al. Reciprocal interactions between gut microbiota and host social behavior[J]. Frontiers in Integrative Neuroscience, 2018, 12: 21. DOI:10.3389/fnint.2018.00021 |
[7] |
LYTE J M, LYTE M. Review: microbial endocrinology: intersection of microbiology and neurobiology matters to swine health from infection to behavior[J]. Animal, 2019, 13(11): 2689-2698. DOI:10.1017/S1751731119000284 |
[8] |
OBRENOVICH M E M. Leaky gut, leaky brain?[J]. Microorganisms, 2018, 6(4): 107. DOI:10.3390/microorganisms6040107 |
[9] |
FORTE C, MOSCATI L, ACUTI G, et al. Effects of dietary Lactobacillus acidophilus and Bacillus subtilis on laying performance, egg quality, blood biochemistry and immune response of organic laying hens[J]. Journal of Animal Physiology and Animal Nutrition, 2016, 100(5): 977-987. DOI:10.1111/jpn.12408 |
[10] |
QUIGLEY E M M. Prebiotics and probiotics in digestive health[J]. Clinical Gastroenterology and Hepatology, 2019, 17(2): 333-344. DOI:10.1016/j.cgh.2018.09.028 |
[11] |
LI N N, WANG Q, WANG Y, et al. Oral probiotics ameliorate the behavioral deficits induced by chronic mild stress in mice via the gut microbiota-inflammation axis[J]. Frontiers in Behavioral Neuroscience, 2018, 12: 266. DOI:10.3389/fnbeh.2018.00266 |
[12] |
BAXTER M R. The welfare problems of laying hens in battery cages[J]. The Veterinary Record, 1994, 134(24): 614-619. DOI:10.1136/vr.134.24.614 |
[13] |
GYURASZOVA M, KOVALCIKOVA A, GARDLIK R. Association between oxidative status and the composition of intestinal microbiota along the gastrointestinal tract[J]. Medical Hypotheses, 2017, 103: 81-85. DOI:10.1016/j.mehy.2017.04.011 |
[14] |
ADEDOKUN S A, OLOJEDE O C. Optimizing gastrointestinal integrity in poultry: the role of nutrients and feed additives[J]. Frontiers in Veterinary Science, 2019, 5: 348. DOI:10.3389/fvets.2018.00348 |
[15] |
SARKODIE E K, ZHOU S X, BAIDOO S A, et al. Influences of stress hormones on microbial infections[J]. Microbial Pathogenesis, 2019, 131: 270-276. DOI:10.1016/j.micpath.2019.04.013 |
[16] |
SHARMA S, TRIPATHI P. Gut microbiome and type 2 diabetes: where we are and where to go?[J]. The Journal of Nutritional Biochemistry, 2019, 63: 101-108. DOI:10.1016/j.jnutbio.2018.10.003 |
[17] |
RIEDSTRA B, GROOTHUIS T G G. Early feather pecking as a form of social exploration: the effect of group stability on feather pecking and tonic immobility in domestic chicks[J]. Applied Animal Behaviour Science, 2002, 77(2): 127-138. DOI:10.1016/S0168-1591(02)00031-X |
[18] |
RODENBURG T B, VAN KRIMPEN M M, DE JONG I C, et al. The prevention and control of feather pecking in laying hens: identifying the underlying principles[J]. World's Poultry Science Journal, 2013, 69(2): 361-374. DOI:10.1017/S0043933913000354 |
[19] |
庄建明, 曹庆华, 曹文华, 等. 鸡啄癖病因、症状及防治[J]. 畜牧兽医科技信息, 2019(11): 145-146. ZHUANG J M, CAO Q H, CAO W H, et al. Causes, symptoms and prevention of pecking disorder in chickens[J]. Chinese Journal of Animal Husbandry and Veterinary Medicine, 2019(11): 145-146 (in Chinese). |
[20] |
DAIGLE C L, RODENBURG T B, BOLHUIS J E, et al. Individual consistency of feather pecking behavior in laying hens: once a feather pecker always a feather pecker?[J]. Frontiers in Veterinary Science, 2015, 2: 6. |
[21] |
FOISTER S, DOESCHL-WILSON A, ROEHE R, et al. Social network properties predict chronic aggression in commercial pig systems[J]. PLoS One, 2018, 13(10): e0205122. DOI:10.1371/journal.pone.0205122 |
[22] |
CHENG H W, MUIR W M. The effects of genetic selection for survivability and productivity on chicken physiological homeostasis[J]. World's Poultry Science Journal, 2005, 61(3): 383-397. DOI:10.1079/WPS200564 |
[23] |
BLAIR R J R. Psychopathy, frustration, and reactive aggression: the role of ventromedial prefrontal cortex[J]. British Journal of Psychology, 2010, 101(3): 383-399. DOI:10.1348/000712609X418480 |
[24] |
GOODSON J L. The vertebrate social behavior network: evolutionary themes and variations[J]. Hormones and Behavior, 2005, 48(1): 11-22. DOI:10.1016/j.yhbeh.2005.02.003 |
[25] |
KUENZEL W J. Research advances made in the avian brain and their relevance to poultry scientists[J]. Poultry Science, 2014, 93(12): 2945-2952. DOI:10.3382/ps.2014-04408 |
[26] |
DIETL M, PALACIOS J M. Receptor autoradiography as a tool for the study of the phylogeny of the basal ganglia[J]. Journal of Receptor Research, 1988, 8(1/2/3/4): 521-532. |
[27] |
COMAI S, TAU M, GOBBI G. The psychopharmacology of aggressive behavior: a translational approach: part 1:neurobiology[J]. Journal of Clinical Psychopharmacology, 2012, 32(1): 83-94. DOI:10.1097/JCP.0b013e31823f8770 |
[28] |
CHAOULOFF F. Regulation of 5-HT receptors by corticosteroids: where do we stand?[J]. Fundamental & Clinical Pharmacology, 1995, 9(3): 219-233. |
[29] |
DAVIES S, BECK M L, SEWALL K B. Territorial aggression in urban and rural song sparrows is correlated with corticosterone, but not testosterone[J]. Hormones and Behavior, 2018, 98: 8-15. DOI:10.1016/j.yhbeh.2017.11.010 |
[30] |
AHMED A A, MA W Q, NI Y D, et al. Embryonic exposure to corticosterone modifies aggressive behavior through alterations of the hypothalamic pituitary adrenal axis and the serotonergic system in the chicken[J]. Hormones and Behavior, 2014, 65(2): 97-105. DOI:10.1016/j.yhbeh.2013.12.002 |
[31] |
YAMAGUCHI T, LIN D Y. Functions of medial hypothalamic and mesolimbic dopamine circuitries in aggression[J]. Current Opinion in Behavioral Sciences, 2018, 24: 104-112. DOI:10.1016/j.cobeha.2018.06.011 |
[32] |
EDENS F W. Agonistic behavior and neurochemistry in grouped Japanese quail[J]. Comparative Biochemistry and Physiology Part A.Physiology, 1987, 86(3): 473-479. DOI:10.1016/0300-9629(87)90528-7 |
[33] |
DENNIS R L, CHENG H W. The dopaminergic system and aggression in laying hens[J]. Poultry Science, 2011, 90(11): 2440-2448. DOI:10.3382/ps.2011-01513 |
[34] |
COSTA-PINTO F A, PALERMO-NETO J. Neuroimmune interactions in stress[J]. Neuroimmunomodulation, 2010, 17(3): 196-199. DOI:10.1159/000258722 |
[35] |
LIU Y, ZHAO J P, FAN X D, et al. Dysfunction in serotonergic and noradrenergic systems and somatic symptoms in psychiatric disorders[J]. Frontiers in psychiatry, 2019, 10: 286. DOI:10.3389/fpsyt.2019.00286 |
[36] |
CHARNEY M E, HELLBERG S N, BUI E, et al. Evidenced-based treatment of posttraumatic stress disorder: an updated review of validated psychotherapeutic and pharmacological approaches[J]. Harvard Review of Psychiatry, 2018, 26(3): 99-115. DOI:10.1097/HRP.0000000000000186 |
[37] |
NIKULINA E M, BORODIN P M, POPOVA N K. Alteration of some forms of aggressive-behavior and content of monoamines in the brain in the process of selection by taming of wild rats[J]. Zhurnal Vysshei Nervnoi Deyatelnosti Imeni I.P. Pavlova, 1985, 35(4): 703-709. |
[38] |
NIKULINA E M. Neural control of predatory aggression in wild and domesticated animals[J]. Neuroscience & Biobehavioral Reviews, 1991, 15(4): 545-547. |
[39] |
POLETTO R, KRETZER F C, HÖTZEL M J. Minimizing aggression during mixing of gestating sows with supplementation of a tryptophan-enriched diet[J]. Physiology & Behavior, 2014, 132: 36-43. |
[40] |
BIRKL P, FRANKE L, RODENBURG T B, et al. A role for plasma aromatic amino acids in injurious pecking behavior in laying hens[J]. Physiology & Behavior, 2017, 175: 88-96. |
[41] |
CLEARE A J, BOND A J. Ipsapirone challenge in aggressive men shows an inverse correlation between 5-HT1A receptor function and aggression[J]. Psychopharmacology, 2000, 148(4): 344-349. DOI:10.1007/s002130050061 |
[42] |
DE HAAS E N, VAN DER EIJK J A J. Where in the serotonergic system does it go wrong? Unravelling the route by which the serotonergic system affects feather pecking in chickens[J]. Neuroscience & Biobehavioral Reviews, 2018, 95: 170-188. |
[43] |
PETROSUS E, SILVA E B, LAY JR D, et al. Effects of orally administered cortisol and norepinephrine on weanling piglet gut microbial populations and Salmonella passage[J]. Journal of Animal Science, 2018, 96(11): 4543-4551. |
[44] |
SUDO N, CHIDA Y, AIBA Y, et al. Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice[J]. The Journal of Physiology, 2004, 558(Pt 1): 263-275. |
[45] |
BRUCE-KELLER A J, SALBAUM J M, BERTHOUD H R. Harnessing gut microbes for mental health: getting from here to there[J]. Biological Psychiatry, 2018, 83(3): 214-223. DOI:10.1016/j.biopsych.2017.08.014 |
[46] |
AMBROSINI Y M, BORCHERDING D, KANTHASAMY A, et al. The gut-brain axis in neurodegenerative diseases and relevance of the canine model: a review[J]. Frontiers in Aging Neuroscience, 2019, 11: 130. DOI:10.3389/fnagi.2019.00130 |
[47] |
FOSTER J A, RINAMAN L, CRYAN J F. Stress & the gut-brain axis: regulation by the microbiome[J]. Neurobiology of Stress, 2017, 7: 124-136. DOI:10.1016/j.ynstr.2017.03.001 |
[48] |
VILLAGELIŨ D N, LYTE M. Microbial endocrinology: why the intersection of microbiology and neurobiology matters to poultry health[J]. Poultry Science, 2017, 96(8): 2501-2508. DOI:10.3382/ps/pex148 |
[49] |
BIRKL P, BHARWANI A, KJAER J B, et al. Differences in cecal microbiome of selected high and low feather-pecking laying hens[J]. Poultry Science, 2018, 97(9): 3009-3014. DOI:10.3382/ps/pey167 |
[50] |
CHEN S Y, XIANG H, ZHANG H, et al. Rearing system causes changes of behavior, microbiome, and gene expression of chickens[J]. Poultry Science, 2019, 98(9): 3365-3376. DOI:10.3382/ps/pez140 |
[51] |
VAN DER EIJK J A J, DE VRIES H, KJAER J B, et al. Differences in gut microbiota composition of laying hen lines divergently selected on feather pecking[J]. Poultry Science, 2019, 98(12): 7009-7021. DOI:10.3382/ps/pez336 |
[52] |
CRYAN J F, DINAN T G. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour[J]. Nature Reviews Neuroscience, 2012, 13(10): 701-712. DOI:10.1038/nrn3346 |
[53] |
KANTAK P A, BOBROW D N, NYBY J G. Obsessive-compulsive-like behaviors in house mice are attenuated by a probiotic (Lactobacillus rhamnosus GG)[J]. Behavioural Pharmacology, 2014, 25(1): 71-79. DOI:10.1097/FBP.0000000000000013 |
[54] |
CHENG H W, JIANG S, HU J Y. Gut-brain axis: probiotic, Bacillus subtilis, prevents aggression via the modification of the central serotonergic system[M]//MAHMOUDI R. Oral health by using probiotic products. IntechOpen: Razzagh Mahmoudi, 2019: 1-32.
|
[55] |
WANG W C, YAN F F, HU J Y, et al. Supplementation of Bacillus subtilis-based probiotic reduces heat stress-related behaviors and inflammatory response in broiler chickens[J]. Journal of Animal Science, 2018, 96(5): 1654-1666. DOI:10.1093/jas/sky092 |
[56] |
KAELBERER M M, BUCHANAN K L, KLEIN M E, et al. A gut-brain neural circuit for nutrient sensory transduction[J]. Science, 2018, 361(6408): eaat5236. DOI:10.1126/science.aat5236 |
[57] |
PRADHANANGA S, TASHTUSH A A, ALLEN-VERCOE E, et al. Protease-dependent excitation of nodose ganglion neurons by commensal gut bacteria[J]. The Journal of Physiology, 2020, 598(11): 2137-2151. DOI:10.1113/JP279075 |
[58] |
BUCKLEY M M, O'BRIEN R, BROSNAN E, et al. Glucagon-like peptide-1 secreting l-cells coupled to sensory nerves translate microbial signals to the host rat nervous system[J]. Frontiers in Cellular Neuroscience, 2020, 14: 95. DOI:10.3389/fncel.2020.00095 |
[59] |
HIRAMATSU K. Chicken intestinal L cells and glucagon-like peptide-1 secretion[J]. The Journal of Poultry Science, 2020, 57(1): 1-6. DOI:10.2141/jpsa.0190003 |
[60] |
BRAVO J A, FORSYTHE P, CHEW M V, et al. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(38): 16050-16055. DOI:10.1073/pnas.1102999108 |
[61] |
BERCIK P, PARK A J, SINCLAIR D, et al. The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut-brain communication[J]. Neurogastroenterology & Motility, 2011, 23(12): 1132-1139. |
[62] |
GAO K, MU C L, FARZI A, et al. Tryptophan metabolism: a link between the gut microbiota and brain[J]. Advances in Nutrition, 2020, 11(3): 709-723. DOI:10.1093/advances/nmz127 |
[63] |
SHEN Y B, VOILQUÉ G, ODLE J, et al. Dietary L-tryptophan supplementation with reduced large neutral amino acids enhances feed efficiency and decreases stress hormone secretion in nursery pigs under social-mixing stress[J]. The Journal of Nutrition, 2012, 142(8): 1540-1546. DOI:10.3945/jn.112.163824 |
[64] |
XIE R N, JIANG P, LIN L, et al. Oral treatment with Lactobacillus reuteri attenuates depressive-like behaviors and serotonin metabolism alterations induced by chronic social defeat stress[J]. Journal of Psychiatric Research, 2020, 122: 70-78. DOI:10.1016/j.jpsychires.2019.12.013 |
[65] |
LIU W H, CHUANG H L, HUANG Y T, et al. Alteration of behavior and monoamine levels attributable to Lactobacillus plantarum PS128 in germ-free mice[J]. Behavioural Brain Research, 2016, 298: 202-209. DOI:10.1016/j.bbr.2015.10.046 |
[66] |
YOSHIDA J, ERWAN E, CHOWDHURY V S, et al. Comparison of centrally injected tryptophan-related substances inducing sedation in acute isolation stress-induced neonatal chicks[J]. Pharmacology Biochemistry and Behavior, 2015, 129: 1-6. DOI:10.1016/j.pbb.2014.11.016 |
[67] |
YAN F F, WANG W C, CHENG H W. Bacillus subtilis based probiotic improved bone mass and altered brain serotoninergic and dopaminergic systems in broiler chickens[J]. Journal of Functional Foods, 2018, 49: 501-509. DOI:10.1016/j.jff.2018.09.017 |
[68] |
VAN HIERDEN Y M, KOOLHAAS J M, KORTE S M. Chronic increase of dietary L-tryptophan decreases gentle feather pecking behaviour[J]. Applied Animal Behaviour Science, 2004, 89(1/2): 71-84. |
[69] |
ERNY D, DE ANGELIS A L H, JAITIN D, et al. Host microbiota constantly control maturation and function of microglia in the CNS[J]. Nature Neuroscience, 2015, 18(7): 965-977. DOI:10.1038/nn.4030 |
[70] |
ZHANG J M, SUN Y S, ZHAO L Q, et al. SCFAs-induced GLP-1 secretion links the regulation of gut microbiome on hepatic lipogenesis in chickens[J]. Frontiers in Microbiology, 2019, 10: 2176. DOI:10.3389/fmicb.2019.02176 |
[71] |
CRYAN J F, O'RIORDAN K J, COWAN C S M, et al. The microbiota-gut-brain axis[J]. Physiological Reviews, 2019, 99(4): 1877-2013. DOI:10.1152/physrev.00018.2018 |
[72] |
LYTE M. Microbial endocrinology and the microbiota-gut-brain axis[M]//LYTE M, CRYAN J F. Microbial endocrinology: the microbiota-gut-brain axis in health and disease. New York: Springer, 2014: 3-24.
|
[73] |
MEIMANDIPOUR A, SOLEIMANI A F, HOUSHMAND M, et al. Effects of rough handling on short chain fatty acid production and gastrointestinal pH in broilers and modulatory role of Lactobacilli[J]. African Journal of Biotechnology, 2011, 10(74): 17030-17037. |
[74] |
TIAN P J, WANG G, ZHAO J X, et al. Bifidobacterium with the role of 5-hydroxytryptophan synthesis regulation alleviates the symptom of depression and related microbiota dysbiosis[J]. Journal of Nutritional Biochemistry, 2019, 66: 43-51. DOI:10.1016/j.jnutbio.2019.01.007 |
[75] |
WESTFALL S, PASINETTI G M. The gut microbiota links dietary polyphenols with management of psychiatric mood disorders[J]. Frontiers in Neuroscience, 2019, 13: 1196. DOI:10.3389/fnins.2019.01196 |
[76] |
PEIRCE J M, ALVIÑA K. The role of inflammation and the gut microbiome in depression and anxiety[J]. Journal of Neuroscience Research, 2019, 97(10): 1223-1241. DOI:10.1002/jnr.24476 |
[77] |
GADDE U D, OH S, LEE Y, et al. Dietary Bacillus subtilis-based direct-fed microbials alleviate LPS-induced intestinal immunological stress and improve intestinal barrier gene expression in commercial broiler chickens[J]. Research in Veterinary Science, 2017, 114: 236-243. DOI:10.1016/j.rvsc.2017.05.004 |
[78] |
DENG W, DONG X F, TONG J M, et al. The probiotic Bacillus licheniformis ameliorates heat stress-induced impairment of egg production, gut morphology, and intestinal mucosal immunity in laying hens[J]. Poultry Science, 2012, 91(3): 575-582. DOI:10.3382/ps.2010-01293 |
[79] |
CHANG C H, TENG P Y, LEE T T, et al. The effects of the supplementation of multi-strain probiotics on intestinal microbiota, metabolites and inflammation of young SPF chickens challenged with Salmonella enterica subsp. enterica[J]. Animal Science Journal, 2019, 90(6): 737-746. DOI:10.1111/asj.13205 |
[80] |
CHUNCHAI T, THUNAPONG W, YASOM S, et al. Decreased microglial activation through gut-brain axis by prebiotics, probiotics, or synbiotics effectively restored cognitive function in obese-insulin resistant rats[J]. Journal of Neuroinflammation, 2018, 15(1): 11. DOI:10.1186/s12974-018-1055-2 |
[81] |
SAMARTGIS J R, SCHACHTE L, HAZI A, et al. Brain-derived neurotrophic factor facilitates memory consolidation and reconsolidation of a weak training stimulus in the day-old chick[J]. Neuroscience Letters, 2012, 516(1): 119-123. DOI:10.1016/j.neulet.2012.03.071 |
[82] |
LORIA M J, WHITE S W, ROBBINS S A, et al. Brain-derived neurotrophic factor response in vulnerable and resilient genetic lines in the chick anxiety-depression model[J]. Behavioural Brain Research, 2013, 245: 29-33. DOI:10.1016/j.bbr.2013.01.045 |
[83] |
MAQSOOD R, STONE T W. The gut-brain axis, BDNF, NMDA and CNS disorders[J]. Neurochemical Research, 2016, 41(11): 2819-2835. DOI:10.1007/s11064-016-2039-1 |
[84] |
TIAN P J, ZOU R Y, SONG L H, et al. Ingestion of Bifidobacterium longum subspecies infantis strain CCFM687 regulated emotional behavior and the central BDNF pathway in chronic stress-induced depressive mice through reshaping the gut microbiota[J]. Food & Function, 2019, 10(11): 7588-7598. |
[85] |
RANUH R, ATHIYYAH A F, DARMA A, et al. Effect of the probiotic Lactobacillus plantarum IS-10506 on BDNF and 5HT stimulation: role of intestinal microbiota on the gut-brain axis[J]. Iranian Journal of Microbiology, 2019, 11(2): 145-150. |