动物营养学报    2021, Vol. 33 Issue (5): 2401-2407    PDF    
母猪围产期胰岛素抵抗的危害及营养调控研究进展
车龙 , 许蒙蒙 , 霍文颖 , 李梦云     
河南牧业经济学院动物科技学院, 郑州 450046
摘要: 母猪围产期生理性胰岛素抵抗(IR)有利于繁殖组织生长发育,而母猪因体况过肥、炎症反应和氧化应激等因素引起IR程度加剧继而诱发病理性IR,导致泌乳期采食量降低、体动员增加、卵母细胞质量降低等生产问题。适宜的饲粮能量来源、纤维水平、功能性添加剂等,不仅可满足动物生长发育和繁殖需求,同时可通过缓解氧化应激和炎症反应,促进肠道中有益菌增殖,从而缓解母猪围产期病理性IR。本文综述了母猪病理性IR的危害、发生的原因以及营养对母猪病理性IR的调控,为母猪围产期营养调控提供理论依据。
关键词: 母猪    胰岛素抵抗    氧化应激    炎症反应    营养调控    
Research Advances in Adverse Effects of Insulin Resistance in Perinatal Period of Sows and It's Nutritional Regulation
CHE Long , XU Mengmeng , HUO Wenying , LI Mengyun     
College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
Abstract: Physiological insulin resistance (IR) in perinatal period of sows is beneficial to the growth and development of reproductive tissues. However, physiological IR will change to pathological IR when sows suffering from hypertrophy, inflammatory response and oxidative stress. It's going to lower feed intake, more body mobilization and worse oocyte quality when pathological IR occurs. Suitable dietary energy sources, fiber level and functional feed additive can not only meet the growth and reproduction requirements of animals, but also relieve oxidative stress and inflammatory response as well as increase intestinal beneficial bacteria, and relieve the pathological IR in perinatal period of sows. This article reviewed the dangers and causes of pathological IR and the regulation of nutrition on pathological IR of sows, in order to provide a theoretical basis for nutritional regulation of sows in perinatal period.
Key words: sows    insulin resistance    oxidative stress    inflammatory response    nutritional regulation    

哺乳动物围产期胰岛素抵抗(insulin resistance,IR)已成为一种较为常见的妊娠后期和泌乳早期特有并发症,其发病率呈逐年上升的趋势。IR可诱发流产、巨型胎儿、死胎、早产等病症[1],尤其降低泌乳期采食量,因此,IR已成为威胁哺乳动物健康和生产性能的重大问题。母猪IR是指血液中胰岛素的生物学效应降低,即机体对胰岛素的生物调节作用反应性降低的一种状态,导致外周组织对胰岛素敏感性下降以及对葡萄糖的利用产生障碍,继而引起代偿性胰岛素分泌增多,高胰岛素血症是IR的典型标志[2]。母猪围产期IR本是一种正常的进程性生理反应,是母体为满足胎儿生长、乳腺发育、初乳形成等需求,通过内分泌调节降低胰岛素敏感性,保证繁殖组织充足的葡萄糖供应[3]。然而,因肥胖或分娩引起脂肪组织促炎因子分泌、脂质过氧化增加、进程性氧化应激等综合因素可诱导母猪由生理性IR转为病理性IR。病理性IR往往恢复缓慢而延续至泌乳期,导致泌乳期采食量降低[4],诱发体动员过度增加、断奶发情间隔延长、卵母细胞质量降低等问题,甚至影响母猪终生繁殖寿命[5]。母猪采食量、饲粮能量来源、饲粮纤维水平、饲粮功能性添加剂等可通过调节母猪体况、炎症反应、抗氧化能力及肠道菌群改善机体胰岛素敏感性。本文就母猪病理性IR的危害、发生的原因以及营养调控母猪IR的作用机制作一综述。

1 IR对母猪生产性能的影响

母猪妊娠期IR通常始于妊娠第12周[3],主要分为生理性IR和病理性IR[6]。生理性IR是母体为保证更多养分分配至繁殖组织而产生胰岛素敏感性降低的一种进程性生理现象;然而,肥胖、炎症或氧化应激等综合因素易诱导围产期母猪IR程度加剧,继而发生病理性IR,从而降低母猪的生产性能[4],当前未见相关报道界定生理性IR和病理性IR。母猪围产期病理性IR的直接结果是泌乳母猪采食量降低[7],尤其在泌乳早期,母猪因病理性IR通常处于能量负平衡状态[8],此时不得不动员自身体储以满足泌乳需要,然而体损失过度将延长正常的断奶发情间隔,降低下一胎次的产仔数[9]。母猪妊娠期肥胖是引发病理性IR的重要原因,肥胖母猪脂肪组织代谢产生促炎因子加剧IR,引起高胰岛素血症,从而降低食欲[10]。同时,母猪妊娠期肥胖将导致胎盘脂质沉积,引起胎盘脂质毒性,影响胎儿发育[11]。并且,母体分娩后不再通过胎盘分配葡萄糖供应胎儿生长继而导致短期高血糖症,血糖浓度将会上升200%~250%[12],与非生产中的母猪相比,母体需要更长的时间以恢复正常血糖浓度[13]。已有确凿证据表明母体血糖浓度与采食量存在显著负相关关系[4]。此外,母猪围产期病理性IR显著降低新生仔猪存活率[7],其主要原因可能在于,母猪妊娠后期病理性IR将导致仔猪高胰岛素血症,仔猪分娩后短时间体内胰岛素浓度不能快速恢复至正常水平,因此易诱发新生仔猪低血糖症而导致活力降低,增加仔猪休克或压死的概率。

2 母猪IR发生机制

生理性IR是母体为保证更多养分分配至繁殖组织而产生胰岛素敏感性降低的一种正常生理现象,导致生理性IR的原因主要为:1)葡萄糖是妊娠后期繁殖组织的主要营养来源[14],除满足维持需要外,大量葡萄糖将分配至繁殖器官用于满足胎儿、乳腺发育和泌乳的需要,此时母猪降低自身对胰岛素的敏感性,导致胰岛素分泌增多,致使生理性IR出现。与妊娠前期相比,妊娠后期胎儿体蛋白质平均日沉积量将提高约19倍[15],单个乳腺组织的蛋白质沉积量将增加约24倍[16]。同时,与过去40年相比,母猪的繁殖性能已经发生了巨大变化,遗传选育技术的改进已经使窝产仔数提高约3头,初生重提高约40%,为了适应增加的产仔数和新生仔猪体增重需要,母猪泌乳期乳产量较过去已经提高了4倍[17]。因此,母猪围产期必将分配大量营养物质用于繁殖需要,生理性降低胰岛素敏感性对繁殖的正常进行有重要意义。2)生理性IR发生与繁殖组织发育和相关激素分泌有关。胎盘催乳素(placental lactogen,HPL)是一种由胎盘滋养层分泌的蛋白质激素,在围产期生理性IR的发生中起到了关键的门控作用[18]。在鼠上的研究表明妊娠后期HPL浓度将会上升30倍;此外,在人上的研究证实胎盘生长激素(placental growth hormone,PGH)的浓度在妊娠后期也将会上升6~8倍,分泌量甚至与垂体生长激素的分泌量相当[19]。HPL和PGH对生理性IR发生有重要促进作用,然而,这2种激素对生理性IR发生的调控机制不甚清楚。

病理性IR的发生与母猪体况和机体脂代谢状态密切相关。已有确凿证据表明机体脂肪代谢中间产物和脂肪炎症因子是导致病理性IR的主要原因,母体肥胖将会不断积累炎症因子,提高病理性IR的发生率[20],故母猪妊娠期体况是影响IR程度的关键因素。脂肪组织可高表达多种炎性因子,如肿瘤坏死因子-α(tumor necrosis factor-α,TNF-α)、白细胞介素-6(interleukin 6,IL-6)、抵抗素(resistin)等,这些炎性因子通过核转录因子-κB(nuclear factor-κB,NF-κB)信号途径介导调节下游基因的表达,从而降低胰岛素的敏感性[21-22]。其中肿瘤坏死因子是脂肪炎症因子调控胰岛素敏感性的最关键因素,其调控胰岛素敏感性的途径主要是通过激活核转录因子-κB抑制物激酶(inhibitor of nuclear factor-κB kinase,IKK)和c-Jun氨基末端激酶(c-Jun N-terminal kinase,JNK)增加胰岛素受体底物(insulin receptor substrate,IRS)丝氨酸磷酸化水平,从而达到降低胰岛素敏感性的目的[23]。同时,氧化应激也是导致病理性IR发生的重要原因,氧化应激主要由机体活性氧(reactive oxygen species,ROS)未得到及时清除所致。研究表明母猪妊娠阶段ROS产生量呈现进程性增加,代谢强度的增加与母猪自身抗氧化酶活性的降低加剧了母猪氧化应激水平,严重影响母猪的泌乳性能[24]。氧化应激主要通过调控胞内炎症信号传导途径干扰胰岛素和胰岛素受体结合。胰岛素信号途径始于胰岛素与胰岛素受体的结合,促使胰岛素受体底物1(insulin receptor substrate 1,IRS1)酪氨酸残基磷酸化,进一步激活下游的磷脂酰肌醇3激酶(phosphoinositide-3-kinase,PI3K),从而激活蛋白激酶B(protein kinase B,AKT),氧化应激增强可导致IRS1丝氨酸激酶磷酸化水平降低[25],降低胰岛素受体信号进一步传递,从而导致病理性IR。因此,目前的研究观点认为维持母猪妊娠期良好体况是缓解母猪进程性氧化应激,提高胰岛素敏感性,进而提高母猪采食量的重要途径。

3 营养来源和浓度调控IR 3.1 采食量

母猪泌乳期采食量与IR有显著相关性。研究表明母猪妊娠期采食量与泌乳期采食量存在负相关关系,妊娠期高采食量导致分娩时母猪体况过肥,引起代谢紊乱,其泌乳期采食量显著低于瘦母猪[26]。Weldon等[2]利用母猪妊娠期限饲或外源注射胰岛素的方法,证实妊娠期限饲可有效提高母猪泌乳期采食量;进一步分析血液指标发现妊娠期限饲组餐后葡萄糖清除率相比对照组提高1倍左右,自由采食组葡萄糖浓度降到半衰期和基础值时所需时间比限饲组更长,提示自由采食可能降低了胰岛素敏感性,导致血浆中葡萄糖、胰岛素浓度持续居高不下,诱发围产期病理性IR;而限饲可能更有利于改善母猪IR。当前关于妊娠期IR与采食量关系的研究较少,生产中对于妊娠期母猪多采用限饲的方法进行饲养。

3.2 饲粮能量来源

脂类是饲粮重要的能量来源,然而母猪对高脂饲粮的摄入会升高血液葡萄糖浓度,导致IR,使用碳水化合物对饲粮中脂肪进行等能替代则显著提高胰岛素敏感性[27],这可能与以下原因有关:1)脂肪代谢产物包含大量三酰甘油和脂肪酸,均有促炎作用;2)脂肪代谢中间产物如酰基辅酶A和二酰甘油将直接导致IRS丝氨酸磷酸化水平增加,均会导致胰岛素敏感性的降低而诱发病理性IR发生,提示母猪围产期能量来源的选择可考虑以碳水化合物代替脂肪的摄入[28]。也有研究报道饲粮添加鱼油对母猪围产期病理性IR有明显的缓解作用[29],其机制在于鱼油添加可提高血液脂联素浓度,脂联素是胰岛素有效增敏剂,无论是在健康个体、肥胖个体还是IR个体,均有明显的效果[30]。鱼油调节胰岛素敏感性可能与其脂肪酸组成密切相关,鱼油富含n-3多不饱和脂肪酸,n-3多不饱和脂肪酸对NF-κB信号途径有显著抑制作用[31];此外,n-3多不饱和脂肪酸可直接诱导过氧化物酶体增殖物激活受体-γ(peroxisome proliferator-activated receptor-γ,PPAR-γ)的活性增加,PPAR-γ激活可直接提高脂联素的分泌量,继而增加胰岛素敏感性[32]。n-6多不饱和脂肪酸则有促进机体炎症反应、降低胰岛素敏感性的效果,例如,母猪妊娠期饲粮以葵花籽油(n-6多不饱和脂肪酸含量:57.79%)作为能量来源,比棕榈油组(n-6多不饱和脂肪酸含量:33.54%)有更低的总产仔数、活产仔数和初生窝重,更高的炎症因子浓度,同时胰岛素敏感性也较棕榈油组更低[33]。近年的研究显示,中链脂肪酸有显著的抗炎作用[34],探讨中链脂肪酸对围产期母猪胰岛素敏感性调控具有重要生产意义;此外,饲粮共轭亚油酸添加也具有缓解病理性IR的效果[35]

3.3 饲粮纤维水平

妊娠后期饲粮纤维来源和水平可通过调控母猪体况及改善肠道微生态缓解母猪围产期病理性IR。妊娠母猪饲粮中添加2.2%的魔芋粉(可溶性纤维含量:61%)显著改善泌乳母猪的生产性能,同时提高围产期胰岛素敏感性,降低系统性炎症状态[36-37];进一步分析原因发现魔芋粉可改善机体氧化应激状态(减少血浆ROS水平,提高谷胱甘肽过氧化物酶活性),同时增加罗氏菌属和艾克曼菌比例,提高胰岛素的敏感性;此外,魔芋粉发酵可增加乙酸、丙酸、丁酸等短链脂肪酸的浓度,减少血液中游离脂肪酸的浓度,有效满足母猪的饱感并控制体脂的过度沉积,提高胰岛素敏感性[38-39]。经产妊娠母猪饲粮中添加2%的可溶性纤维(4.3%瓜尔胶+85.7%预糊化糯玉米淀粉)显著提高母猪肠道菌群结构的稳定性,同时血浆中丙酸盐和奇数链脂肪酸(C15∶0、C17∶0)的浓度增加,这可能是提高胰岛素敏感性的关键所在[40],因为血浆中奇链脂肪酸的浓度与母猪IR的风险呈负相关关系[41]。也有研究表明妊娠母猪饲粮中添加5%的大豆油显著增加母猪血糖曲线下面积,降低葡萄糖清除率;而在此基础上添加1.5%的菊粉可显著降低葡萄糖峰值和血糖曲线下面积,同时提高葡萄糖清除率[42],可能与缓解炎症反应有关;菊粉添加组显著降低促炎因子IL-6、脂肪因子瘦素和趋化素循环浓度;菊粉添加导致微生物多样性提高,可以从一定程度上解释妊娠期体重和背膘增加以及围产期炎性状态的改善;菊粉添加降低了肠道产生炎症因子的变形菌门的数量,同时也增加了挥发性脂肪酸的产量。妊娠母猪饲粮中添加1.5%菊粉可以提高粪便中产短链脂肪酸相关细菌——颤螺菌属(Oscillospira)和霍氏真杆菌(Eubacterium hallii)的相对丰度,提高胰岛素敏感性[42]

3.4 功能性添加剂

益生菌是近年被广泛应用的新型功能性饲料添加剂,部分研究报道了益生菌提高母猪胰岛素敏感性的效果。龙广[43]研究显示,母猪妊娠期饲粮添加0.01%布拉迪酵母菌有降低母猪妊娠第109天血液胰岛素和泌乳第3天葡萄糖浓度的趋势,显著降低妊娠第109天血液胰岛素分泌指数,改善胰岛素敏感性。乳酸菌和酵母菌也被报道有改善母猪胰岛素敏感性的作用,例如,母猪妊娠后期饲粮中添加乳酸菌和酵母菌的复合发酵菌液,显著提高分娩当天血浆抗氧化能力,降低血浆炎症因子浓度,改善母猪IR状态[44];进一步研究发现酵母菌的添加不仅可改善母猪胰岛素敏感性,还可通过优化母猪肠道菌群,继而通过母乳或粪便菌群感染的形式改善后代仔猪肠道微生态平衡[45],增加仔猪肠道有益菌并降低有害菌丰度,最终提高哺乳仔猪的生长性能。益生菌调控母猪胰岛素敏感性可能存在以下3个方面的原因:第一,后肠有益菌发酵产生的挥发性脂肪酸经肠道壁吸收入血后,可能有效降低血液中因分解代谢产生的脂肪酸的浓度,进而改善病理性IR;第二,发酵产生的挥发性脂肪酸降低肠道pH,抑制致病菌繁殖和分布,减少肠道炎症因子分泌,同时维持肠道上皮细胞屏障功能完整性,提高母猪健康水平;第三,益生菌帮助恢复结肠中双歧杆菌和乳酸杆菌等有益菌的数量,抑制促炎菌群增殖[46]。母猪妊娠期和泌乳期饲粮添加止痢草油显著提高泌乳第3周采食量,提高第3周平均日增重,并在一定程度上提高体内抗氧化酶活性,降低脂质过氧化程度,减少ROS攻击DNA,缓解氧化应激;同时,妊娠109 d IR程度有降低的趋势,表现为胰岛素敏感指数显著高于对照组,表明添加止痢草油改善了胰岛素敏感性[47]。作为肠道菌群的“营养物质”,功能性寡糖可促进肠道中特异性的有益菌增殖、减少病原菌增殖、改善肠道屏障功能,进而提高机体免疫能力,肠道菌群及其代谢产物在此作用过程中具有关键性作用[6]。此外,也有研究显示母猪妊娠期饲粮添加400 mg/kg的吡啶甲酸铬,显著提高新生仔猪数量、断奶重,显著减少妊娠第70、110天母猪血清胰岛素、葡萄糖浓度,改善胰岛素敏感性[48]

4 小结与展望

综上所述,母猪围产期为满足繁殖的需要发生生理性IR,而肥胖、炎症和氧化应激等综合因素易诱导围产期母猪发生病理性IR,从而降低母猪的繁殖性能。母猪围产期HPL和PGH分泌可能是启动生理性IR的重要因素,脂肪代谢中间产物和脂肪炎症因子的分泌是导致病理性IR的主要原因。某些营养物质可通过抗炎、抗氧化作用及调整肠道菌群结构等缓解母猪围产期病理性IR。当前,已有大量研究揭示饲粮因素可调控母猪胰岛素敏感性,更深入研究可从以下几个方面开展:1)探讨饲粮碳水化合物来源、可溶和不可溶纤维比例对母猪围产期IR程度的影响;2)饲粮适宜n-3多不饱和脂肪酸添加量对母猪胰岛素敏感性有改善作用,但仍有部分研究认为n-3多不饱和脂肪酸对母猪生产成绩有不利影响,因此可进一步确定围产期母猪饲粮n-3多不饱和脂肪酸添加量以及与n-6多不饱和脂肪酸比例;3)研究表明中链脂肪酸有重要的抗炎作用,可继续探讨中链脂肪酸对围产期母猪胰岛素敏感性的影响。

参考文献
[1]
MARTIS R, BROWN J, MCARA-COUPER J, et al. Enablers and barriers for women with gestational diabetes mellitus to achieve optimal glycaemic control—a qualitative study using the theoretical domains framework[J]. BMC Pregnancy & Childbirth, 2018, 18: 91.
[2]
WELDON W C, LEWIS A J, LOUIS G F, et al. Postpartum hypophagia in primiparous sows: Ⅰ.Effects of gestation feeding level on feed intake, feeding behavior, and plasma metabolite concentrations during lactation[J]. Journal of Animal Science, 1994, 72(2): 387-397. DOI:10.2527/1994.722387x
[3]
PÈRE M C, ETIENNE M. Insulin sensitivity during pregnancy, lactation, and postweaning in primiparous gilts[J]. Journal of Animal Science, 2007, 85(1): 101-110. DOI:10.2527/jas.2006-130
[4]
MOSNIER E, LE FLOC'H N, ETIENNE M, et al. Reduced feed intake of lactating primiparous sows is associated with increased insulin resistance during the peripartum period and is not modified through supplementation with dietary tryptophan[J]. Journal of Animal Science, 2010, 88(2): 612-625. DOI:10.2527/jas.2008-1768
[5]
CHENG C S, WU X Y, ZHANG X F, et al. Obesity of sows at late pregnancy aggravates metabolic disorder of perinatal sows and affects performance and intestinal health of piglets[J]. Animals, 2019, 10(1): 49. DOI:10.3390/ani10010049
[6]
谷雪玲, 陈将, 李浩, 等. 功能性寡糖调控母猪胰岛素抵抗及其作用机制的研究进展[J]. 动物营养学报, 2019, 31(12): 5422-5430.
GU X L, CHEN J, LI H, et al. Research advances in functional oligosaccharides regulating insulin resistance in sows and its mechanisms[J]. Chinese Journal of Animal Nutrition, 2019, 31(12): 5422-5430 (in Chinese). DOI:10.3969/j.issn.1006-267x.2019.12.005
[7]
魏宏逵, 周远飞, 彭健. 调控母猪繁殖周期中胰岛素敏感性提高繁殖性能的研究进展[C]//侯永清. 中国畜牧兽医学会动物营养学分会第十二次动物营养学术研讨会论文集. 北京: 中国农业大学出版社, 2016: 9.
WEI H Z, ZHOU Y F, PENG J. Research advances in improving the productive performance of sows by regulation of insulin sensibility[C]//HOU Y Q. Proceedings of the twelfth national symposium on feed nutrition of Animal Nutrition Branch of Chinese Society of Animal Husbandry and Veterinary. Beijing: China Agricultural University Press, 2016: 9. (in Chinese)
[8]
FARMER C. The gestating and lactating sow[M]. Wageningen: Wageningen Academic Publishers, 2015.
[9]
MALLMANN A L, OLIVEIRA G S, ULGUIM R R, et al. Impact of feed intake in early gestation on maternal growth and litter size according to body reserves at weaning of young parity sows[J]. Journal of Animal Science, 2020, 98(3): 75-85.
[10]
VALSAMAKIS G, MARGELI A, VITORATOS N, et al. The role of maternal gut hormones in normal pregnancy: fasting plasma active glucagon-like peptide 1 level is a negative predictor of fetal abdomen circumference and maternal weight change[J]. European Journal of Endocrinology, 2010, 162(5): 897-903. DOI:10.1530/EJE-10-0047
[11]
ZHOU Y F, XU T, CAI A L, et al. Excessive backfat of sows at 109 d of gestation induces lipotoxic placental environment and is associated with declining reproductive performance[J]. Journal of Animal Science, 2018, 96(1): 250-257. DOI:10.1093/jas/skx041
[12]
KAISER M, JACOBSEN S, ANDERSEN P H, et al. Hormonal and metabolic indicators before and after farrowing in sows affected with postpartum dysgalactia syndrome[J]. BMC Veterinary Research, 2018, 14: 334. DOI:10.1186/s12917-018-1649-z
[13]
SCHAEFER A L, TONG A K W, SATHER A P, et al. Preparturient diabetogenesis in primiparous gilts[J]. Canadian Journal of Animal Science, 1991, 71(1): 69-77. DOI:10.4141/cjas91-008
[14]
CHEN T Y, LINES D, DICKSON C, et al. Elevating glucose and insulin secretion by carbohydrate formulation diets in late lactation to improve post-weaning fertility in primiparous sows[J]. Reproduction in Domestic Animals, 2016, 51(5): 813-818. DOI:10.1111/rda.12760
[15]
KIM G W, OK Y S, KIM S E, et al. Effects of raising system on the reproductive and weaning performances in replacing gilts[J]. Journal of Animal Environment Science, 2009, 15(1): 1-8.
[16]
JI F, HURLEY W L, KIM S W. Characterization of mammary gland development in pregnant gilts[J]. Journal of Animal Science, 2006, 84(3): 579-587. DOI:10.2527/2006.843579x
[17]
KIM S W, WEAVER A C, SHEN Y B, et al. Improving efficiency of sow productivity: nutrition and health[J]. Journal of Animal Science and Biotechnology, 2013, 4: 26. DOI:10.1186/2049-1891-4-26
[18]
RAMOS-ROMAN M A. Prolactin and lactation as modifiers of diabetes risk in gestational diabetes[J]. Hormone and Metabolic Research, 2011, 43(9): 593-600. DOI:10.1055/s-0031-1284353
[19]
MCINTYRE H D, ZECK W, RUSSELL A. Placental growth hormone, fetal growth and the IGF axis in normal and diabetic pregnancy[J]. Current Diabetes Reviews, 2009, 5(3): 185-189. DOI:10.2174/157339909788920947
[20]
JOHNSON A M F, OLEFSKY J M. The origins and drivers of insulin resistance[J]. Cell, 2013, 152(4): 673-684. DOI:10.1016/j.cell.2013.01.041
[21]
GLASS C K, OLEFSKY J M. Inflammation and lipid signaling in the etiology of insulin resistance[J]. Cell Metabolism, 2012, 15(5): 635-645. DOI:10.1016/j.cmet.2012.04.001
[22]
SALTIEL A R, OLEFSKY J M. Inflammatory mechanisms linking obesity and metabolic disease[J]. The Journal of Clinical Investigation, 2017, 127(1): 1-4. DOI:10.1172/JCI92035
[23]
SHOELSON S E, LEE J, GOLDFINE A B. Inflammation and insulin resistance[J]. The Journal of Clinical Investigation, 2006, 116(7): 1793-1801. DOI:10.1172/JCI29069
[24]
FARMER C, LAPOINTE J, PALIN M F. Effects of the plant extract silymarin on prolactin concentrations, mammary gland development, and oxidative stress in gestating gilts[J]. Journal of Animal Science, 2014, 92(7): 2922-2930. DOI:10.2527/jas.2013-7118
[25]
YARIBEYGI H, FARROKHI F R, BUTLER A E, et al. Insulin resistance: review of the underlying molecular mechanisms[J]. Journal of Cellular Physiology, 2019, 234(6): 8152-8161. DOI:10.1002/jcp.27603
[26]
WANG J, YANG M, CAO M, et al. Moderately increased energy intake during gestation improves body condition of primiparous sows, piglet growth performance, and milk fat and protein output[J]. Livestock Science, 2016, 194: 23-30. DOI:10.1016/j.livsci.2016.09.012
[27]
BARNEA M, SHAMAY A, STARK A H, et al. A high-fat diet has a tissue-specific effect on adiponectin and related enzyme expression[J]. Obesity, 2012, 14(12): 2145-2153.
[28]
JORNAYVAZ F R, SHULMAN G I. Diacylglycerol activation of protein kinase Cε and hepatic insulin resistance[J]. Cell Metabolism, 2012, 15(5): 574-584. DOI:10.1016/j.cmet.2012.03.005
[29]
LOZOVOY M A B, SIMÃO A N C, MORIMOTO H K, et al. Fish oil n-3 fatty acids increase adiponectin and decrease leptin levels in patients with systemic lupus erythematosus[J]. Marine Drugs, 2015, 13(2): 1071-1083. DOI:10.3390/md13021071
[30]
ITOH M, SUGANAMI T, SATOH N, et al. Increased adiponectin secretion by highly purified eicosapentaenoic acid in rodent models of obesity and human obese subjects[J]. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27(9): 1918-1925. DOI:10.1161/ATVBAHA.106.136853
[31]
QI X K, QIN Z Q, TANG J Y, et al. Omega-3 polyunsaturated fatty acids ameliorates testicular ischemia-reperfusion injury through the induction of Nrf2 and inhibition of NF-κB in rats[J]. Experimental and Molecular Pathology, 2017, 103(1): 44-50. DOI:10.1016/j.yexmp.2017.06.005
[32]
MARTÍNEZ-FERNÁNDEZ L, LAIGLESIA L M, HUERTA A E, et al. Omega-3 fatty acids and adipose tissue function in obesity and metabolic syndrome[J]. Prostaglandins & Other Lipid Mediators, 2015, 121: 24-41.
[33]
CORSON A M, LAWS J, LITTEN J C, et al. Effect of dietary supplementation of different oils during the first or second half of pregnancy on the glucose tolerance of the sow[J]. Animal, 2008, 2(7): 1045-1054. DOI:10.1017/S1751731108002188
[34]
LAURIDSEN C. Effects of dietary fatty acids on gut health and function of pigs pre- and post-weaning[J]. Journal of Animal Science, 2020, 98(4): skaa086. DOI:10.1093/jas/skaa086
[35]
BEZAN P N, HOLLAND H, DE CASTRO G S, et al. High dose of a conjugated linoleic acid mixture increases insulin resistance in rats fed either a low fat or a high fat diet[J]. Experimental and Clinical Endocrinology & Diabetes, 2018, 126(6): 379-386.
[36]
SUN H Q, ZHOU Y F, TAN C Q, et al. Effects of konjac flour inclusion in gestation diets on the nutrient digestibility, lactation feed intake and reproductive performance of sows[J]. Animal, 2014, 8(7): 1089-1094. DOI:10.1017/S175173111400113X
[37]
TAN C Q, SUN H Q, WEI H K, et al. Effects of soluble fiber inclusion in gestation diets with varying fermentation characteristics on lactational feed intake of sows over two successive parities[J]. Animal, 2018, 12(7): 1388-1395. DOI:10.1017/S1751731117003019
[38]
谭成全. 妊娠日粮中可溶性纤维对母猪妊娠期饱感和泌乳期采食量的影响及其作用机理研究[D]. 博士学位论文. 武汉: 华中农业大学, 2016: 67-86.
TAN C Q. Mechanisms of soluble fiber inclusion in gestation diet manipulating satiety during gestation and feed intake during lactation of sows[D]. Ph. D. Thesis. Wuhan: Huazhong Agricultural University, 2016: 67-86. (in Chinese)
[39]
FERNANDES J, VOGT J, WOLEVER T M S. Inulin increases short-term markers for colonic fermentation similarly in healthy and hyperinsulinaemic humans[J]. European Journal of Clinical Nutrition, 2011, 65(12): 1279-1286. DOI:10.1038/ejcn.2011.116
[40]
XU C H, CHENG C S, ZHANG X, et al. Inclusion of soluble fiber in the gestation diet changes the gut microbiota, affects plasma propionate and odd-chain fatty acids levels, and improves insulin sensitivity in sows[J]. International Journal of Molecular Sciences, 2020, 21(2): 635. DOI:10.3390/ijms21020635
[41]
JENKINS B, WEST J A, KOULMAN A. A review of odd-chain fatty acid metabolism and the role of pentadecanoic acid (C15∶0) and heptadecanoic acid (C17∶0) in health and disease[J]. Molecules, 2015, 20(2): 2425-2444. DOI:10.3390/molecules20022425
[42]
ZHOU P, ZHAO Y, ZHANG P, et al. Microbial mechanistic insight into the role of inulin in improving maternal health in a pregnant sow model[J]. Frontiers in Microbiology, 2017, 8: 2242. DOI:10.3389/fmicb.2017.02242
[43]
龙广. 妊娠和泌乳日粮中添加布拉迪酵母菌对母猪及仔猪性能的影响[D]. 硕士学位论文. 武汉: 华中农业大学, 2015: 30-46.
LONG G. Effect of supplementation of diets with Saccharomyces boulardii during pregnancy and lactation on sow and piglet performance[D]. Master's Thesis. Wuhan: Huazhong Agricultural University, 2015: 30-46. (in Chinese)
[44]
任红立. 乳酸菌和酵母菌发酵液对妊娠后期母猪生产性能的影响[D]. 硕士学位论文. 哈尔滨: 东北农业大学, 2018: 9-36.
REN H L. Effects of fermentation liquor of lactobacillus and yeast on the production performance of late pregnancy sows[D]. Master's Thesis. Harbin: Northeast Agricultural University, 2018: 9-36. (in Chinese)
[45]
HASAN S, JUNNIKKALA S, PELTONIEMI O, et al. Dietary supplementation with yeast hydrolysate in pregnancy influences colostrum yield and gut microbiota of sows and piglets after birth[J]. PLoS One, 2018, 13(5): e0197586. DOI:10.1371/journal.pone.0197586
[46]
KOREN O, GOODRICH J K, CULLENDER T C, et al. Host remodeling of the gut microbiome and metabolic changes during pregnancy[J]. Cell, 2012, 150(3): 470-480. DOI:10.1016/j.cell.2012.07.008
[47]
敖江涛. 日粮添加止痢草油对母猪繁殖性能的影响[D]. 硕士学位论文. 武汉: 华中农业大学, 2015: 25-40.
AO J T. The effect of diet supplemented with oregano essential oil on the reproductive performance of sows[D]. Master's Thesis. Wuhan: Huazhong Agricultural University, 2015: 25-40. (in Chinese)
[48]
WANG L S, SHI Z, JIA Z Q, et al. The effects of dietary supplementation with chromium picolinate throughout gestation on productive performance, Cr concentration, serum parameters, and colostrum composition in sows[J]. Biological Trace Element Research, 2013, 154(1): 55-61. DOI:10.1007/s12011-013-9699-3