近些年,优质蛋白质饲料匮乏日益严重,价格居高不下。为了节约蛋白质饲料资源、降低饲料成本、减少畜禽养殖业对环境的污染,合成氨基酸强化的低蛋白质饲粮配制技术的研究及应用日益受到重视,特别是合成赖氨酸、蛋氨酸已普遍用于肉鸡配合饲料中,这使得苏氨酸作为肉鸡第三限制性氨基酸[1],在饲粮中的重要性更为突出。苏氨酸参与机体蛋白质的合成[2]、免疫应答[3],还具有提高动物生长性能[4]、改善胴体品质的作用[5]。当前,有关快大型黄羽肉鸡苏氨酸需要量的研究甚少,而近3年来快大型黄羽肉鸡的市场占有率接近50%。因此,本试验以快大型岭南黄羽肉鸡为研究对象,研究了饲粮苏氨酸水平对1~21日龄黄羽肉鸡生长性能、胴体品质、脂肪代谢和免疫功能的影响,并确定不同性别黄羽肉鸡的苏氨酸需要量,为科学配制黄羽肉鸡饲料提供参考。
1 材料与方法 1.1 试验动物和分组处理选用2 000只1日龄健康、发育良好的快大型岭南黄羽肉鸡雏鸡,采用单因素随机分组设计,根据体重一致原则将试验鸡分为5个组,每个组8个重复(公、母各4个重复),每个重复50只鸡。
1.2 试验饲粮试验采用玉米-花生粕基础饲粮,营养水平参考《鸡饲养标准》(NY/T 33—2004)[6]与本单位建立的黄羽肉鸡饲养标准,参照《中国饲料成分及营养价值表》(2018年第29版)[7]和实测值设计饲粮配方。除苏氨酸外,各组饲粮营养水平均一致,试验各组饲粮苏氨酸水平分别为0.60%(基础饲粮)、0.67%、0.74%、0.81%和0.88%。基础饲粮组成及营养水平见表 1。
![]() |
表 1 基础饲粮组成及营养水平(饲喂基础) Table 1 Composition and nutrient levels of basal diets (as-fed basis) |
饲养试验于广东省农业科学院动物科学研究所试验场雏鸡舍进行,采用地面平养,地面铺放干燥木屑,每个重复试验鸡饲养于一栏(长3.8 m×宽1.3 m),栏间用不锈钢框架和塑料网分隔,各组的饲养环境条件一致。试验鸡自由采食、饮水,每栏用保温灯维持舍温在32 ℃左右,自然光照并适量限制通风。其他按常规饲养操作规程饲养,并按常规免疫程序免疫。试验期为21 d。
1.4 测定指标 1.4.1 生长性能试验开始和结束前1天22:00断料供水,次日08:00,以重复为单位准确称重,统计耗料量,计算平均日增重、平均日采食量和料重比,试验过程中每日观察记录鸡只的健康状况、采食与排泄物情况。
1.4.2 胴体品质和免疫器官指数试验结束当天,每个重复选接近平均体重试验鸡2只,称重。去羽毛、脚皮、趾壳、喙壳后称重,得到屠体重。半净膛:屠体重去气管、食道、嗉囊、肠、脾脏、胰脏、胆和生殖器官的重量。全净膛:半净膛重去心脏、肝脏、腺胃、肌胃、脂肪及头、脚的重量。保留心脏、肝脏、肾脏、腺胃、肌胃(去角质膜和内容物)、腹部脂肪、肌胃周围的脂肪和肺脏、肾脏的重量。然后再分割胸肌、腿肌和腹脂(含肌胃周围脂肪),并称重,计算以屠体重为基础的胸肌率、腿肌率和腹脂率。计算以屠体重为基础的脾脏、胸腺和法氏囊的器官指数。
1.4.3 血清生化指标试验结束时,每个重复选取接近平均体重的试验鸡2只,使用不含抗凝剂的采血管翅静脉采血2 mL,3 000 r/min离心15 min,分离血清。试验鸡血清中甘油三酯(TG)、低密度脂蛋白(LDL)和尿酸(UA)含量均使用多功能酶标仪(Spectra Max M-5,Molecular Devices公司,美国)测定,相关试剂盒由南京建成生物工程研究所提供;血清中胰岛素(INS)、生长激素(GH)、三碘甲状腺原氨酸(T3)、甲状腺素(T4)、胰岛素样生长因子-1(IGF-1)含量测定采用GC-2016γ计数仪,相关试剂盒由北京北方生物技术研究所提供;血清中免疫球蛋白G(IgG)、白细胞介素-6(IL-6)含量测定采用酶联免疫吸附试验(ELISA)法使用多功能酶标仪(Spectra Max M-5,Molecular Devices公司,美国),相关试剂盒由江苏麦莎实业有限公司提供。
1.4.4 血液细胞免疫指标每个重复选取接近平均体重的试验鸡2只,使用含有抗凝剂的采血管翅静脉采血3 mL常规分离淋巴细胞[8],按照试剂盒说明书加入CD4+和CD8+单克隆抗体(Southern Biotechnology Associates,美国)采用流式细胞仪(BD Accuri C6 Plus,Becton, Dickinson and Company公司,美国)测定,通过计算得到CD4+/CD8+值。血液中T淋巴细胞增殖率采用四甲基偶氮苯唑盐(MTT)法[9]使用多功能酶标仪(Spectra Max M-5,Molecular Devices公司,美国)测定。
1.5 数据统计分析试验数据采用SAS V8.0软件的GLM程序进行方差分析,统计显著水平为P < 0.05,在差异显著的基础上采用Duncan氏法进行多重比较。对差异显著的关键评价指标采用二次曲线模型[10][Y=aX2+bX+c,Y代表对应指标测定值,X代表饲粮苏氨酸水平,a和b分别为回归方程二次项和一次项的系数,c为方程的常数项,X0=-b/(2×a)为饲粮苏氨酸最适水平]进行回归分析。
2 结果与分析 2.1 饲粮苏氨酸水平对黄羽肉鸡生长性能的影响由表 2可知,饲粮苏氨酸水平显著影响黄羽肉鸡公鸡、母鸡的末重、平均日增重、平均日采食量和料重比(P < 0.05)。对于母鸡而言,0.88%苏氨酸水平组试验鸡平均日增重最高,较0.60%、0.67%、0.74%和0.81%苏氨酸水平组分别提高了41.09%(P < 0.05)、12.86%(P < 0.05)、2.98%(P>0.05)和4.17%(P>0.05);0.88%苏氨酸水平组试验鸡平均日采食量最高,较0.60%、0.67%、0.74%和0.81%苏氨酸水平组分别提高了22.50%(P < 0.05)、7.39%(P < 0.05)、2.76%(P>0.05)和3.64%(P>0.05)。对于公鸡而言,0.74%苏氨酸水平组试验鸡平均日增重最高,较0.60%、0.67%、0.81%和0.88%苏氨酸水平组分别提高了58.05%(P < 0.05)、14.27%(P < 0.05)、4.69%(P>0.05)和8.11%(P>0.05);0.74%苏氨酸水平组试验鸡平均日采食量最高,较0.60%、0.67%、0.81%和0.88%苏氨酸水平组分别提高了34.94%(P < 0.05)、5.83%(P>0.05)、2.83%(P>0.05)和3.56%(P>0.05)。回归分析结果(表 3)显示,饲粮苏氨酸水平与黄羽肉鸡母鸡和公鸡的平均日增重呈显著的二次相关(P < 0.05),根据平均日增重和平均日采食量回归方程计算得出黄羽肉鸡母鸡和公鸡饲粮苏氨酸最适水平均为0.83%和0.79%,根据料重比回归方程计算得出黄羽肉鸡母鸡和公鸡饲粮苏氨酸最适水平分别为0.81%和0.79%。因此,根据生长性能指标,确定黄羽肉鸡母鸡饲粮苏氨酸最适水平为0.81%,黄羽肉鸡公鸡饲粮苏氨酸最适水平为0.79%。
![]() |
表 2 饲粮苏氨酸水平对黄羽肉鸡生长性能的影响 Table 2 Effects of dietary threonine levels on growth performance of yellow-feathered broilers |
![]() |
表 3 饲粮苏氨酸水平与黄羽肉鸡生长性能回归分析 Table 3 Regression analysis of dietary threonine levels and growth performance of yellow-feathered broilers |
由表 4可知,饲粮苏氨酸水平显著影响黄羽肉鸡公鸡、母鸡的全净膛率、半净膛率和腿肌率(P < 0.05)。对于母鸡而言,0.88%苏氨酸水平组试验鸡半净膛率和全净膛率最高,半净膛率较0.60%、0.67%、0.74%和0.81%苏氨酸水平组分别提高了6.82%、3.77%、4.53%和3.69%(P < 0.05),全净膛率较0.60%、0.67%、0.74%和0.81%苏氨酸水平组分别提高了10.12%、5.43%、6.50%和5.63%(P < 0.05);0.74%苏氨酸水平组试验鸡腿肌率最高,较0.60%、0.67%、0.81%和0.88%苏氨酸水平组分别提高了3.78%(P>0.05)、3.88%(P>0.05)、1.33%(P>0.05)和8.25%(P < 0.05)。对于公鸡而言,0.81%苏氨酸水平组试验鸡半净膛率最高,较0.60%、0.67%、0.74%和0.88%苏氨酸水平组分别提高了4.86%(P < 0.05)、1.97%(P>0.05)、0.39%(P>0.05)和2.64%(P < 0.05);0.74%苏氨酸水平组试验鸡全净膛率最高,较0.60%、0.67%、0.71%和0.88%苏氨酸水平组分别提高了7.77%(P < 0.05)、2.76%(P>0.05)、0.72%(P>0.05)和1.01%(P>0.05);0.74%苏氨酸水平组试验鸡腿肌率最高,较0.60%、0.67%、0.71%和0.88%苏氨酸水平组分别提高了2.60%(P>0.05)、2.65%(P>0.05)、5.75%(P < 0.05)和4.28%(P>0.05)。饲粮苏氨酸水平对黄羽肉鸡母鸡和公鸡的屠宰率、腹脂率和胸肌率的影响无显著差异(P>0.05)。回归分析结果(表 5)显示,饲粮苏氨酸水平与公鸡的半净膛率、全净膛率呈显著的二次相关(P < 0.05),根据半净膛率、全净膛率回归方程计算得出公鸡饲粮苏氨酸最适水平分别为0.77%和0.79%,饲粮苏氨酸水平与母鸡胴体品质各项指标均无显著的二次相关(P>0.05)。因此,根据胴体品质指标,确定黄羽肉鸡公鸡饲粮苏氨酸最适水平为0.77%,黄羽肉鸡母鸡饲粮苏氨酸最适水平为0.88%。
![]() |
表 4 饲粮苏氨酸水平对黄羽肉鸡胴体品质的影响 Table 4 Effects of dietary threonine levels on carcass quality of yellow-feathered broilers |
![]() |
表 5 饲粮苏氨酸水平与黄羽肉鸡酮体品质回归分析 Table 5 Regression analysis of dietary threonine levels and carcass quality of yellow-feathered broilers |
由表 6可知,饲粮苏氨酸水平显著影响黄羽肉鸡公鸡、母鸡的胸腺指数(P < 0.05),对法氏囊指数和脾脏指数无显著影响(P>0.05),其中0.88%苏氨酸水平组(公鸡和母鸡)胸腺指数最高。以免疫器官指数为判定指标,确定黄羽肉鸡公鸡、母鸡饲粮苏氨酸最适水平均为0.88%。
![]() |
表 6 饲粮苏氨酸水平对黄羽肉鸡免疫器官指数的影响 Table 6 Effects of dietary threonine levels on immune organ indices of yellow-feathered broilers |
由表 7可知,饲粮苏氨酸水平对黄羽肉鸡血清中UA、T3、T4和IGF-1含量均无显著影响(P>0.05),对黄羽肉鸡母鸡血清中TG、IgG、IL-6和INS含量有显著影响(P < 0.05),其中0.88%苏氨酸水平组血清中TG和INS含量最低,0.88%苏氨酸水平组血清中IL-6和IgG含量最高;饲粮苏氨酸水平对黄羽肉鸡公鸡血清中LDL、INS、IL-6和IgG含量有显著影响(P < 0.05),其中0.88%苏氨酸水平组血清中INS和LDL含量最低,0.88%苏氨酸水平组血清中IL-6和IgG含量最高。根据血清生化指标确定黄羽肉鸡公鸡、母鸡饲粮苏氨酸最适水平均为0.88%。
![]() |
表 7 饲粮苏氨酸水平对黄羽肉鸡血清生化指标的影响 Table 7 Effects of dietary threonine levels on serum biochemical indices of yellow-feathered broilers |
由表 8可见,饲粮苏氨酸水平对黄羽肉鸡外周血T淋巴细胞CD4+、CD8+和CD4+/CD8+无显著影响(P>0.05),但显著影响血液中T淋巴细胞增殖率(P < 0.05),且黄羽肉鸡母鸡和公鸡均是0.81%苏氨酸水平组血液中T淋巴细胞增殖率最高。因此,以血液T淋巴细胞增值率为判定指标,确定黄羽肉鸡公鸡、母鸡饲粮苏氨酸最适水平均为0.81%。
![]() |
表 8 饲粮苏氨酸水平对黄羽肉鸡血液淋巴细胞亚群比率和T淋巴细胞增殖率的影响 Table 8 Effects of dietary threonine levels on blood lymphocyte subpopulation ratio and T lymphocyte proliferation rate of yellow-feathered broilers |
苏氨酸其代谢产物如丁酰辅酶A、丝氨酸和甘氨酸等能够促进机体蛋白质的合成并有效沉积[11]。国内外均有研究表明,提高饲粮中苏氨酸水平可以显著提高1~21日龄肉仔鸡的平均日采食量和平均日增重,并显著降低料重比[12-15]。而当饲粮中的苏氨酸水平不足时会影响肉鸡的生长性能,表现为平均日增重和饲料转化率降低[16-17]。本试验的结果显示,当苏氨酸水平低于国标(0.76%)20%以上时,会显著降低黄羽肉鸡公鸡和母鸡的生长性能,而超过0.76%时,黄羽肉鸡母鸡则表现为生长性能显著提高,黄羽肉鸡公鸡则无显著影响。结合回归分析结果,以生长性能为判定指标,黄羽肉鸡母鸡饲粮苏氨酸最适水平为0.81%,黄羽肉鸡公鸡饲粮苏氨酸最适水平为0.79%。研究表明,苏氨酸可以影响血清中生长激素的合成和分泌从而影响动物的生长性能[18-19]。本试验的血清生长激素的结果显示,各组间无显著差异,但是黄羽肉鸡公鸡和母鸡之前有较大差异,可能是因为体内生长激素水平不同从而导致黄羽肉鸡公鸡和母鸡对于苏氨酸需求量不同。
3.2 饲粮苏氨酸水平对1~21日龄快大型黄羽肉鸡胴体品质的影响一般认为半净膛率和全净膛率是衡量鸡只产肉性能的主要指标,半净膛率和全净膛率越高则认为产肉性能越好[20]。胸肌和腿肌是肉鸡食用的主要部位,胸肌率和腿肌率高表明肉鸡胴体品质好[21]。饲粮苏氨酸水平从0.71%升高至0.84%可以显著提高肉鸡的腿肌率[15]。Çiftci等[22]研究表明,饲粮中的苏氨酸水平与腿肌中的粗蛋白质含量呈线性正相关,具有促进肉鸡肌肉生长的作用。Zhang等[23]研究表明,当饲粮苏氨酸水平由0.60%升高至0.95%时,可以显著提高1~14日龄北京鸭的胸肌率。本试验结果显示,黄羽肉鸡母鸡的半净膛率和全净膛率均随着饲粮苏氨酸水平的升高呈线性升高,且均是0.88%苏氨酸水平组为最大值,但腿肌率是0.74%苏氨酸水平组为最大值。黄羽肉鸡公鸡的半净膛率和全净膛率呈显著的二次相关,根据半净膛率、全净膛率回归方程计算得出黄羽肉鸡公鸡饲粮苏氨酸最适水平为0.77%~0.79%,腿肌率的最大值与母鸡一致均为0.74%苏氨酸水平组。由此可见,适宜的饲粮苏氨酸水平可以加快黄羽肉鸡机体蛋白质合成,改善胴体品质,黄羽肉鸡母鸡对于苏氨酸的需求量要高于公鸡。
3.3 饲粮苏氨酸水平对1~21日龄快大型黄羽肉鸡免疫功能的影响苏氨酸参与构成免疫系统,对机体免疫器官的发育有着极为密切的关系,并且苏氨酸还是肉鸡机体IgG的主要成分[24]。王红梅等[25]研究表明,饲粮添加苏氨酸可以显著提高1~21日龄肉仔鸡免疫器官指数,并且免疫器官指数的最大值的苏氨酸需要量高于最佳生长性能的需要量。侯永清等[26]研究表明,饲粮添加不同水平苏氨酸能够显著影响断奶仔猪血清中IgG的含量。T淋巴细胞增殖率是反映机体细胞免疫功能的重要指标,研究发现饲粮中添加0.54%~0.57%的苏氨酸能够显著提高蛋鸡血液中T淋巴细胞增殖率[27]。IL-6由多种细胞合成,能够促进B淋巴细胞的增殖分化并产生抗体,也能刺激T淋巴细胞生产,与机体免疫密切相关[28]。本试验结果显示,饲粮苏氨酸水平对黄羽肉鸡的胸腺指数、血清中IL-6和IgG含量以及血液中T淋巴细胞增殖率有显著影响,母鸡和公鸡均是0.88%苏氨酸水平组胸腺指数和血清中IL-6和IgG含量最高;0.81%苏氨酸水平组血液中T淋巴细胞增殖率最高。以上结果说明,苏氨酸对于1~21日龄黄羽肉鸡公鸡和母鸡的免疫功能有提高的作用,并且提高黄羽肉鸡公鸡的免疫功能的苏氨酸需要量要高于生长性能,这一点与前人研究结果吻合。
3.4 饲粮苏氨酸水平对1~21日龄快大型黄羽肉鸡血清生化指标的影响血清中TG和LDL等脂类物质是衡量机体脂肪代谢健康水平的重要指标[29],TG含量过高易导致脂肪肝和肥胖等相关并发症[30],LDL是血液中胆固醇的主要载体,能够调节胆固醇的合成,促进脂肪的沉积。INS在机体糖脂代谢过程具有重要调节作用,机体INS含量提高有利于体脂的储存,降低体脂的分解[31]。Kobayashi等[32]研究表明,给生长肥育猪饲喂低水平苏氨酸饲粮会减少其背最长肌的形成以及肌内脂肪的沉积。在低蛋白质饲粮中添加苏氨酸能够降低北京鸭血浆中TG和LDL的含量[33]。其他研究也发现,在饲粮中添加苏氨酸可以显著降低动物血清中TG和LDL含量[34-35]。本试验的研究结果显示,高水平的苏氨酸(0.81%~0.88%)能够显著降低黄羽肉鸡血清中TG、LDL和INS的含量,说明苏氨酸能够影响黄羽肉鸡脂肪代谢,主要表现为促进脂肪的分解,但具体调节机理还有待进一步的研究。
4 结论① 在本试验条件下,饲粮补充适宜水平的苏氨酸可提高1~21日龄快大型黄羽肉鸡公鸡和母鸡的生长性能、胴体品质和免疫功能,对机体的脂肪代谢有显著影响。
② 以生长性能为主要判定指标,确定1~21日龄黄羽肉鸡母鸡饲粮苏氨酸最适水平为0.81%,黄羽肉鸡公鸡饲粮苏氨酸最适水平为0.79%。
[1] |
QAISRANI S N, AHMED I, AZAM F, et al. Threonine in broiler diets: an updated review[J]. Annals of Animal Science, 2018, 18(3): 659-674. DOI:10.2478/aoas-2018-0020 |
[2] |
DONG X Y, AZZAM M M M, ZOU X T. Effects of dietary threonine supplementation on intestinal barrier function and gut microbiota of laying hens[J]. Poultry Science, 2017, 96(10): 3654-3663. DOI:10.3382/ps/pex185 |
[3] |
WILS-PLOTZ E L, JENKINS M C, DILGER R N. Modulation of the intestinal environment, innate immune response, and barrier function by dietary threonine and purified fiber during a coccidiosis challenge in broiler chicks[J]. Poultry Science, 2013, 92(3): 735-745. DOI:10.3382/ps.2012-02755 |
[4] |
MALINOVSKY A V. Why threonine is an essential amino acid in mammals and birds: studies at the enzyme level[J]. Biochemistry (Moscow), 2018, 83(7): 795-799. DOI:10.1134/S0006297918070039 |
[5] |
DEBNATH B C, BISWAS P, ROY B. The effects of supplemental threonine on performance, carcass characteristics, immune response and gut health of broilers in subtropics during pre-starter and starter period[J]. Journal of Animal Physiology and Animal Nutrition, 2019, 103(1): 29-40. DOI:10.1111/jpn.12991 |
[6] |
中华人民共和国农业部. NY/T 33—2004鸡饲养标准[S]. 北京: 中国标准出版社, 2004. Ministry of Agriculture of The People's Republic of China. NY/T 33—2004 Feeding standard of chicken[S]. Beijing: China Standards Press, 2004. (in Chinese) |
[7] |
中国饲料数据库. 中国饲料成分及营养价值表(2018年第29版)[J]. 中国饲料, 2018(21): 64-73. Chinese Feed Database. Tables of feed composition and nutritive values in China (29th ed, 2018)[J]. China Feed, 2018(21): 64-73 (in Chinese). |
[8] |
谢昆, 蒋成砚, 全舒舟, 等. 鸡外周血淋巴细胞的分离和体外培养[J]. 中国家禽, 2011, 33(11): 57-58. XIE K, JIANG C X, QUAN S Z, et al. Isolation and cultivation of chicken peripheral blood lymphocytes in vitro[J]. China Poultry, 2011, 33(11): 57-58 (in Chinese). |
[9] |
何昭阳, 胡桂学, 王春凤. 动物免疫学实验技术[M]. 长春: 吉林科学技术出版社, 2002: 156-157. HE Z Y, HU G X, WANG C F. Technique of animal immunology experiment[M]. Changchun: Jilin Science and Technology Press, 2002: 156-157 (in Chinese). |
[10] |
ROBBINS K R, SAXTON A M, SOUTHERN L L. Estimation of nutrient requirements using broken-line regression analysis[J]. Journal of Animal Science, 2006, 84(Suppl.13): E155-E165. |
[11] |
DONG X, ZHOU Z, WANG L, et al. Increasing the availability of threonine, isoleucine, valine, and leucine relative to lysine while maintaining an ideal ratio of lysine: methionine alters mammary cellular metabolites, mammalian target of rapamycin signaling, and gene transcription[J]. Journal of Dairy Science, 2018, 101(6): 5502-5514. DOI:10.3168/jds.2017-13707 |
[12] |
RAO S V R, RAJU M V L N, PANDA A K, et al. Performance, carcass variables and immune responses in commercial broiler chicks fed graded concentrations of threonine in diet containing sub-optimal levels of protein[J]. Animal Feed Science and Technology, 2011, 169(3/4): 218-223. |
[13] |
MIN Y N, LIU S G, QU Z X, et al. Effects of dietary threonine levels on growth performance, serum biochemical indexes, antioxidant capacities, and gut morphology in broiler chickens[J]. Poultry Science, 2017, 96(5): 1290-1297. DOI:10.3382/ps/pew393 |
[14] |
DOZIER Ⅲ W A, MELOCHE K J, TILLMAN P B, et al. Growth performance of male broilers fed diets varying in digestible threonine to lysine ratio from 1 to 14 days of age[J]. Journal of Applied Poultry Research, 2015, 24: 457-462. DOI:10.3382/japr/pfv047 |
[15] |
ABBASI M A, MAHDAVI A H, SAMIE A H, et al. Effects of different levels of dietary crude protein and threonine on performance, humoral immune responses and intestinal morphology of broiler chicks[J]. Revista Brasilra De Ciência Avícola, 2014, 16(1): 35-44. |
[16] |
刘升国, 曲正祥, 蒙国华, 等. 日粮苏氨酸水平对肉鸡生产性能、机体抗氧化性能和免疫机能的影响[J]. 西北农业学报, 2017, 26(10): 1429-1437. LIU S G, QU Z X, MENG G H, et al. Effects of dietary threonine levels on growth performance, antioxidant capacities and immune function of broiler chickens[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2017, 26(10): 1429-1437 (in Chinese). DOI:10.7606/j.issn.1004-1389.2017.10.003 |
[17] |
毕晔. 日粮苏氨酸水平对0~21d北京鸭生长性能、胴体品质以及免疫机能的影响[D]. 硕士学位论文. 北京: 中国农业科学院, 2017. BI Y. Effects of dietary threonine on growth performance, carcass trait and immunity function of Peking ducks from hatch to 21 days[J]. Master's Thesis. Beijing: Chinese Academy of Agricultural Sciences, 2017. (in Chinese) |
[18] |
TAKENAKA A, OKI N, TAKAHASHI S I, et al. Dietary restriction of single essential amino acids reduces plasma insulin-like growth factor-Ⅰ (IGF-Ⅰ) but does not affect plasma IGF-binding protein-1 in rats[J]. The Journal of Nutrition, 2000, 130(12): 2910-2914. DOI:10.1093/jn/130.12.2910 |
[19] |
KATSUMATA M, KAWAKAMI S, KAJI Y, et al. Circulating levels of insulin-like growth factor-1 and associated binding proteins in plasma and mRNA expression in tissues of growing pigs on a low threonine diet[J]. Animal Science, 2016, 79(1): 101-109. |
[20] |
赵松, 韩瑞丽, 付亚伟, 等. 固始鸡三系配套组合生长性能及屠体品质测定[J]. 中国家禽, 2019, 41(9): 58-62. ZHAO S, HAN R L, FU Y W, et al. growth performance and carcass quality determination of three lines combination for Gushi chicken[J]. China Poultry, 2019, 41(9): 58-62 (in Chinese). |
[21] |
丁亦男, 王光野. 不同饲养方式对黄羽肉鸡生长性能、肉质和免疫器官指数的影响[J]. 中国饲料, 2019(24): 33-36. DING Y N, WANG G Y. Effects of different feeding systems on growth performance, meat quality and immune organ index of yellow-feather broilers[J]. China Feed, 2019(24): 33-36 (in Chinese). |
[22] |
ÇIFTCI I, CEYLAN N. Effects of dietary threonine and crude protein on growth performance, carcase and meat composition of broiler chickens[J]. British Poultry Science, 2004, 45(2): 280-289. DOI:10.1080/00071660410001715894 |
[23] |
ZHANG Q, ZENG Q F, COTTER P, et al. Dietary threonine response of Pekin ducks from hatch to 14 d of age based on performance, serology, and intestinal mucin secretion[J]. Poultry Science, 2016, 95(6): 1348-1355. DOI:10.3382/ps/pew032 |
[24] |
SANDBERG F B, EMMANS G C, KYRIAZAKIS I. The effects of pathogen challenges on the performance of naïve and immune animals: the problem of prediction[J]. Animal, 2007, 1(1): 67-86. DOI:10.1017/S175173110765784X |
[25] |
王红梅, 刘国华, 陈玉林, 等. 日粮苏氨酸水平对0~3周龄肉仔鸡生长性能、血清生化指标及免疫机能的影响[J]. 中国家禽, 2005, 27(20): 12-15. WANG H M, LIU G H, CHEN Y L, et al. Effect of dietary threonine levels on growth performance, serum biochemical parameters and immune function in broilers at 0-3 weeks[J]. China Poultry, 2005, 27(20): 12-15 (in Chinese). DOI:10.3969/j.issn.1004-6364.2005.20.004 |
[26] |
侯永清, 吕民主, 呙于明, 等. 早期断奶仔猪日粮中蛋氨酸、苏氨酸水平对机体蛋白质代谢的影响[J]. 饲料研究, 2001(7): 7-8. HONG Y Q, LYU M Z, GUO Y M, et al. Effects of different dietary levels of methionine and threonine on body protein metabolism of early-weaned piglets[J]. Feed Research, 2001(7): 7-8 (in Chinese). DOI:10.3969/j.issn.1002-2813.2001.07.003 |
[27] |
聂伟, 杨鹰, 王忠, 等. 日粮苏氨酸水平对蛋鸡免疫机能的影响[J]. 中国畜牧杂志, 2011, 47(19): 31-35. NIE W, YANG Y, WANG Z, et al. Effects of threonine on immune responses in laying hens[J]. Chinese Journal of Animal Science, 2011, 47(19): 31-35 (in Chinese). |
[28] |
LU H P, HAN M, YUAN X X, et al. Role of IL6-mediated expression of NS5ATP9 in autophagy of liver cancer cells[J]. Journal of Cellular Physiology, 2018, 233(12): 9312-9319. DOI:10.1002/jcp.26343 |
[29] |
刘志友. 日粮添加壳聚糖对蛋种鸡脂质代谢的影响及其机理研究[D]. 博士学位论文. 呼和浩特: 内蒙古农业大学, 2018. LIU Z Y. Effects of chitosan on lipid metabolism in laying breeders and the underlying mechanism[D]. Ph. D. Thesis. Hohhot: Inner Mongolia Agricultural University, 2018. (in Chinese) |
[30] |
魏苏宁, 苏雪莹, 徐国恒. 肝细胞甘油三酯代谢途径异常与脂肪肝[J]. 中国生物化学与分子生物学报, 2016, 32(2): 123-132. WEI S N, SU X Y, XU G H. Anomaly of triglyceride metabolism in liver lead to NAFLD[J]. Chinese Journal of Biochemistry and Molecular Biology, 2016, 32(2): 123-132 (in Chinese). |
[31] |
USSAR S, KAHN C R. Intestinal epithelial insulin signaling plays an important role in the regulation of whole body glucose and lipid homeostasis[J]. Diabetes, 2013, 62: A23. DOI:10.2337/db13-0891 |
[32] |
KOBAYASHI H, ISHIDA A, ASHIHARA A, et al. Effects of dietary low level of threonine and lysine on the accumulation of intramuscular fat in porcine muscle[J]. Bioscience, Biotechnology, and Biochemistry, 2012, 76(12): 2347-2350. DOI:10.1271/bbb.120589 |
[33] |
江勇. 苏氨酸对北京鸭脂质代谢的影响及其调控机制[D]. 博士学位论文. 北京: 中国农业大学, 2018. JIANG Y. Effects of threonine on lipid metabolism in Pekin ducks and its regulatory mechanism[D]. Ph. D. Thesis. Beijing: China Agricultural University, 2018. (in Chinese) |
[34] |
REZAEIPOUR V, GAZANI S. Effects of feed form and feed particle size with dietary L-threonine supplementation on performance, carcass characteristics and blood biochemical parameters of broiler chickens[J]. Journal of Animal Science and Technology, 2014, 56: 20. DOI:10.1186/2055-0391-56-20 |
[35] |
WESTERMEIER C, PAULICKS B R, KIRCHGESSNER M. Futteraufnahme und lebendmasseentwicklung von sauen und ferkeln während der laktation in abhängigkeit von der threoninversorgung der Sau.1.mitteilung zum threoninbedarf laktierender sauen[J]. Journal of Animal Physiology and Animal Nutrition, 1998, 79(1/2/3/4/5): 33-45. |