动物营养学报    2021, Vol. 33 Issue (5): 2408-2415    PDF    
益生菌对鸡抵御沙门氏菌感染作用研究进展
张盛1,2 , 王一冰1 , 蒋守群1     
1. 广东省农业科学院动物科学研究所, 畜禽育种国家重点实验室, 农业农村部华南动物营养与饲料重点实验室, 广东省畜禽育种与营养研究重点实验室, 广州 510640;
2. 华中农业大学动物科技学院, 武汉 430070
摘要: 沙门氏菌病是家禽生产中常见的疾病,其通过水平和垂直传播,导致群体广泛携带,并通过肉、蛋等产品经食物链传染给人类,造成严重的公共卫生安全问题。研究发现,益生菌可有效地抑制病原菌的生长,并通过改善抗氧化能力、肠道功能以及免疫水平等方式,发挥抵御鸡沙门氏菌感染的作用。本文就鸡沙门氏菌的致病机制及益生菌对鸡抵御沙门氏菌感染的作用进行了综述,以期为益生菌应用于鸡沙门氏菌病的防制和健康养殖提供参考。
关键词: 益生菌    沙门氏菌    肠道健康    免疫功能        
Research Progress on Probiotics against Salmonella Infection in Chickens
ZHANG Sheng1,2 , WANG Yibing1 , JIANG Shouqun1     
1. Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
2. College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
Abstract: Salmonellosis is a common disease in poultry production. It spreads horizontally and vertically, leading to widespread population transmission and transmission through food chain to human through meat, eggs and other products, causing serious public health problems. Studies have found that probiotics can effectively inhibit the growth of pathogenic bacteria, and play a role in resisting Salmonella infection in chickens by improving antioxidant capacity, intestinal function and immunity. In this paper, the pathogenic mechanism of Salmonella and the effect of probiotics on resisting Salmonellosis in chickens were reviewed, in order to provide reference for the application of probiotics in the control of chicken Salmonellosis and healthy breeding.
Key words: probiotics    Salmonella    intestines health    immune function    chickens    

在世界范围内,沙门氏菌病是家禽生产中常见的疾病,以鸡白痢、鸡伤寒等较为典型,给养殖产业造成巨大的经济损失。该病属于人畜共患传染病,很容易通过肉、蛋等途径转移给人类,引起发热、呕吐、腹泻、胃肠炎等症状[1],甚至导致败血症和伤寒,严重威胁着人类的健康。目前,欧洲和美国因具备完善的生物安全体系及严格的生物安全措施,在沙门氏菌净化工作上效果较好,使得其流行率维持在较低水平。国内肉鸡的沙门氏菌感染以鸡白痢为主,且在生产链中广泛存在,并伴随着交叉污染的情况。近年来,随着鸡白痢净化工作的推动,以及“全进全出”的饲养模式的实施和新型疫苗的深入研究,其阳性检出率呈明显下降趋势,我国在防控鸡沙门氏菌感染上已取得一定成绩,但仍有部分地区存在严重的沙门氏菌感染情况[2]

在集约化家禽生产中,抗生素在防治沙门氏菌感染方面已经取得了很好的效果,但抗生素的滥用致使耐药沙门氏菌逐渐增多,并引发了肉、蛋类产品中耐药性菌和药物残留等一系列问题[3]。随着养殖业对天然抗菌物质的迫切需求,益生菌添加剂作为抗生素的替代品,在家禽生产中已被广泛应用,主要作用体现在促进生长、提高生产性能、增强免疫力、改善肠道健康、降低病原微生物数量及发病率等[4-6]。目前认为,益生菌可通过降低肠道pH、产生挥发性脂肪酸以及竞争性排斥等方式抑制致病菌,对机体产生积极的作用[7-8]。此外,益生菌在一定程度上调节炎症相关因子、抗体分泌细胞和T淋巴细胞的产生,影响先天性和适应性免疫,从而增强机体体液和细胞免疫功能[9-11]。本文就鸡沙门氏菌的致病机制及益生菌在该病防治上的相关研究进行综述,以期为益生菌应用于防治鸡沙门氏菌病提供参考。

1 沙门氏菌病与致病机制 1.1 沙门氏菌病的特点

因雏鸡肠道微生物群没有完全发育,且未能接触到来自母鸡胃肠道的有益菌,机体不能以竞争性排斥的方式对胃肠道提供保护。此外,雏鸡的免疫系统发育不完善,使其易在最初的24 h内(孵化器中或孵化后的短时间)感染沙门氏菌[12]。感染沙门氏菌的主要临床症状之一是腹泻,并伴随着采食量减少、生长性能下降、肠道结构明显受损[7],其中肠道结构受损表现为肠道通透性增加、肠上皮细胞明显增多、空肠杯状细胞数量减少、盲肠菌群失调[13-14]。此外,鸡在感染沙门氏菌后会产生黏膜、关节和内脏器官病变[15-18],脾脏和法氏囊的相对重量降低,新城疫病毒和传染性法氏囊病毒的抗体滴度降低,机体炎症反应加剧等[14, 19]

1.2 沙门氏菌病的致病机制

沙门氏菌在全身感染过程中主要分为3个阶段。首先,沙门氏菌主动入侵宿主上皮细胞并诱导细胞发生自噬,整个自噬过程中,沙门氏菌Ⅲ型分泌系统1(type Ⅲ secretion system 1, T3SS1)介导了细胞膜完整性的破坏,并将效应蛋白转移至细胞内[20]。然后,沙门氏菌穿过上皮层并被巨噬细胞或树突状细胞所吞噬[21],部分T3SS效应器可以将吞噬体转化为含沙门氏菌空泡(Salmonella-containing vacuole, SCV),Ⅲ型分泌系统2(T3SS2)在SCV内被激活,促进沙门氏菌在细胞内的存活和复制,并将效应蛋白从细胞内通过SCV膜传递到宿主细胞胞浆[22],再通过淋巴系统运输到肝脏和脾脏。最后,机体将死亡或处于持续感染状态。

在整个感染过程中,沙门氏菌诱导半胱氨酸蛋白酶(Caspase)激活产生白细胞介素(IL)-1α、IL-1β、IL-18等炎性因子[23],通过过度激活Wnt/β-连环蛋白(Wnt/β-catenin)信号通路,破坏肠黏膜屏障,导致肠细胞凋亡,肠道干细胞异常增殖[24],并影响闭合蛋白-1(claudin-1)、闭锁蛋白(occlutdin)、闭合小环蛋白-1(ZO-1)、黏附蛋白(E-cadherin)的重新分布和表达[25]。此外,沙门氏菌通过促进巨噬细胞的糖酵解水平,诱导其凋亡[26]

2 益生菌抵御沙门氏菌感染的作用 2.1 益生菌的体外抑菌作用

通过体外试验可以直观地了解益生菌对沙门氏菌的抑制作用。乳酸菌因其耐酸、耐盐,从而可以很好地在家禽胃肠道内发挥作用。大量研究表明,乳酸菌可以抑制沙门氏菌的生长以及生物膜的形成,降低沙门氏菌毒力、运动和黏附相关基因的表达[27-29],竞争性消除沙门氏菌在肠上皮细胞上的定植[30-31]等,其抑菌效果可能与产生的叶酸、核黄素或细菌素等代谢产物有关[32]。枯草芽孢杆菌也被证实具有非常理想的抗沙门氏菌活性,抑制作用在24 h时最为明显[33]。刘明刚等[34]进一步验证了枯草芽孢杆菌的抗沙门氏菌能力,发现经共培养24 h后,抑菌率可达到88.5%。除此之外,丁酸梭菌和鼠李糖乳杆菌同样可抑制沙门氏菌的生长,但2种菌株联合培养对沙门氏菌生长的抑制并无协同作用[35]

2.2 益生菌对鸡抗氧化性能的影响

当鸡受到沙门氏菌入侵时,机体会产生大量的活性氧(ROS)和活性氮(RNS)等自由基,这个反应过程也伴随着组织的氧化损伤,从而影响正常生理功能。益生菌能够提高血清过氧化物歧化酶(SOD)活性、增强小肠抗氧化功能、缓解因致病菌感染所造成的氧化应激[36-37]。朱沛霁等[38]指出,饲喂枯草芽孢杆菌可降低雪山草鸡空肠黏膜髓过氧化物酶(MPO)活性及丙二醛(MDA)含量,提高空肠黏膜总抗氧化能力(T-AOC)及总超氧化物歧化酶(T-SOD)、谷胱甘肽转移酶(GSH-Px)活性,减少机体的氧化损伤,进而改善沙门氏菌感染肉鸡的生长和抗氧化状态[8]。由以上研究可见,益生菌通过提高机体抗氧化能力可能是缓解鸡沙门氏菌感染症状的途径之一。

2.3 益生菌对鸡肠道健康的影响

肠道菌群平衡、肠道形态和肠上皮屏障等是衡量肠道健康的重要指标。益生菌的添加已被证明对感染鸡肠道微生物群的稳态具有积极作用,其机制可能是通过竞争性排斥作用以及促进肠道内干扰素-γ(IFN-γ)和肿瘤坏死因子-α(TNF-α)的产生阻止沙门氏菌的定植[39-40]。大量研究表明,枯草芽孢杆菌通过分泌细菌素、有机酸和过氧化氢等物质,发挥抑制病原菌的生长和繁殖的作用,显著降低肠道沙门氏菌数量,增加盲肠微生物群的多样性和组成,缓解沙门氏菌感染引起的肠道菌群失调,这有益于减少家禽之间感染的风险,也保证了禽类食品的安全性[41-43]

肠道组织结构的完整性对维持肠道屏障及营养物质的消化吸收功能起着重要作用,其损伤会发生肠道渗漏,从而导致细菌移位[44]。沙门氏菌通过早期影响肠道紧密连接复合物的结构以及晚期诱导肠上皮细胞的凋亡来破坏肠上皮细胞屏障的完整性。益生菌能够增强家禽肠道屏障抵御病原菌的能力,减少肠道对分子或细菌的通透性以及黏液的降解,有效地改善病原菌感染引起的肠道负面影响[45-46]

芽孢杆菌在抗沙门氏菌感染过程中发挥了较好的保护作用。朱沛霁[36]发现,枯草芽孢杆菌能够改善雪山鸡的肠道形态,促进小肠黏膜生长发育,使空肠黏膜紧密连接蛋白基因的表达上调,增强空肠黏膜物理屏障功能,降低沙门氏菌感染对空肠黏膜的损伤。乳杆菌也被证实具有抑制沙门氏菌生长、黏附和侵袭肠道上皮细胞的能力,并一定程度上缓解沙门氏菌引起的炎症反应和组织损伤[47-48]。Wang等[13]研究表明,植物乳杆菌消除了肠通透性的升高以及细菌移位,稳定紧密连接基因的表达,调节炎症介质的水平,减少沙门氏菌在肠道内的定植,从而保护雏鸡肠道屏障的完整性。赵效南[49]指出,饲喂丁酸梭菌能够改变肠道微生物组成,增加微生物多样性,缓解由沙门氏菌导致的肠道损伤,进而保证了肠道屏障的完整性,对沙门氏菌引起的感染起到了有效的预防和治疗作用。益生菌对沙门氏菌感染鸡肠道健康的影响研究进展汇总见表 1

表 1 益生菌对沙门氏菌感染鸡肠道健康的影响研究进展 Table 1 Research progress on effects of probiotics on intestinal health of Salmonella infected chickens
2.4 益生菌对鸡免疫功能的影响

鸡的免疫系统由免疫器官、免疫细胞、免疫因子共同组成。研究发现,通过每千克饲粮中添加109 CFU枯草芽孢杆菌或通过对1日龄雏鸡进行口腔灌服106 CFU/只丁酸梭菌、109 CFU/只植物乳杆菌均可显著降低肠炎沙门氏菌在脾脏、盲肠组织的载菌量[13, 49-50]。除此之外,Thomas等[51]也证实了添加乳杆菌可减少海德堡沙门氏菌在火鸡脾脏内的转移和定植。在提高免疫器官指数上,Park等[50]和Sadeghi等[19]研究表明,饲粮中添加枯草芽孢杆菌可增加沙门氏菌感染肉鸡的法氏囊和脾脏的相对重量。由此可见,益生菌可通过减少病原菌的侵袭,促进免疫器官健康发育,从而增强抵御沙门氏菌感染的能力。

益生菌通过调节机体促炎因子和抗炎因子的水平发挥抵御沙门氏菌感染的作用。唐慧琴等[52]发现,枯草芽孢杆菌可诱导机体产生特异性抗沙门氏菌血清免疫球蛋白G(IgG)和回肠免疫球蛋白A(IgA),进而激活免疫应答反应,提高机体对沙门氏菌的清除和消灭能力。Wang等[53]发现,干酪乳杆菌可增强肠道黏膜免疫功能,调节细胞因子水平,有效减轻沙门氏菌感染引起的肠道损伤。赵丽杰等[54]研究表明,饲粮中添加复合乳酸菌制剂在对SPF鸡受到沙门氏菌攻击后,可降低炎症细胞因子的表达水平,缓解机体的炎症反应。Filho等[55]指出,复合乳杆菌制剂到达肠道后可发挥免疫调节作用,通过减少沙门氏菌的定植和肠黏膜的炎症程度来影响机体先天免疫反应。Zhao等[56]研究表明,丁酸梭菌能刺激家禽的免疫功能,降低携带沙门氏菌肉鸡体内炎症因子的表达水平,且主要是通过下调肠道组织和肠黏膜上皮细胞中炎症信号通路相关蛋白基因的表达来减轻机体的炎症反应。益生菌对沙门氏菌感染鸡细胞因子的影响研究进展汇总见表 2

表 2 益生菌对沙门氏菌感染鸡细胞因子的影响研究进展 Table 2 Research progress on effects of probiotics on cytokines in Salmonella infected chickens
3 小结

随着国内饲料抗生素全面禁用时代的到来,我国畜牧养殖业将面临不小的挑战。益生菌作为安全有效的抗生素替代物之一,在发挥抑制病原菌生长作用的同时,可维护鸡的肠道健康,具有调节机体抗氧化与免疫功能的作用,必将在畜禽健康高效养殖及疾病防控等方面取得良好的效益。但益生菌种类繁多,同一种类不同菌株的作用效果也有所不同,因此各菌种、各菌株发挥有效抗沙门氏菌感染的剂量也难以统一标准。未来应对复合益生菌制剂是否会比单一菌株更有效,以及益生菌是通过何种益生元件发挥抵御沙门氏菌的作用等问题开展深入系统的研究,为益生菌作为饲料添加剂在疾病防控方面科学合理的应用提供理论依据。

参考文献
[1]
SIVASANKAR C, JHA N K, GHOSH R, et al. Anti quorum sensing and anti virulence activity of tannic acid and it's potential to breach resistance in Salmonella enterica Typhi/Paratyphi A clinical isolates[J]. Microbial Pathogenesis, 2020, 138: 103813. DOI:10.1016/j.micpath.2019.103813
[2]
刘博闻, 王凡, 彭通通, 等. 鸡生产链沙门菌流行状况与防控技术[J]. 中国家禽, 2020, 42(3): 92-96.
LIU B W, WANG F, PENG T T, et al. Epidemiological status, prevention and control of salmonella in chicken production chain[J]. China Poultry, 2020, 42(3): 92-96 (in Chinese).
[3]
YANG X J, HUANG J H, ZHANG Y X, et al. Prevalence, abundance, serovars and antimicrobial resistance of Salmonella isolated from retail raw poultry meat in China[J]. Science of the Total Environment, 2020, 713: 136385. DOI:10.1016/j.scitotenv.2019.136385
[4]
VANDEPLAS S, DAUPHIN R D, THIRY C, et al. Efficiency of a Lactobacillus plantarum-xylanase combination on growth performances, microflora populations, and nutrient digestibilities of broilers infected with Salmonella typhimurium[J]. Poultry Science, 2009, 88(8): 1643-1654. DOI:10.3382/ps.2008-00479
[5]
ABUDABOS A M, ALJUMAAH M R, ALKHULAIFI M M, et al. Comparative effects of Bacillus subtilis and Bacillus licheniformis on live performance, blood metabolites and intestinal features in broiler inoculated with Salmonella infection during the finisher phase[J]. Microbial Pathogenesis, 2020, 139: 103870. DOI:10.1016/j.micpath.2019.103870
[6]
ROKANA N, MALLAPPA R H, BATISH V K, et al. Interaction between putative probiotic Lactobacillus strains of Indian gut origin and Salmonella: impact on intestinal barrier function[J]. Lwt-Food Science & Technology, 2017, 84: 851-860.
[7]
ABUDABOS A M, ALI M H, NASSAN M A, et al. Ameliorative effect of Bacillus subtilis on growth performance and intestinal architecture in broiler infected with Salmonella[J]. Animals, 2019, 9(4): 190. DOI:10.3390/ani9040190
[8]
ABUDABOS A M, ALYEMNI A H, DAFALLA Y M, et al. Effect of organic acid blend and Bacillus subtilis alone or in combination on growth traits, blood biochemical and antioxidant status in broilers exposed to Salmonella typhimurium challenge during the starter phase[J]. Journal of Applied Animal Research, 2017, 45(1): 538-542. DOI:10.1080/09712119.2016.1219665
[9]
MAZKOUR S, SHEKARFOROUSH S S, BASIRI S, et al. Effects of two probiotic spores of Bacillus species on hematological, biochemical, and inflammatory parameters in Salmonella typhimurium infected rats[J]. Scientific Reports, 2020, 10(1): 8035. DOI:10.1038/s41598-020-64559-3
[10]
PRADHAN D, PRADHAN J, MISHRA A, et al. Immune modulations and survival strategies of evolved hypervirulent Salmonella typhimurium strains[J]. Biochimica et Biophysica Acta: General Subjects, 2020, 1864(8): 129627. DOI:10.1016/j.bbagen.2020.129627
[11]
KANMANI P, KIM H. Beneficial effect of immunobiotic strains on attenuation of Salmonella induced inflammatory response in human intestinal epithelial cells[J]. PLoS One, 2020, 15(3): e0229647. DOI:10.1371/journal.pone.0229647
[12]
ABUDABOS A M, ALYEMNI A H, DAFALLA Y M, et al. The effect of phytogenics on growth traits, blood biochemical and intestinal histology in broiler chickens exposed to Clostridium perfringens challenge[J]. Journal of Applied Animal Research, 2018, 46(1): 691-695. DOI:10.1080/09712119.2017.1383258
[13]
WANG L H, LI L, LV Y, et al. Lactobacillus plantarum restores intestinal permeability disrupted by Salmonella infection in newly-hatched chicks[J]. Scientific Reports, 2018, 8(1): 2229. DOI:10.1038/s41598-018-20752-z
[14]
ZHEN W R, SHAO Y J, GONG X Y, et al. Effect of dietary Bacillus coagulans supplementation on growth performance and immune responses of broiler chickens challenged by Salmonella enteritidis[J]. Poultry Science, 2018, 97(8): 2654-2666. DOI:10.3382/ps/pey119
[15]
GUO R X, LI Z Y, ZHOU X H, et al. Induction of arthritis in chickens by infection with novel virulent Salmonella pullorum strains[J]. Veterinary Microbiology, 2019, 228: 165-172. DOI:10.1016/j.vetmic.2018.11.032
[16]
MSHELBWALA F M, IBRAHIM N D G, SAIDU S N, et al. Comparison of the clinical signs, pathological and immuohistochemical findings in visceral organs of chickens experimentally infected with Salmonella Zega through three routes[J]. Acta Tropica, 2019, 200: 105123. DOI:10.1016/j.actatropica.2019.105123
[17]
CHENG Y L, ZHANG S H, LU Q, et al. Evaluation of young chickens challenged with aerosolized Salmonella pullorum[J]. Avian Pathology, 2020, 49(5): 507-514. DOI:10.1080/03079457.2020.1783433
[18]
PURWANTI S, AGUSTINA L, JAMILAH, et al. Histology of the liver and small intestine broiler using phytobiotic in the ration infected Salmonella pullorum[J]. IOP Conference Series: Earth and Environmental Science, 2019, 247(1): 012054. DOI:10.1088/1755-1315/247/1/012054
[19]
SADEGHI A A, SHAWRANG P, SHAKORZADEH S. Immune response of Salmonella challenged broiler chickens fed diets containing gallipro , a Bacillus subtilis probiotic[J]. Probiotics and Antimicrobial Proteins, 2015, 7(1): 24-30. DOI:10.1007/s12602-014-9175-1
[20]
WU S, SHEN Y R, ZHANG S, et al. Salmonella interacts with autophagy to offense or defense[J]. Frontiers in Microbiology, 2020, 11: 721. DOI:10.3389/fmicb.2020.00721
[21]
FU A K, MO Q F, WU Y P, et al. Protective effect of Bacillus amyloliquefaciens against Salmonella via polarizing macrophages to M1 phenotype directly and to M2 depended on microbiota[J]. Food & Function, 2019, 10(12): 7653-7666.
[22]
DOS SANTOS A M P, FERRARI R G, CONTE-JUNIOR C A. Type three secretion system in Salmonella typhimurium: the key to infection[J]. Genes & Genomics, 2020, 42(5): 495-506.
[23]
PUCCIARELLI M G, PORTILLO F G D. Salmonella intracellular lifestyles and their impact on host-to-host transmission[J]. Microbiology Spectrum, 2017, 5(4). DOI:10.1128/microbiolspec.MTBP-0009-2016
[24]
XIE S, LI Y C, ZHAO S Y, et al. Salmonella infection induced intestinal crypt hyperplasia through Wnt/β-catenin pathway in chicken[J]. Research in Veterinary Science, 2020, 130: 179-183. DOI:10.1016/j.rvsc.2020.03.008
[25]
YU Q H, ZHU L Q, WANG Z S, et al. Lactobacillus delbrueckii ssp.lactis R4 prevents Salmonella typhimurium SL1344-induced damage to tight junctions and adherens junctions[J]. Journal of Microbiology, 2012, 50(4): 613-617. DOI:10.1007/s12275-012-1596-5
[26]
YU C, DU F Y, ZHANG C J, et al. Salmonella enterica serovar Typhimurium sseK3 induces apoptosis and enhances glycolysis in macrophages[J]. BMC Microbiology, 2020, 20: 151. DOI:10.1186/s12866-020-01838-z
[27]
MERINO L, TREJO F M, DE ANTONI G, et al. Lactobacillus strains inhibit biofilm formation of Salmonella sp.isolates from poultry[J]. Food Research International, 2019, 123: 258-265. DOI:10.1016/j.foodres.2019.04.067
[28]
MUYYARIKKANDY M S, AMALARADJOU M. Lactobacillus bulgaricus, Lactobacillus rhamnosus and Lactobacillus paracasei attenuate Salmonella enteritidis, Salmonella heidelberg and Salmonella typhimurium colonization and virulence gene expression in vitro[J]. International Journal of Molecular Sciences, 2017, 18(11): 2381. DOI:10.3390/ijms18112381
[29]
SHI S Q, QI Z, SHENG T T, et al. Antagonistic trait of Lactobacillus reuteri S5 against Salmonella enteritidis and assessment of its potential probiotic characteristics[J]. Microbial Pathogenesis, 2019, 137: 103773. DOI:10.1016/j.micpath.2019.103773
[30]
SALEHIZADEH M, MODARRESSI M H, MOUSAVI S N, et al. Evaluation of lactic acid bacteria isolated from poultry feces as potential probiotic and its in vitro competitive activity against Salmonella typhimurium[J]. Veterinary Research Forum, 2020, 11(1): 67-75.
[31]
THIRABUNYANON M, THONGWITTAYA N. Protection activity of a novel probiotic strain of Bacillus subtilis against Salmonella enteritidis infection[J]. Research in Veterinary Science, 2012, 93(1): 74-81. DOI:10.1016/j.rvsc.2011.08.008
[32]
SABO S D S, MENDES M A, ARAU'JOE A S, et al. Bioprospecting of probiotics with antimicrobial activities against Salmonella heidelberg and that produce B-complex vitamins as potential supplements in poultry nutrition[J]. Scientific Reports, 2020, 10(1): 7235. DOI:10.1038/s41598-020-64038-9
[33]
秦瑶, 王苇, 郭秉娇, 等. 2株枯草芽孢杆菌对大肠杆菌和沙门氏菌的体外抑菌试验研究[J]. 中国畜牧兽医, 2014, 41(1): 207-210.
QIN Y, WANG W, GUO B J, et al. Study on Bacillus subtilis strains Q4 and Q10 inhibiting the growth of E.coil and Salmonella in vitro[J]. China Animal Husbandry & Veterinary Medicine, 2014, 41(1): 207-210 (in Chinese).
[34]
刘明刚, 戴茜茜, 郑美大, 等. 枯草芽孢杆菌制剂洛东A-90对鸡白痢沙门氏菌的影响[C]//中国畜牧兽医学会动物微生态学分会第十三次全国学术研讨会论文集. 广州: 中国畜牧兽医学会, 2018, 207.
LIU M G, DAI Q Q, ZHENG M D, et al. Effect of SUPER RAKUTO A-90 as Bacillus subtilis preparation on Salmonella pullorum of chickens[C]//Proceedings of the 13th National Academic Symposium of the Animal Microecology Association of the Chinese Society of Animal Husbandry and Veterinary Medicine. Guangzhou: Chinese Society of Animal Science and Veterinary Medicine, 2018, 207. (in Chinese)
[35]
张玲, 周琳, 杨彩梅, 等. 丁酸梭菌与鼠李糖乳杆菌体外混合培养对肠道致病菌的影响[J]. 中国饲料, 2013(21): 9-12.
ZHANG L, ZHOU L, YANG C M, et al. Effects of mixed culture of Clostridium butyrate and Lactobacillus rhamnosus on intestinal pathogenic bacteria in vitro[J]. China Feed, 2013(21): 9-12 (in Chinese). DOI:10.3969/j.issn.1004-3314.2013.21.003
[36]
朱沛霁. 枯草芽孢杆菌对雪山鸡生产性能、肠道健康和免疫机能的影响及机制[D]. 博士学位论文. 扬州: 扬州大学, 2017.
ZHU P J. Effects of dietary supplementation of Bacillus subtilis on growth performance, intestinal health and immune functional responses of Xueshan broiler[D]. Ph. D. Thesis. Yangzhou: Yangzhou University, 2017. (in Chinese)
[37]
ADHIKARI B, HERNANDEZ-PATLAN D, SOLIS-CRUZ B, et al. Evaluation of the antimicrobial and anti-inflammatory properties of Bacillus-DFM (NorumTM) in broiler chickens infected with Salmonella enteritidis[J]. Frontiers in Veterinary Science, 2019, 6: 282. DOI:10.3389/fvets.2019.00282
[38]
朱沛霁, 徐歆, 齐玉凯, 等. 枯草芽孢杆菌048对雪山草鸡抗肠炎沙门氏菌感染能力的影响[J]. 动物营养学报, 2017, 29(2): 479-487.
ZHU P J, XU X, QI Y K, et al. Effects of Bacillus subtilis 048 on anti-Salmonella enteritis infection ability of Xueshan chickens[J]. Chinese Journal of Animal Nutrition, 2017, 29(2): 479-487 (in Chinese). DOI:10.3969/j.issn.1006-267x.2017.02.015
[39]
OLNOOD C G, BESKI S S M, CHOCT M, et al. Use of Lactobacillus johnsonii in broilers challenged with Salmonella sofia[J]. Animal Nutrition, 2015, 1(3): 203-212. DOI:10.1016/j.aninu.2015.07.001
[40]
EL-SHARKAWY H, TAHOUN A, RIZK A M, et al. Evaluation of Bifidobacteria and Lactobacillus probiotics as alternative therapy for Salmonella typhimurium infection in broiler chickens[J]. Animals, 2020, 10(6): 1023. DOI:10.3390/ani10061023
[41]
HAYASHI R M, LOURENÇO M C, KRAIESKI A L, et al. Effect of feeding Bacillus subtilis spores to broilers challenged with Salmonella enterica serovar heidelberg brazilian strain UFPR1 on performance, immune response, and gut health[J]. Frontiers in Veterinary Science, 2018, 5: 13. DOI:10.3389/fvets.2018.00013
[42]
KNAP I, KEHLET A B, BENNEDSEN M, et al. Bacillus subtilis (DSM17299) significantly reduces Salmonella in broilers[J]. Poultry Science, 2011, 90(8): 1690-1694. DOI:10.3382/ps.2010-01056
[43]
李琼燕. 枯草芽孢杆菌的分离鉴定及对沙门氏菌的保护性实验研究[D]. 硕士学位论文. 长春: 吉林农业大学, 2019.
LI Q Y. Screening and identification of Bacillus subtilis and protective experimental study on Salmonella[D]. Master's Thesis. Changchun: Jilin Agricultural University, 2019. (in Chinese)
[44]
HERNÁNDEZ-RAMÍREZ J O, NAVA-RAMÍREZ M J, MERINO-GUZMÁN R, et al. The effect of moderate-dose aflatoxin B1 and Salmonella enteritidis infection on intestinal permeability in broiler chickens[J]. Mycotoxin Research, 2020, 36(1): 31-39. DOI:10.1007/s12550-019-00367-7
[45]
NⅡ T, KAKUYA H, ISOBE N, et al. Lactobacillus reuteri enhances the mucosal barrier function against heat-killed Salmonella typhimurium in the intestine of broiler chicks[J]. The Journal of Poultry Science, 2020, 57(2): 148-159. DOI:10.2141/jpsa.0190044
[46]
VILLAGRÁN-DE LA MORA Z, NUÑO K, VÁZQUEZ-PAULINO O, et al. Effect of a synbiotic mix on intestinal structural changes, and Salmonella typhimurium and Clostridium perfringens colonization in broiler chickens[J]. Animals, 2019, 9(10): 777. DOI:10.3390/ani9100777
[47]
MOHANTY D, PANDA S, KUMAR S, et al. In vitro evaluation of adherence and anti-infective property of probiotic Lactobacillus plantarum DM 69 against Salmonella enterica[J]. Microbial Pathogenesis, 2019, 126: 212-217. DOI:10.1016/j.micpath.2018.11.014
[48]
SANTOS T T, ORNELLAS R M D S, ACURCIO L B, et al. Differential immune response of Lactobacillus plantarum 286 against Salmonella typhimurium infection in conventional and germ-free mice[J]. Advances in Experimental Medicine and Biology, 2020, 544: 1-17.
[49]
赵效南. 肠炎沙门氏菌致病机制及丁酸梭菌对其拮抗作用的探究[D]. 博士学位论文. 泰安: 山东农业大学, 2018.
ZHAO X N. The pathogenic mechanism of Salmonella enteritidis and the effect of Clostridium butyricum against Salmonella enteritidis infection[D]. Ph. D. Thesis. Tai'an: Shandong Agricultural University, 2018. (in Chinese)
[50]
PARK J H, KIM I H. Supplemental effect of probiotic Bacillus subtilis B2A on productivity, organ weight, intestinal Salmonella microflora, and breast meat quality of growing broiler chicks[J]. Poultry Science, 2014, 93(8): 2054-2059. DOI:10.3382/ps.2013-03818
[51]
THOMAS J V, NAIR D V T, NOLL S, et al. Effect of turkey-derived beneficial bacteria Lactobacillus salivarius and Lactobacillus ingluviei on a multidrug-resistant Salmonella heidelberg strain in turkey poults[J]. Journal of Food Protection, 2019, 82(3): 435-440. DOI:10.4315/0362-028X.JFP-18-286
[52]
唐慧琴, 王振华, 潘康成, 等. 重组枯草芽孢杆菌SE1制剂对肉鸡生长、抗氧化能力及免疫功能的影响[J]. 中国预防兽医学报, 2018, 40(3): 248-252.
TANG H Q, WANG Z H, PAN K C, et al. Effect of recombinant Bacillus subtilis SE1 on antioxidant capacity and immune function of broilers[J]. Chinese Journal of Preventive Veterinary Medicine, 2018, 40(3): 248-252 (in Chinese).
[53]
WANG Y Y, YAN X, HAN D P, et al. Lactobacillus casei DBN023 protects against jejunal mucosal injury in chicks infected with Salmonella pullorum CMCC-533[J]. Research in Veterinary Science, 2019, 127: 33-41. DOI:10.1016/j.rvsc.2019.09.010
[54]
赵丽杰, 王忠, 李秀业, 等. 不同饲料添加剂在SPF鸡感染肠炎沙门菌过程中的作用研究[J]. 中国家禽, 2019, 41(22): 32-37.
ZHAO L J, WANG Z, LI X Y, et al. Effect of different feed additives on Salmonella enteritis infection in SPF chicken[J]. China Poultry, 2019, 41(22): 32-37 (in Chinese).
[55]
FILHO R A C P, DÍAZ S J A, FERNANDO F S, et al. Immunomodulatory activity and control of Salmonella enteritidis colonization in the intestinal tract of chickens by Lactobacillus based probiotic[J]. Veterinary Immunology and Immunopathology, 2015, 167(1/2): 64-69.
[56]
ZHAO X N, YANG J, WANG L L, et al. Protection mechanism of Clostridium butyricum against Salmonella enteritidis infection in broilers[J]. Frontiers in Microbiology, 2017, 8: 1523. DOI:10.3389/fmicb.2017.01523