2. 中国科学院亚热带农业生态研究所, 中国科学院亚热带农业生态过程重点实验室, 长沙 410125
2. Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
随着畜牧业集约化、规模化的发展,为减少畜禽疾病的发生,抗生素被大批量使用。抗生素虽然能起到杀菌,提高机体免疫力、暂时降低疾病的发生率等作用,但同时也导致了细菌耐药性和药物残留等问题。因此,世界各地已限制使用抗生素,在我国,2019年农业农村部发布第194号公告,自2020年1月1日起,退出除中药外的所有促生长类药物饲料添加剂品种。因此,开发健康、无污染的绿色抗生素替代物迫在眉睫。枸杞是我国传统的中药材,富含多糖、蛋白质、维生素等营养成分,其中枸杞多糖(Lycium barbarum polysaccharide,LBP)具有调节免疫[1-2]、抗癌[3]、抗炎[4-5]、抗氧化[6-7]及护肝[8-10]等多种药理学功能,具有开发成抗生素替代物的潜力,其在养殖业中的应用备受关注。谭连杰等[11]研究表明,在饲料中添加1 g/kg LBP可以提高卵形鲳鲹的抗氧化能力及免疫能力。Liu等[12]研究表明,在饲粮中添加4 g/kg LBP可以调节淋巴细胞增殖和炎性细胞因子的表达,提高21日龄肉鸡免疫器官指数,促进肉鸡的生长性能。Long等[13]研究表明,在饲粮中添加2 g/kg LBP可以增强肉鸡消化酶活性、抗氧化能力、免疫力,进而提高其生长性能。目前,关于LBP对动物肠道健康的影响至今尚未明确。鉴于此,本试验拟以断奶大鼠为研究对象,通过在饲粮中添加LBP,探究其对生长性能、抗氧化能力、肠黏膜免疫功能及肠道形态结构的影响,以期为LBP应用于畜牧生产,改善动物肠道健康、促进动物生长提供理论依据和参考。
1 材料与方法 1.1 试验材料LBP有效含量为60%,购自于陕西某生物制品有限公司。
1.2 试验设计选取体重接近的健康雄性SD大鼠(4周龄)20只,按体重接近的原则随机分成2组(每组10个重复,每个重复1只),分别饲喂基础饲粮(对照组)和在基础饲粮中添加4 g/kg LBP的试验饲粮(LBP组),试验期为28 d。基础饲粮参考AIN-93G大鼠纯化饲养标准配制,其组成及营养水平如表 1所示。饲养试验在湖南农业大学动物科学教学科研基地完成,试验大鼠采用单笼饲养,采用自由饮食、自然采光等常规饲养管理。
![]() |
表 1 基础饲粮组成及营养水平(饲喂基础) Table 1 Composition and nutrient levels of the basal diet (as fed-basis) |
对全部大鼠依次进行眼球摘除采血。采集的血样静置30 min后,4 ℃下4 000 r/min离心15 min制备血清,-80 ℃保存。采血后将大鼠处死并解剖,分离并取空肠肠段3 cm置于4%甲醛溶液中固定;取空肠黏膜,液氮暂存,之后置于-80 ℃保存备用。
1.4 测定指标与方法 1.4.1 生长性能每只大鼠作为1个单位。试验第1天对大鼠进行称重,作为初始体重;第28天进行第2次称重,作为终末体重。记录每次饲喂量及最后剩料重,计算平均日增重(ADG)、平均日采食量(ADFI)、料重比(F/G)。
1.4.2 空肠黏膜和血清中抗氧化指标参考汤俊等[14]的方法对组织样品进行前处理。空肠黏膜和血清中总抗氧化能力(T-AOC)、谷胱甘肽过氧化物酶(GSH-Px)活性和丙二醛(MDA)含量均采用酶联免疫吸附测定(ELISA)试剂盒进行测定,试剂盒购于南京建成生物工程研究所,操作步骤参考试剂盒说明书。
1.4.3 空肠形态结构取出4%甲醛溶液固定的肠道组织,经常规脱水、石蜡包埋、切片、苏木精-伊红(HE)染色后[15],利用Motic Images Advanced 3.2软件,测量空肠黏膜隐窝深度和绒毛高度,每张切片观察10个视野。计算绒毛高度/隐窝深度(V/C)。
1.4.4 空肠黏膜细胞因子含量空肠黏膜中白细胞介素-6(IL-6)、白细胞介素-2(IL-2)、白细胞介素-10(IL-10)含量均采用ELISA试剂盒进行测定,试剂盒购于南京森贝伽生物科技有限公司,操作步骤参考试剂盒说明书。
1.4.5 空肠黏膜免疫球蛋白含量空肠黏膜中免疫球蛋白A(IgA)、免疫球蛋白G(IgG)、免疫球蛋白(IgM)含量均采用ELISA试剂盒进行测定,试剂盒购于南京森贝伽生物科技有限公司,操作步骤参考试剂盒说明书。
1.5 数据处理与分析试验数据用Excel 2013进行初步处理,然后用软件SPSS 20.0进行t检验,P<0.05为差异显著。数据以“平均值±标准差”表示。
2 结果 2.1 饲粮中添加LBP对断奶大鼠生长性能的影响由表 2可知,与对照组相比,LBP组ADG提高了16.3%(P<0.05),ADFI与F/G无显著变化(P>0.05)。
![]() |
表 2 饲粮中添加LBP对断奶大鼠生长性能的影响 Table 2 Effects of dietary LBP on growth performance of weaned rats |
由表 3可知,与对照组相比,LBP组血清中T-AOC与GSH-Px活性分别提高了52.8%(P<0.05)和67.5%(P<0.05),MDA含量降低了31.7%(P<0.05);LBP组空肠黏膜中T-AOC提高了99.1%(P<0.05),MDA含量降低了13.7%(P<0.05),GSH-Px活性无显著变化(P>0.05)。
![]() |
表 3 饲粮中添加LBP对断奶大鼠空肠黏膜和血清中抗氧化指标的影响 Table 3 Effects of dietary LBP on antioxidant indices in jejunal mucosa and serum of weaned rats |
由表 4可知,与对照组相比,LBP组空肠的绒毛高度与隐窝深度无显著变化(P>0.05),但V/C提升了21.4%(P<0.05)。
![]() |
表 4 饲粮添加LBP对断奶大鼠空肠形态结构的影响 Table 4 Effects of dietary LBP on jejunal morphology of weaned rats |
由表 5可知,与对照组相比,LBP组空肠黏膜中IL-2与IL-10含量分别上升了31.6%(P<0.05)和66.0%(P<0.05),IL-6含量无显著变化(P>0.05)。
![]() |
表 5 饲粮中添加LBP对断奶大鼠空肠黏膜中细胞因子含量的影响 Table 5 Effects of dietary LBP on cytokine contents in jejunal mucosa of weaned rats |
由表 6可知,与对照组相比,LBP组空肠黏膜中IgA与IgG含量分别提升了33.7%(P<0.05)和35.1%(P<0.05),IgM含量无显著变化(P>0.05)。
![]() |
表 6 饲粮添加LBP对断奶大鼠空肠黏膜免疫球蛋白含量的影响 Table 6 Effects of dietary LBP on immunoglobulin contents in jejunal mucosa of weaned rats |
动物生长性能是实际生产中关注的焦点之一,一般从试验动物的ADG与F/G中体现,反映动物生长发育情况。近年来,大量研究表明,LBP可提高断奶仔猪[16]、肉仔鸡[17]、育肥羊[18]等动物的生长性能。本试验中,饲粮中添加LBP显著提高了断奶大鼠的ADG,表明LBP提高了断奶大鼠的生长性能,与前人的研究结果一致,其促生长作用的原因可能是:1)LBP可改善机体肠道黏膜形态结构的完整性,促进肠道对营养物质的消化与吸收[19];2)LBP可增加肠道抗氧化物酶的活性,清除氧自由基,改善氧化应激状态,提高组织抗氧化能力[20-21];3)LBP可以提高肠道的免疫性能,促进免疫细胞分化增殖及细胞因子的合成分泌[22]。
肠道对于维持和改善机体健康至关重要,其中,肠道的抗氧化功能与维持肠道健康息息相关。MDA作为脂质过氧化的产物之一,其含量可以反映机体的氧化水平和自由基攻击的程度[23]。对应的,机体内会有抗氧化酶系统,包括超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、GSH-Px等,它们互相协作使自由基在体内处于动态平衡,其活性可以反映机体清除自由基的能力。Wu等[24]研究表明,给小鼠进行LBP灌喂干预后,能够清除其体内的氧自由基,防止脂质过氧化,有效提高组织抗氧化能力。Yang等[25]研究发现,LBP能抑制多形核中性粒细胞(PMN)的积累和细胞内黏附分子-1(ICAM-1)的表达,增加肿瘤坏死因子-α(TNF-α)含量,活化核因子(NF)-κB,引起肠道通透性和组织学变化,提高抗氧化酶活性,减少肠道氧化损伤。Ren等[26]研究发现,LBP可以提高肠道对营养物质的吸收。本试验结果表明,饲粮中添加LBP可提高断奶大鼠空肠黏膜与血清中T-AOC及血清GSH-Px活性,降低空肠黏膜与血清中MDA含量,能够有效清除自由基,抑制脂质过氧化,提高断奶大鼠机体的抗氧化能力。因此,LBP可能是通过增强机体抗氧化酶的活性,减少肠道氧化损伤,提高肠道对营养物质的吸收,进而改善动物的生长性能。
肠道黏膜的免疫系统可以防止细菌或者病毒等微生物入侵影响肠道健康,是机体的第1道防线。而肠道黏膜的免疫功能主要是免疫细胞和细胞因子在发挥作用。其中,IL-2具有刺激B淋巴细胞增殖并产生抗体,促进T淋巴细胞、NK细胞产生细胞因子等功能[27];IL-6能够使效应B淋巴细胞及T淋巴细胞发生增殖,活化CTL并可以参与炎症反应[28];IL-10可促进B细胞分化增殖。细胞免疫和体液免疫主要通过T淋巴细胞和B淋巴细胞来发挥作用的。淋巴细胞增殖对免疫应答至关重要[29]。Tan等[30]研究表明,枸杞提取物可降低饲喂高脂饲料石斑鱼肝脏中白细胞介素-8(IL-8)含量,提高IL-10含量,增加肝脏抗氧化酶活性及其基因表达,抑制肝脏炎症反应和凋亡,改善其生长性能。此外,促炎细胞因子为合成免疫效应分子会促进分解代谢[31],因此,其分泌对机体是不利的。Li[32]研究表明,LBP可以增加大鼠血清中IL-2与白细胞介素-12(IL-12)含量。本试验结果显示,在饲粮中添加LBP可显著提高断奶大鼠空肠黏膜中IL-2与IL-10的含量,但是对IL-6含量无显著影响,这与Liu等[12]的研究结果一致。由以上论述推断,LBP可能是通过调节炎性细胞因子的表达来刺激免疫细胞的增殖分化,提高机体免疫力,进而促进动物的生长性能。
免疫球蛋白指具有抗体活性的动物蛋白,可以分为IgG、IgA、IgM、免疫球蛋白D(IgD)、免疫球蛋白E(IgE)等5类,能够增强单核巨噬细胞的吞噬作用,减弱细菌毒素的毒性,激活补体,对病毒等微生物具有抗体活性,能够抑制它们繁殖,进而减少其附着在肠道黏膜上[33-35]。Li等[36]研究表明,在饲粮中添加苍术多糖可提高断奶仔猪血清中IgG和IgM含量。本试验结果表明,在饲粮中添加LBP可显著提高断奶大鼠空肠黏膜中IgA与IgG含量,这与前人的研究结果[37]一致。由此可见,LBP可以通过调节肠道黏膜免疫球蛋白的含量,增强抗体活性,减弱细菌毒素的毒性来增强机体的免疫功能,进而改善动物的生长性能。
在肠道物理屏障功能中肠道形态结构扮演着重要角色,并且影响肠道对营养物质的消化与吸收[38-39],而其完整性主要是由绒毛高度、隐窝深度及V/C等指标体现的。王园等[40]研究表明,在断奶大鼠饲粮中添加发酵麸皮多糖后可以提高其空肠绒毛高度和V/C。本试验探讨了LBP对断奶大鼠肠道形态结构的影响,结果表明,在饲粮中添加LBP可提高断奶大鼠空肠绒毛高度与V/C,降低其隐窝深度。由此可见,在饲粮中添加LBP在一定程度上可以改善断奶大鼠肠道形态结构的完整性,增强其肠道物理屏障功能,进而达到提高生长性能的效果。
4 结论饲粮中添加4 g/kg LBP可显著提高断奶大鼠的ADG,空肠黏膜与血清中T-AOC及血清中GSH-Px活性,以及空肠黏膜中IL-2、IL-10、IgA与IgG的含量,并可显著提高空肠V/C。由此可见,饲粮中添加LBP可以提高断奶大鼠的抗氧化能力及肠黏膜免疫功能,改善肠道形态结构,进而提高生长性能。
[1] |
史蓉, 周丽, 曾文锦, 等. 酒泉枸杞中枸杞多糖对肠道致病菌抑制作用的研究[J]. 甘肃科技, 2018, 34(10): 46-48. SHI R, ZHOU L, ZENG W J, et al. Inhibiting effect of Jiuquan Lycium barbarum polysaccoharide on intestinal pathogenic bacteria[J]. Gansu Science and Technology, 2018, 34(10): 46-48 (in Chinese). |
[2] |
ZHANG X R, LI Y J, CHENG J P, et al. Immune activities comparison of polysaccharide and polysaccharide-protein complex from Lycium barbarum L.[J]. International Journal of Biological Macromolecules, 2014, 65: 441-445. DOI:10.1016/j.ijbiomac.2014.01.020 |
[3] |
CHEN Z S, LU J H, SRINIVASAN N, et al. Polysaccharide-protein complex from Lycium barbarum L. is a novel stimulus of dendritic cell immunogenicity[J]. Journal of Immunology, 2009, 182(6): 3503-3509. DOI:10.4049/jimmunol.0802567 |
[4] |
ZHAO Q H, LI J J, YAN J, et al. Lycium barbarum polysaccharides ameliorates renal injury and inflammatory reaction in alloxan-induced diabetic nephropathy rabbits[J]. Life Sciences, 2016, 157: 82-90. DOI:10.1016/j.lfs.2016.05.045 |
[5] |
张慧西, 薛凯, 高伟, 等. 枸杞多糖对糖尿病小鼠视网膜内血管新生及氧化应激反应、炎症反应的抑制作用[J]. 海南医学院学报, 2016, 22(20): 2365-2368. ZHANG H X, XUE K, GAO W, et al. Inhibiting effect of Lycium barbarum polysaccoharide on angiogenesis as well as oxidative stress and inflammation in retina of diabetic mice[J]. Journal of Hainan Medical University, 2016, 22(20): 2365-2368 (in Chinese). |
[6] |
GAO K, LIU M Y, CAO J Y, et al. Protective effects of Lycium barbarum polysaccharide on 6-OHDA-induced apoptosis in PC12 cells through the ROS-NO pathway[J]. Molecules, 2014, 20(1): 293-308. DOI:10.3390/molecules20010293 |
[7] |
LIANG B, JIN M L, LIU H B. Water-soluble polysaccharide from dried Lycium barbarum fruits: isolation, structural features and antioxidant activity[J]. Carbohydrate Polymers, 2011, 83(4): 1947-1951. DOI:10.1016/j.carbpol.2010.10.066 |
[8] |
李梅林, 刘建飞, 邸多隆, 等. 枸杞多糖防治化学性肝损伤的药理作用研究[J]. 食品科技, 2018, 43(9): 238-243. LI M L, LIU J F, DI D L, et al. Protection of Lycium barbarum polysaccharides on the liver function injuried by CCl4 in rats[J]. Food Science and Technology, 2018, 43(9): 238-243 (in Chinese). |
[9] |
刘翔. 黄芪多糖与枸杞多糖联用对小鼠肝组织损伤的保护作用[J]. 基因组学与应用生物学, 2018, 37(6): 2656-2662. LIU X. Protective Effect of combination of Astragalus polysaccharides and Lycium barbarum polysaccharides on liver injury in mice[J]. Genomics and Applied Biology, 2018, 37(6): 2656-2662 (in Chinese). |
[10] |
XIAO J, XING F Y, HUO J, et al. Lycium barbarum polysaccharides therapeutically improve hepatic functions in non-alcoholic steatohepatitis rats and cellular steatosis model[J]. Scientific Reports, 2014, 4: 5587. |
[11] |
谭连杰, 林黑着, 黄忠, 等. 枸杞多糖对卵形鲳鲹生长性能、抗氧化能力及血清免疫、生化指标的影响[J]. 动物营养学报, 2019, 31(1): 418-427. TAN L J, LIN H Z, HUANG Z, et al. Effects of Lycium barbarum polysaccharides on growth performance, antioxidant capacity, serum immune and biochemical indexes of juvenile golden pompano (Trachinotus ovatus)[J]. Chinese Journal of Animal Nutrition, 2019, 31(1): 418-427 (in Chinese). |
[12] |
LIU Y L, YIN R Q, LIANG S S, et al. Effect of dietary Lycium barbarum polysaccharide on growth performance and immune function of broilers[J]. Journal of Applied Poultry Research, 2017, 26(2): 200-208. DOI:10.3382/japr/pfw063 |
[13] |
LONG L N, KANG B J, JIANG Q, et al. Effects of dietary Lycium barbarum polysaccharides on growth performance, digestive enzyme activities, antioxidant status, and immunity of broiler chickens[J]. Poultry Science, 2019, 99(2): 744-751. |
[14] |
汤俊, 王爱娜, 陈代文, 等. 饲粮中添加鼠李糖乳酸杆菌GG缓解轮状病毒感染诱导仔猪氧化应激的研究[J]. 动物营养学报, 2015, 27(6): 1787-1793. TANG J, WANG A N, CHEN D W, et al. Dietary Lactobacillus rhamnosus GG supplementation alleviates the oxidant stress induced by rotavirus in weaned piglets[J]. Chinese Journal of Animal Nutrition, 2015, 27(6): 1787-1793 (in Chinese). |
[15] |
DONG L, LIU J, ZHONG Z X, et al. Dietary tea tree oil supplementation improves the intestinal mucosal immunity of weanling piglets[J]. Animal Feed Science and Technology, 2019, 255: 114209. DOI:10.1016/j.anifeedsci.2019.114209 |
[16] |
辛怀璐, 蒋俊劼, 陈代文, 等. 饲喂人工乳对14日龄断奶仔猪生长性能、肠道抗氧化能力及屏障功能的影响[J]. 动物营养学报, 2020, 32(3): 1109-1117. XIN H L, JIANG J J, CHEN D W, et al. Effects of feeding artificial milk on growth performance, intestinal antioxidant capacity and barrier function of piglets weaning at 14 days of age[J]. Chinese Journal of Animal Nutrition, 2020, 32(3): 1109-1117 (in Chinese). |
[17] |
孙甜甜, 高云航, 周海柱, 等. 枸杞多糖对21日龄肉仔鸡生产性能及肌肉氨基酸组成的影响[J]. 黑龙江畜牧兽医, 2019(20): 118-122. SUN T T, GAO Y H, ZHOU H Z, et al. Effects of Lycium barbarum polysaccharides on growth performance and the composition of amino acid in muscle of 21-day-old broilers[J]. Heilongjiang Animal Science and Veterinary Medicine, 2019(20): 118-122 (in Chinese). |
[18] |
王占林, 丁有仁, 云华, 等. 枸杞多糖营养舔砖对滩羊育肥效果的影响[J]. 当代畜牧, 2019(11): 1-3. WANG Z L, DING Y R, YUN H, et al. The fattening effects of nutrient lick brick of Lycium barbarum polysaccharides on Tan sheep[J]. Contemporary Animal Husbandry, 2019(11): 1-3 (in Chinese). |
[19] |
石玉祥, 闫金坤, 王雪敏. 枸杞多糖对小鼠肠道上皮内淋巴细胞和杯状细胞数量、分布及对IL-2水平影响[J]. 食品科学, 2011, 32(13): 318-320. SHI Y X, YAN J K, WANG X M. Effect of Chinese wolfberry (Lycium barbarum) polysaccharides on number and distribution of intraepithelial lymphocytes and goblet cells and IL-2 expression in mice[J]. Food Science, 2011, 32(13): 318-320 (in Chinese). |
[20] |
赵晶丽, 高红梅, 于海帅. 枸杞多糖对高脂血症大鼠血脂代谢及氧自由基的影响[J]. 中国实验方剂学杂志, 2013, 19(5): 241-243. ZHAO J L, GAO H M, YU H S. Effects of Lycium barbarum polysaccharides on lipid metabolism and oxygen free radicals in hyperlipidemic rats[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2013, 19(5): 241-243 (in Chinese). |
[21] |
魏燕华, 成差群, 徐建平. 枸杞多糖对2型糖尿病大鼠视网膜炎症因子表达的影响[J]. 中国药业, 2014, 23(9): 12-14. WEI Y H, CHENG C Q, XU J P. Effect of Lycium barbarum polysaccharides on expression of TNF-α, IL-6 and CRP in retina of type 2 diabetes mellitus rats[J]. China Pharmaceuticals, 2014, 23(9): 12-14 (in Chinese). |
[22] |
ZHU W, ZHOU S X, LIU J H, et al. Prebiotic, immuno-stimulating and gut microbiota-modulating effects of Lycium barbarum polysaccharide[J]. Biomedicine & Pharmacotherapy, 2019, 121: 109591. |
[23] |
PAPADIMITRIOU E, LOUMBOURDIS N S. Exposure of the frog Rana ridibunda to copper: impact on two biomarkers, lipid peroxidation, and glutathione[J]. Bulletin of Environmental Contamination and Toxicology, 2002, 69(6): 885-891. DOI:10.1007/s00128-002-0142-2 |
[24] |
WU H T, HE X J, HONG Y K, et al. Chemical characterization of Lycium barbarum polysaccharides and its inhibition against liver oxidative injury of high-fat mice[J]. International Journal of Biological Macromolecules, 2010, 46(5): 540-543. DOI:10.1016/j.ijbiomac.2010.02.010 |
[25] |
YANG X K, BAI H, CAI W X, et al. Lycium barbarum polysaccharides reduce intestinal ischemia/reperfusion injuries in rats[J]. Chemico-Biological Interactions, 2013, 204(3): 166-172. DOI:10.1016/j.cbi.2013.05.010 |
[26] |
REN L P, LI J J, XIAO Y Y, et al. Polysaccharide from Lycium barbarum L.leaves enhances absorption of endogenous calcium, and elevates cecal calcium transport protein levels and serum cytokine levels in rats[J]. Journal of Functional Foods, 2017, 33: 227-234. DOI:10.1016/j.jff.2017.03.053 |
[27] |
张书松, 刘忠虎, 康相涛, 等. 白细胞介素2对固始鸡十二指肠黏膜免疫增强作用[J]. 中国预防兽医学报, 2009, 29(7): 909-913. ZHANG S S, LIU Z H, KANG X T, et al. Immunological enhancement effects of IL-2 on the duodenum mucosa in Gushi chicken[J]. Chinese Journal of Preventive Veterinary Medicine, 2009, 29(7): 909-913 (in Chinese). |
[28] |
关文霞, 仝雪霞, 任飞. 慢性低氧及枸杞多糖干预对大鼠生理指标和血浆IL-2、IL-6及IgG含量的影响[J]. 宁夏医科大学学报, 2015, 37(4): 367-370, 379. GUAN W X, TONG X X, REN F, et al. Effect of chronic hypoxia and Lycium barbarum polysaccharides on physiological index, interleukin-2, 6 and IgG in plasma of rats intervened in rats[J]. Journal of Ningxia Medical University, 2015, 37(4): 367-370, 379 (in Chinese). |
[29] |
JIN M L, WANG Y M, XU C L, et al. Preparation and biological activities of an exopolysaccharide produced by Enterobacter cloacae Z0206[J]. Carbohydrate Polymers, 2010, 81(3): 607-611. DOI:10.1016/j.carbpol.2010.03.020 |
[30] |
TAN X H, SUN Z Z, YE C X, et al. The effects of dietary Lycium barbarum extract on growth performance, liver health and immune related genes expression in hybrid grouper (Epinephelus lanceolatus×E. fuscoguttatus ♀) fed high lipid diets[J]. Fish & Shellfish Immunology, 2019, 87: 847-852. |
[31] |
JOHNSON R W. Inhibition of growth by pro-inflammatory cytokines: an integrated view[J]. Journal of Animal Science, 1997, 75(5): 1244-1255. DOI:10.2527/1997.7551244x |
[32] |
LI Q. Modulation of cytokine level and sperm quality of mice by Lycium barbarum polysaccharides[J]. International Journal of Biological Macromolecules, 2018, 126: 475-477. |
[33] |
HEIDEBRECHT H J, KULOZIK U. Fractionation of casein micelles and minor proteins by microfiltration in diafiltration mode.Study of the transmission and yield of the immunoglobulins IgG, IgA and IgM[J]. International Dairy Journal, 2019, 93: 1-10. DOI:10.1016/j.idairyj.2019.01.009 |
[34] |
MADER A, CHROMIKOVA V, KUNERT R. Recombinant IgM expression in mammalian cells: a target protein challenging biotechnological production[J]. Advances in Bioscience and Biotechnology, 2013, 4(4A): 38-43. |
[35] |
PLANCHAIS C, MOUQUET H. Easy pan-detection of human IgA immunoglobulins[J]. Journal of Immunological Methods, 2020, 484/485: 112833. DOI:10.1016/j.jim.2020.112833 |
[36] |
LI L L, YIN F G, ZHANG B, et al. Dietary supplementation with Atractylodes macrophala Koidz polysaccharides ameliorate metabolic status and improve immune function in early-weaned pigs[J]. Livestock Science, 2011, 142(1/2/3): 33-41. |
[37] |
LI X L, HE L P, YANG Y, et al. Effects of extracellular polysaccharides of Ganoderma lucidum supplementation on the growth performance, blood profile, and meat quality in finisher pigs[J]. Livestock Science, 2015, 178: 187-194. DOI:10.1016/j.livsci.2015.04.001 |
[38] |
CHEN H, MAO X B, HE J, et al. Dietary fibre affects intestinal mucosal barrier function and regulates intestinal bacteria in weaning piglets[J]. British Journal of Nutrition, 2013, 110(10): 1837-1848. DOI:10.1017/S0007114513001293 |
[39] |
MAO X B, ZENG X F, QIAO S Y, et al. Specific roles of threonine in intestinal mucosal integrity and barrier function[J]. Frontiers in Bioscience, 2011, 3: 1192-1200. |
[40] |
王园, 杨可心, 段元霄, 等. 发酵麸皮多糖对大鼠空肠组织抗氧化能力、形态结构和紧密连接蛋白表达的影响[J]. 食品科学, 2019, 40(13): 166-170. WANG Y, YANG K X, DUAN Y X, et al. Effects of fermented wheat bran polysaccharides on antioxidant capacity, morphological structure and tight junction protein expression in rat jejunum[J]. Food Science, 2019, 40(13): 166-170 (in Chinese). |