2. 中国农业科学院北京畜牧兽医研究所, 北京 100193
2. Beijing Institute of Animal Husbandry and Veterinary Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
大豆活性肽(soybean bioactive-peptide,SBP)是以大豆蛋白为原料,经蛋白酶解或微生物发酵生成的[1]。蛋白酶解获得的SBP分子质量一般在1 000 u以下,而微生物发酵生成的SBP一般为多肽,分子质量在2 000 u以上[2-3]。SBP不仅具有高流动性、低渗透压和乳化性等理化特性[4],还具有免疫调节、抗氧化、抗炎、抗疲劳、抗癌、低抗原性及神经调节等多种生理功能[5-16],在预防或治疗多种慢性疾病中发挥着重要作用[17]。李明亮等[18]研究表明,SBP可通过影响相关酶的活性来达到更强的抗氧化能力和抗疲劳功效。易国富等[19]研究发现,SBP可上调果蝇脑部生物钟基因(tim)和参与调控睡眠神经递质合成限速酶的基因(tph)表达,增加五羟色胺在脑部的含量来延长果蝇的睡眠时长,这为SBP对睡眠的影响提供了科学依据。Liu等[20]在酿酒酵母生长培养基中添加SBP后,可提高细胞增殖和代谢活性,进而维持菌种发酵力和产品质量。近年来,对于SBP的研究主要集中在生产工艺、生物活性、分离纯化、结构鉴定及安全评价等方面[21-25],而对SBP的结构、主要生理功能及其作用机制以及在畜禽应用上的相关报道甚少。因此,了解SBP对动物机体健康的生理功能、作用机制及其在畜禽生产实践中的应用具有重要意义。
1 SBP的结构和性质SBP按照分子量大小分为寡肽(2~10个氨基酸)和多肽(10~50个氨基酸)。目前研究较多的SBP分子质量主要分布在189~1 000 u,比值约为84.01%,平均分子质量约为723.12 u[26]。尹军杰[27]研究表明,分子质量为500和875 u的SBP可通过调节小鼠游泳时间、肝糖原含量及血清尿素氮、乳酸含量来缓解小鼠疲劳;而分子质量为1 500、2 000、2 500、3 125 u的SBP却不具有小分子质量SBP的缓解疲劳作用,这说明了SBP分子质量与缓解疲劳作用呈正相关,其分子质量越小抗疲劳效果越明显。此外,SBP的分子质量和生物学功能与其制备工艺有密切关系。王升光等[28]研究发现,经双酶复合酶解制备的SBP最佳活性片段的分子质量都是分布在1 000~3 000 u,高剂量的SBP对左硝基精氨酸诱导的高血压大鼠具有显著的降压效果。因此,SBP生理活性的产生与其制备方法有很大关系,不同制备方法获得的SBP分子质量不同,分子组成不同,功能亦不同。
SBP作为膳食氮的重要来源,其除了富含人体不能合成的必需氨基酸外,还含有多种非必需氨基酸[29]。刘文颖等[29]采用两步酶解法制备出的SBP(< 1 000 u)中富含亮氨酸(Leu)和精氨酸(Arg),表现出良好的抗氧化活性。有研究表明,赖氨酸(Lys)、Leu、异亮氨酸(Ile)、缬氨酸(Val)、Arg、苯丙氨酸(Phe)、酪氨酸(Tyr)、色氨酸(Trp)和脯氨酸(Pro)位于羧基末端的肽显示出较高的血管紧张素转换酶(ACE)抑制活性[30]。Hanafi等[31]研究中鉴定的5种SBP(EAQRLLF、PSLRSYLAE、PDRSIHGRQLAE、FITAFR和RGQVLS)具有位于或靠近其各自羧基末端的一些上述氨基酸,ACE抑制活性较高,因而具有抗高血压活性。Lammi等[32]研究发现,SBP(IAVPTGVA和GQEQSHQDEGIVIVR)与二肽基肽酶-Ⅳ(DPP-Ⅳ)之间的相互作用区域与谷氨酰胺(Gln)和Arg的存在相关,对预防2型糖尿病(T2DM)发挥了重要作用。因此,SBP生理活性的产生与肽链中疏水性氨基酸、碱性氨基酸以及芳香族氨基酸的数量及在肽链中所处的位置有关[6, 33]。
2 SBP的生物学功能 2.1 免疫调节活性SBP具有免疫调节作用,可以提高免疫功能。有研究报道,SBP具有的免疫调节活性主要是通过巨噬细胞活化、吞噬作用刺激、白细胞数增加、免疫调节剂[如细胞因子、一氧化氮(NO)和免疫球蛋白(immunoglobulin,Ig)]诱导增强、自然杀伤(NK)细胞刺激以及对脾细胞及CD4+、CD8+、CD11b+和CD56+细胞的刺激作用形成的[34-35]。Kong等[35]研究显示,用碱性蛋白酶和不溶性大豆蛋白为原料制备的低分子质量和带正电荷的SBP(< 1 000 u)对小鼠脾淋巴细胞的增殖和腹腔巨噬细胞的吞噬作用具有较高的免疫调节活性,从而为制备高效免疫调节产品提供了思路。Zhang等[36]研究表明,用大豆分离蛋白水解得到的SBP(< 1 000 u)占82.91%,其能够通过调节促炎细胞因子,如白细胞介素(IL)-1β、肿瘤坏死因子-α(TNF-α)、IgA、IgM和IgG的表达,进而影响T细胞表达和分泌水平,从而达到减轻炎症反应、增强免疫功能的作用。
2.2 抗炎活性豆科蛋白质(主要是大豆和豆类)中的肽可以调节多种炎症标志物,如前列腺素E2(PGE2)、NO、诱导型一氧化氮合酶(iNOS)、环氧合酶-2(COX-2)、细胞因子和趋化因子,从而可以有效地改善炎症性疾病[37]。Zhang等[36]研究显示,SBP(< 1 000 u)可通过调节白细胞数提高炎症应激反应的速度和能力。Zhao等[38-39]在烧伤大鼠的饲粮中添加小分子质量SBP(186~1 000 u)后,不仅治愈了大鼠的烧伤,而且显著抑制了随后由烧伤引起的炎症标志物的浓度,如干扰素-γ(IFN-γ)、单核细胞趋化蛋白-1(MCP-1)和单核细胞趋化蛋白-3(MCP-3),从而减轻肌肉萎缩的严重程度,改善烧伤患者的愈后。Yi等[8]研究表明,SBP(186~1 000 u)通过抑制Toll样受体4(TLR4)介导的丝裂原活化蛋白激酶(MAPKs)和核因子-κB(NF-κB)信号通路的激活,潜在地抑制脂多糖(LPS)诱导的RAW264细胞中促炎因子(IL-1β、IL-6)和TNF-α的释放,抑制炎症反应。Pan等[40]研究发现,SBP Gln-Arg-Pro-Arg(QRPR)通过调节磷脂酰肌醇3-激酶(PI3K)/蛋白激酶B(AKT)/哺乳动物雷帕霉素靶蛋白(mTOR)信号通路,激活LPS诱导的RAW264.7细胞自噬,减轻炎症反应。Kwak等[41]研究证实,SBP Phe-Leu-Val(FLV)可通过促进炎症信号分子c-jun氨基末端激酶(c-jun N-terminal kinases,JNK)和核因子-κB抑制蛋白(IκB)激酶失活和下调脂肪细胞IκBα来抑制TNF-α刺激的脂肪细胞释放炎症介质(TNF-α、MCP-1和IL-6),降低巨噬细胞的募集和活化,进而预防肥胖引起的脂肪炎症。露那辛(Lunasin)(5.5 ku,43个氨基酸)是一种天然存在的SBP,具有化学预防和抗炎作用。大量研究表明,Lunasin可通过抑制RAW264.7细胞中NO、促炎因子(IL-1β、IL-1及IL-6)的释放,抑制3T3-L1脂肪细胞中纤溶酶原激活物抑制剂-1、TNF-α和MCP-1的产生来发挥抗炎作用[42-44]。
2.3 抗氧化活性由自由基引发的氧化应激已被证明对细胞膜脂质和DNA等重要细胞成分有不利影响,进而引发某些代谢疾病,如T2DM、阿尔茨海默病、癌症、心血管疾病、哮喘以及炎症疾病[45-49]。Yi等[50]研究显示,SBP(1 000~2 000 u)可抑制过氧化氢(H2O2)、丙二醛(MDA)以及氧化型谷胱甘肽(GSSG)诱导的HepG2细胞产生活性氧(ROS),抑制还原型谷胱甘肽(GSH)的减少和提高细胞抗氧化酶的活性;可通过激活核因子E2相关因子2(Nrf2)上调超氧化物歧化酶(SOD)、过氧化氢酶(CAT)和谷胱甘肽过氧化物酶(GSH-Px)活性,抑制ROS和MDA的产生。Zhang等[49]研究发现,SBP(847 u VVFVDRL、976 u VIYVVDLR、877 u IYVVDLR和795 u IYVFVR)具有良好的自由基清除活性,其通过显著下调细胞内ROS生成和脂质过氧化,保护Caco-2细胞免受H2O2诱导的氧化损伤。食用特定的SBP(1 000~3 000 u MRPF3)可增强体内抗氧化能力,调节肠道微生物和保护免疫器官免受自由基的破坏而延缓衰老进程[51]。Gu等[52]研究报道,Lunasin通过PI3K/AKT/Nrf2/抗氧化反应元件(ARE)途径显著上调了血红素加氧酶-1,并减少了血管内皮细胞(VEC)中H2O2引起的ROS产生,从而减轻了氧化剂引起的载脂蛋白E-/-小鼠内皮损伤,并抑制动脉粥样硬化斑块发展。在胃肠道消化过程中释放的Lunasin及其衍生片段对化学物质过氧化叔丁基和H2O2攻击的RAW264.7细胞活力和氧化状态具有较强的保护作用,可作为与抗氧化损伤相关疾病的保护剂[42]。
2.4 降血脂和降胆固醇SBP最突出的生物活性是其降血脂特性[15]。在不同的试验系统中,许多SBP已被证实可以降低总胆固醇(TC)和甘油三酯(TG)含量,并抑制脂肪的合成和储存[15]。Zhang等[53-54]研究发现,SBP Leu-Pro-Tyr-Pro-Arg(LPYPR)和Trp-Gly-Ala-Pro-Ser-Leu(WGAPSL)可通过降低小鼠粪便类固醇排泄量来升高血浆TC含量,通过上调小鼠胆固醇和胆汁酸代谢相关基因mRNA水平来降低TG和极低密度脂蛋白胆固醇(LDL-C)含量,进而说明了SBP具有降低胆固醇的作用。采用大豆β-大豆球蛋白(βCG)肽代替半数酪蛋白喂养OLETF(Otsuka long-Evans Tokushima fatty)大鼠,可降低大鼠血清和肝脏中TC和TG含量,降低OLETF大鼠肝脏中的成脂酶活性,增加脂解酶的活性,抑制胆固醇合成和吸收,进而表明βCG肽对OLETF大鼠具有抗肥胖和降血脂作用[55]。Lammi等[56]研究证明,大豆甘氨酸水解产生的3种肽Ile-Ala-Val-Pro-Glu-Val-Ala(IAVPGEVA)、Ile-Ala-Pro-Thr-Gly-Val-Ala(IAVPTGVA)和Leu-Pro-Tyr-Pro(LPYP)能够通过激活低密度脂蛋白受体-甾醇调节元件结合蛋白2(LDLR-SREBP2)通路,干扰3-羟基-3-甲基戊二酰辅酶A还原酶的催化活性,调节胆固醇代谢,提高HepG2细胞摄取低密度脂蛋白的能力。因此,这些结果说明了SBP具有很好的降血脂和降胆固醇作用。
2.5 抗糖尿病肥胖和高脂血症通常与胰岛素抵抗和导致代谢疾病表型的T2DM相关[15]。许多具有降血脂功能的SBP在不同的试验模型中调节了糖的吸收和胰岛素水平,也具有抗糖尿病活性[15]。Kwak等[41]研究表明,SBP(FLV)可通过肽转运蛋白2(PepT2)转运至脂肪细胞,下调TNF-α诱导的炎症信号,降低炎症反应,从而提高细胞内胰岛素的反应性、增加脂肪细胞的葡萄糖摄取。SBP(Aglycin)不仅对控制高血糖和提高口服糖耐量有显著疗效,还可增强C2C12细胞表面葡萄糖摄取和葡萄糖转运蛋白(GLUT)募集,维持胰岛素受体(IR)和胰岛素受体底物1(IRS1)在mRNA和蛋白水平的表达,提高磷酸化胰岛素受体(p-IR)、磷酸化胰岛素受体底物1(p-IRS1)、磷酸化蛋白激酶B(p-AKT)和膜GLUT4蛋白的表达和恢复胰岛素信号转导,从而表明SBP(Aglycin)可通过增加链脲佐菌素/高脂饮食诱导的糖尿病小鼠骨骼肌胰岛素受体信号通路来减轻或预防高血糖[57]。Lammi等[58]研究证实,SBP(LPYP、IAVPGEVA和IAVPTGVA)可通过GLUT1和GLUT4的激活,通过刺激AKT和AMPK途径参与葡萄糖代谢,进而增强HepG2细胞摄取葡萄糖的能力。目前许多新合成的抗糖尿病药物都是通过抑制DPP-Ⅳ活性作用来实现的[59]。从发芽大豆分离蛋白中获得的5~10 ku和>10 ku SBP可有效地抑制DPP-Ⅳ活性,而获得的5~10 ku和 < 5 ku SBP可有效地抑制α-淀粉酶和α-葡糖苷酶活性,因此上述SBP调节了糖的吸收和胰岛素水平以预防糖尿病[60]。此外,Wang等[61]发现了3个新的、序列分别为LLPLPVLK、SWLRL和WLRL的SBP,它们都是α-葡萄糖苷酶和DPP-Ⅳ抑制肽,有助于糖尿病的治疗。
2.6 降血压ACE活性抑制是调节血压的重要评价指标[62]。Dellafiora等[63]研究表明,SBP(IAVPTGVA和LPYP)能够降低胆固醇和血糖水平,还可以作为潜在的ACE抑制剂,产生降血压的功效。从碱性蛋白酶产生的绿色大豆水解物中鉴定出含有6~12个氨基酸残基,分子质量为659~1 378 u的10种SBP,其中5种SBP具有90%~102%的ACE抑制活性,可用作治疗抗高血压的功能性食品[31]。Daliri等[64]研究发现,大豆蛋白经蛋白酶水解和鼠李糖乳杆菌EBD1发酵后,生成的磷酸化大豆分离蛋白(p-SPI)中含有3种强效且含量丰富的ACE抑制肽:PPNNNPASPSFSS、GPKALPII和IIRCTGC,可作为一种降压功能食品,显著降低自发性高血压大鼠(spontaneous hypertension rat,SHR)收缩压并控制体重增长。Indiano-Romacho等[42]体外试验结果表明,与Lunasin N末端和中心区相对应的肽具有抑制ACE活性的作用,从而证实了Lunasin及其衍生片段可作为抗高血压疾病的保护剂。
综上所述,近十几年来,对SBP的研究已经转移到相应生理功能的鉴定和表征上,本文总结了SBP来源及其功能,见表 1。
![]() |
表 1 SBP及其功能 Table 1 SBP sources and their functions |
目前,低分子质量SBP(< 1 000 u)被用作动物饲粮中的高蛋白质饲料成分和适口性增强剂[71]。Osho等[72]研究表明,低分子质量SBP(< 1 000 u)可改善肉鸡的生长性能和营养物质消化率,增加空肠绒毛高度,降低肉仔鸡球虫攻击诱导的血浆IL-1β、转化生长因子-β(TGF-β)、闭合蛋白-1(Claudin-1)、咬合蛋白(Occludin)基因的表达,从而为SBP在改善球虫感染中的应用提供了新的证据。在湘黄鸡育雏期基础饲粮中添加剂量为0.8%的SBP(< 1 000 u),不仅具有提高育雏鸡的免疫器官(胸腺、脾脏和法氏囊)指数、血清钙含量及血清碱性磷酸酶、谷草转氨酶(GOT)和谷丙转氨酶(GPT)活性的趋势,还具有降低血清TC含量的趋势[73]。陈亮等[74]采用大量已验证的研究,综述了SBP不仅在蛋鸡饲粮中可提高蛋鸡产蛋性能,改善蛋品质,而且在肉鸡饲粮中还可提高饲料转化率,降低料重比,改善家禽的肉品质。在基础饲粮中添加0.4%的SBP(< 1 000 u)可提高湘黄鸡育雏期的生长性能及湘黄鸡的胴体品质[75]。
3.2 猪权素玉等[76]在基础饲粮中添加剂量为2%的SBP(300~700 u),可促进35日龄仔猪血清中胃泌素分泌直接作用于壁细胞引起胃酸分泌,为挖掘SBP的新功能及生产实践提供理论依据。左倩等[77]在基础饲粮中添加0.05%、1.00%的SBP(150~500 u)对断奶仔猪的生长性能均有改善作用,料重比均有降低趋势,并能通过提高断奶仔猪血浆免疫因子和细胞因子的含量,提高断奶仔猪的免疫功能,为SBP的生产实践打下基础。研究发现,SBP(150~1 500 u)能促进仔猪十二指肠、空肠和回肠等肠黏膜组织结构发育,提高胰蛋白酶及二糖酶等消化酶活性,加快仔猪消化吸收营养物质,增强肠黏膜免疫功能,提高仔猪生长性能[78]。此外,SBP可提高仔猪抗氧化能力,并可通过促进上调免疫相关基因[IFN-γ、IL-6、IL-10、叉头框蛋白P3(FOXP3)和TGF-β1)]表达量、增加分泌型免疫球蛋白A(secretory immunoglobulin A,sIgA)、IgG和IgM含量来提高仔猪免疫性能,进而促进仔猪健康[78]。岳洪源[79]在断奶仔猪粮中添加0.3%的SBP(1 000 u),结果表明SBP可通过增强仔猪抵抗力、平衡大肠微生物区系和保护肠道微生态结构等方面来促进仔猪的生长。在基础饲粮中添加2% SBP(300~700 u)可显著下调仔猪空肠黏膜TLR4 mRNA表达量和TNF-α含量,减少仔猪空肠中的大肠杆菌数量,显著提高空肠黏膜sIgA与IL-2含量,提高空肠黏膜脂肪酶、乳糖酶、胰蛋白酶及钠钾ATP酶(Na+-K+-ATP酶)活性,增加乳酸杆菌数,由此推测SBP能够启动肠相关淋巴免疫系统,提高肠黏膜局部免疫力,抑制TLR4炎症信号通路中相关炎症介质的合成释放,降低炎症反应,从而促进断奶仔猪肠道健康[80]。经酶联免疫测定法研究发现,SBP(< 1 000 u)只有0.1%~1.0%的抗原性,不会引起仔猪腹泻等病理性免疫应答[2]。陈美松等[81]研究表明,在断奶仔猪饲粮中添加微生物发酵豆粕产生的SBP(< 1 000 u),对断奶仔猪肠道中的大肠杆菌有抑制作用,对肠道中的乳酸菌有促进作用,进而减少对仔猪肠道产生的不良影响,促进仔猪生长。
3.3 其他动物樊靖等[82]用SBP(< 1 000 u)培育淡水鱼种的试验结果表明,SBP作为新型添加剂可促进水产动物的摄食和生长,提高鱼种的免疫力、成活率及饵料转化率,降低饵料数量。近年来,利用微生物发酵豆粕制备的SBP饲料在养殖业中的应用研究已成为国内外研究的热点[83]。Kim等[84]研究表明,用微生物发酵豆粕制备的SBP替代饲料中50%的豆粕,可提高鹦鹉鱼的非特异性免疫应答,但对生长性能和饲料利用率无显著影响。用微生物发酵豆粕制备的SBP替代杂交罗非鱼饲料中40%以下的鱼粉蛋白,不会对杂交罗非鱼的特定生长率、饲料效率、增重率和蛋白质效率产生影响[85]。张吉鸥等[86]研究发现,功能大豆寡肽(1 000 u)可显著降低饲粮成本,显著降低原奶中的体细胞数,防治乳房炎,还能减缓奶牛产奶量的下降,改善乳脂、乳糖及乳蛋白含量等乳常规指标。马永超等[87]研究表明,SBP(< 1 000 u)提高了β-淀粉样蛋白肽(Aβ)25-35所致神经损伤模型中海马神经元的细胞活力,降低了Aβ25-35所致神经损伤模型中海马神经元的凋亡,减轻了细胞骨架的损伤,从而促进了SBP对Aβ诱导的海马神经元损伤的保护作用。
4 小结SBP是大豆蛋白中具有特殊生理功能的小分子肽,其化学结构不同生理功能就会有所差异。由于我国对SBP的研究起步晚,SBP的功能特性、SBP的制备以及产业化应用等方面的研究尚处于起步阶段。在我国“禁抗”或“限抗”的情况下,基于SBP独特的理化特性和生理学功能,推进畜禽生产上的应用,实现健康养殖具有重要的经济社会价值和广阔的应用前景。然而,受质量控制水平、生产工艺条件、含量测定方法以及饲粮配伍等技术条件的限制,对SBP的作用机制研究与应用还有待于进一步深入。
[1] |
CHEN Z Q, LI W W, SANTHANAM R K, et al. Bioactive peptide with antioxidant and anticancer activities from black soybean[Glycine max(L.) Merr.]byproduct: isolation, identification and molecular docking study[J]. European Food Research and Technology, 2019, 245(3): 677-689. DOI:10.1007/s00217-018-3190-5 |
[2] |
乔惠敏. 大豆肽在动物生产中的作用及应用[J]. 四川畜牧兽医, 2018, 45(8): 40-41. QIAO H M. Function and application of soybean peptide in animal production[J]. Sichuan Animal Husbandry and Veterinary, 2018, 45(8): 40-41 (in Chinese). |
[3] |
王立博, 陈复生. 大豆活性肽生理保健功能研究进展[J]. 食品与机械, 2016, 32(2): 198-201. WANG L B, CHEN F S. Research progress in physiological health functions of soybean bioactive peptides[J]. Food & Machinery, 2016, 32(2): 198-201 (in Chinese). |
[4] |
汪桐, 张健, 徐争辉, 等. 大豆活性肽的研究进展[J]. 安徽农业科学, 2012, 40(26): 13105-13106, 13178. WANG T, ZHANG J, XU Z H, et al. Research advances on soybean active peptide[J]. Journal of Anhui Agricultural, 2012, 40(26): 13105-13106, 13178 (in Chinese). DOI:10.3969/j.issn.0517-6611.2012.26.134 |
[5] |
ASCIONE A, ARENACCIO C, MALLANO A, et al. Development of a novel human phage display-derived anti-LAG3 scFv antibody targeting CD8+ T lymphocyte exhaustion[J]. BMC Biotechnology, 2019, 19: 67. DOI:10.1186/s12896-019-0559-x |
[6] |
CHALAMAIAH M, YU W L, WU J P. Immunomodulatory and anticancer protein hydrolysates (peptides) from food proteins: a review[J]. Food Chemistry, 2018, 245: 205-222. DOI:10.1016/j.foodchem.2017.10.087 |
[7] |
KIM M Y, JANG G Y, LEE Y J, et al. Identification of anti-inflammatory active peptide from black soybean treated by high hydrostatic pressure after germination[J]. Phytochemistry Letters, 2018, 27: 167-173. DOI:10.1016/j.phytol.2018.07.008 |
[8] |
YI G F, LI H, LIU M L, et al. Soybean protein-derived peptides inhibit inflammation in LPS-induced RAW264.7 macrophages via the suppression of TLR4-mediated MAPK-JNK and NF-kappa B activation[J]. Journal of Food Biochemistry, 2020, 44(8): e13289. |
[9] |
ZHANG Q Z, TONG X H, SUI X N, et al. Antioxidant activity and protective effects of alcalase-hydrolyzed soybean hydrolysate in human intestinal epithelial Caco-2 cells[J]. Food Research International, 2018, 111: 256-264. DOI:10.1016/j.foodres.2018.05.046 |
[10] |
YU M, HE S D, TANG M M, et al. Antioxidant activity and sensory characteristics of Maillard reaction products derived from different peptide fractions of soybean meal hydrolysate[J]. Food Chemistry, 2018, 243: 249-257. DOI:10.1016/j.foodchem.2017.09.139 |
[11] |
NAGAOKA S. Structure-function properties of hypolipidemic peptides[J]. Journal of Food Biochemistry, 2018, 43(1): e12539. |
[12] |
HASHIDUME T, SAKANO T, MOCHIZUKI A, et al. Identification of soybean peptide leginsulin variants in different cultivars and their insulin-like activities[J]. Scientific Reports, 2018, 8: 16847. DOI:10.1038/s41598-018-35331-5 |
[13] |
李理, 罗贤慧, 张静. 体外消化对大豆多肽性质和ACE抑制活性的影响[J]. 华南理工大学学报(自然科学版), 2014, 42(3): 125-130. LI L, LUO X H, ZHANG J. Effects of in-vitro digestion on properties and ACE inhibitory activities of soybean peptides[J]. Journal of South China University of Technology (Natural Science Edition), 2014, 42(3): 125-130 (in Chinese). DOI:10.3969/j.issn.1000-565X.2014.03.020 |
[14] |
CUI J C, XIA P B, ZHANG L L, et al. A novel fermented soybean, inoculated with selected Bacillus, Lactobacillus and Hansenula strains, showed strong antioxidant and anti-fatigue potential activity[J]. Food Chemistry, 2020, 333: 127527. DOI:10.1016/j.foodchem.2020.127527 |
[15] |
CHATTERJEE C, GLEDDIE S, XIAO C W. Soybean bioactive peptides and their functional properties[J]. Nutrients, 2018, 10(9): 1211. DOI:10.3390/nu10091211 |
[16] |
GÖRGÜÇ A, GENÇDAČ E, YILMAZ F M. Bioactive peptides derived from plant origin by-products: biological activities and techno-functional utilizations in food developments-a review[J]. Food Research International, 2020, 136: 109504. DOI:10.1016/j.foodres.2020.109504 |
[17] |
FERNÁNDEZ-TOMÉ S, HERNÁNDEZ-LEDESMA B. Current state of art after twenty years of the discovery of bioactive peptide lunasin[J]. Food Research International, 2019, 116: 71-78. DOI:10.1016/j.foodres.2018.12.029 |
[18] |
李明亮, 尹曼, 凌空, 等. 大豆肽和小麦肽抗疲劳功能的实验研究[J]. 食品科技, 2019, 44(9): 303-307. LI M L, YIN M, LING K, et al. Experimental study on anti-fatigue function of soybean peptide and wheat peptide[J]. Food Science and Technology, 2019, 44(9): 303-307 (in Chinese). |
[19] |
易国富, 张健, 李赫, 等. 大豆肽对果蝇睡眠的影响[J]. 食品科学技术学报, 2020, 38(4): 63-69. YI G F, ZHANG J, LI H, et al. Effects of soybean peptide on sleep in Drosophila[J]. Journal of Food Science and Technology, 2020, 38(4): 63-69 (in Chinese). |
[20] |
LIU M L, LIU X Q, LI Y. Soybean peptides' cryoprotective effects on Saccharomyces cerevisiae fermenting power in frozen dough and maintenance of the Chinese steamed bread qualities[J]. Journal of Food Processing and Preservation, 2020, 44(8): e14572. |
[21] |
董砚博. 大豆肽最佳水解条件确定及生产工艺研究[J]. 农业科技与装备, 2018(6): 44-45, 48. DONG Y B. Study on determination of optimum hydrolysis conditions and production process of soybean peptide[J]. Agricultural Science & Technology and Equipment, 2018(6): 44-45, 48 (in Chinese). |
[22] |
尚宏丽, 李敏, 林颖. 低温脱脂豆粕制备大豆肽生产工艺优化及生物活性探究[J]. 饲料研究, 2015(11): 18-23. SHANG H L, LI M, LIN Y. Production process optimization and bioactivity of soybean peptide from low temperature defatted soybean meal[J]. Feed Research, 2015(11): 18-23 (in Chinese). |
[23] |
曾艳, 朱玥明, 张建刚, 等. 大豆发酵食品中的活性肽及其生理功能研究进展[J]. 大豆科学, 2019, 38(1): 159-166. ZENG Y, ZHU Y M, ZHANG J G. Process in bioactive peptides during soybean fermentation and their potential health benefits[J]. Soybean Science, 2019, 38(1): 159-166 (in Chinese). |
[24] |
谢丽平. 具有抗氧化、抗衰老活性的多肽筛选、分离纯化及结构鉴定[D]. 硕士学位论文. 广州: 华南理工大学, 2019: 15-61. XIE L P. Screening, separation and purification, structure identification of peptides with antioxidant andanti-aging effects[D]. Master's Thesis. Guangzhou: South China University of Technology, 2019: 15-61. (in Chinese) |
[25] |
高梦妮, 江连洲, 朱秀清, 等. 大豆活性肽的安全性评价[J]. 食品科技, 2014, 39(3): 265-270. GAO M N, JIANG L Z, ZHU X Q, et al. Safety assessment of soybean bioactive peptides[J]. Food Science and Technology, 2014, 39(3): 266-270 (in Chinese). |
[26] |
YI G F, LI H, LI Y, et al. The protective effect of soybean protein-derived peptides on apoptosis via the activation of PI3K-AKT and inhibition on apoptosis pathway[J]. Food Science & Nutrition, 2020, 8(8): 4591-4600. |
[27] |
尹军杰. 大豆肽分子量与缓解疲劳作用关系的研究[J]. 粮食与油脂, 2017, 30(7): 42-44. YIN J J. Study on the relationship between the molecular mass of soybean peptide and effect of relieving fatigue[J]. Cereals & Oils, 2017, 30(7): 42-44 (in Chinese). DOI:10.3969/j.issn.1008-9578.2017.07.010 |
[28] |
王升光, 于帅, 孟凡刚, 等. 酶法制备大豆肽的相对分子量分布及降压作用研究[J]. 食品工业科技, 2018, 39(1): 46-51. WANG S G, YU S, MENG F G, et al. Study on relative molecular weight distribution and depressor effect of soybean peptide prepared by enzymatic method[J]. Food Industry Technology, 2018, 39(1): 46-51 (in Chinese). |
[29] |
刘文颖, 谷瑞增, 鲁军, 等. 大豆低聚肽的成分分析及体外抗氧化作用[J]. 食品工业, 2015, 36(4): 200-203. LIU W Y, GU R Z, LU J, et al. Composition analysis of soybean oligopeptide and its antioxidation in vitro[J]. The Food Industry, 2015, 36(4): 200-203 (in Chinese). |
[30] |
DASKAYA-DIKMEN C, YUCETEPE A, KARBANCIOGLU-GULER F, et al. Angiotensin-Ⅰ-converting enzyme (ACE)-inhibitory peptides from plants[J]. Nutrients, 2017, 9(4): 316. DOI:10.3390/nu9040316 |
[31] |
HANAFI M A, HASHIM S N, YEA C S, et al. High angiotensin-I converting enzyme (ACE) inhibitory activity of alcalase-digested green soybean (Glycine max) hydrolysates[J]. Food Research International, 2018, 106: 589-597. DOI:10.1016/j.foodres.2018.01.030 |
[32] |
LAMMI C, ZANONI C, ARNOLDI A, et al. Peptides derived from soy and Lupin protein as dipeptidyl-peptidase Ⅳ inhibitors: in vitro biochemical screening and in silico molecular modeling study[J]. Journal of Agricultural & Food Chemistry, 2016, 64(51): 9601-9606. |
[33] |
谢博, 傅红, 杨方. 生物活性肽的制备、分离纯化、鉴定以及构效关系研究进展[J/OL]. 食品工业科技, 2020. (2020-08-26). https://kns.cnki.net/KCMS/detail/11.1759.TS.20200826.1133.004.html. XIE B, FU H, YANG F. Research progress on preparation, purification, identification and structure-activity relationship of bioactive peptides[J]. Food Industry Technology, 2020. (2020-08-26). https://kns.cnki.net/KCMS/detail/11.1759.TS.20200826.1133.004.html. (in Chinese) |
[34] |
富校轶, 孙茂成, 高永欣, 等. 大豆肽免疫调节作用的研究进展[J]. 大豆科技, 2014(1): 38-42. FU X Y, SUN M C, GAO Y X, et al. Progress on immunological regulation of soybean peptides[J]. Soybean Science and Technology, 2014(1): 38-42 (in Chinese). DOI:10.3969/j.issn.1674-3547.2014.01.009 |
[35] |
KONG X Z, GUO M M, HUA Y F, et al. Enzymatic preparation of immunomodulating hydrolysates from soy proteins[J]. Bioresource Technology, 2008, 99(18): 8873-8879. DOI:10.1016/j.biortech.2008.04.056 |
[36] |
ZHANG J, LI W H, YING Z W, et al. Soybean protein-derived peptide nutriment increases negative nitrogen balance in burn injury-induced inflammatory stress response in aged rats through the modulation of white blood cells and immune factors[J]. Food and Nutrition Research, 2020, 64: 3677. |
[37] |
REYES-DÍAZ A, DEL-TORO-SÁNCHEZ C L, RODRÍGUEZ-FIGUEROA J C, et al. Legume proteins as a promising source of anti-inflammatory peptides[J]. Current Protein and Peptide Science, 2019, 20(12): 1204-1217. DOI:10.2174/1389203720666190430110647 |
[38] |
ZHAO F, YU Y H, LIU W, et al. Small molecular weight soybean protein-derived peptides nutriment attenuates rat burn injury-induced muscle atrophy by modulation of ubiquitin-proteasome system and autophagy signaling pathway[J]. Journal of Agricultural and Food Chemistry, 2018, 66(11): 2724-2734. DOI:10.1021/acs.jafc.7b05387 |
[39] |
ZHAO F, LIU W, YU Y H, et al. Effect of small molecular weight soybean protein-derived peptide supplementation on attenuating burn injury-induced inflammation and accelerating wound healing in a rat model[J]. RSC Advances, 2019, 9(3): 1247-1259. DOI:10.1039/C8RA09036J |
[40] |
PAN F G, WANG L, CAI Z Z, et al. Soybean peptide QRPR activates autophagy and attenuates the inflammatory response in the RAW264.7 cell model[J]. Protein and Peptide Letters, 2019, 26(4): 301-312. DOI:10.2174/0929866526666190124150555 |
[41] |
KWAK S J, KIM C S, CHOI M S, et al. The soy peptide Phe-Leu-Val reduces TNFα-induced inflammatory response and insulin resistance in adipocytes[J]. Journal of Medicinal Food, 2016, 19(7): 678-685. DOI:10.1089/jmf.2016.3685 |
[42] |
INDIANO-ROMACHO P, FERNÁNDEZ-TOMÉ S, AMIGO L, et al. Multifunctionality of lunasin and peptides released during its simulated gastrointestinal digestion[J]. Food Research International, 2019, 125: 108513. DOI:10.1016/j.foodres.2019.108513 |
[43] |
HSIEH C C, CHOU M J, WANG C H. Lunasin attenuates obesity-related inflammation in RAW264.7 cells and 3T3-L1 adipocytes by inhibiting inflammatory cytokine production[J]. PLoS One, 2017, 12(2): e0171969. DOI:10.1371/journal.pone.0171969 |
[44] |
HAO Y Q, FAN X, GUO H M, et al. Overexpression of the bioactive lunasin peptide in soybean and evaluation of its anti-inflammatory and anti-cancer activities in vitro[J]. Journal of Bioscience and Bioengineering, 2020, 129(4): 395-404. DOI:10.1016/j.jbiosc.2019.11.001 |
[45] |
SHEN R, LIU D S, HOU C C, et al. Protective effect of Potentilla anserina polysaccharide on cadmium-induced nephrotoxicity in vitro and in vivo[J]. Food & Function, 2017, 8(10): 3636-3646. |
[46] |
JIN J E, AHN C B, JE J Y. Purification and characterization of antioxidant peptides from enzymatically hydrolyzed ark shell (Scapharca subcrenata)[J]. Process Biochemistry, 2018, 72: 170-176. DOI:10.1016/j.procbio.2018.06.001 |
[47] |
FENG Y X, RUAN G R, JIN F, et al. Purification, identification, and synthesis of five novel antioxidant peptides from Chinese chestnut (Castanea mollissima Blume)protein hydrolysates[J]. LWT-Food Science and Technology, 2018, 92: 40-46. DOI:10.1016/j.lwt.2018.01.006 |
[48] |
CHEN Z, BERTIN R, FROLDI G. EC50 estimation of antioxidant activity in DPPH center dot assay using several statistical programs[J]. Food Chemistry, 2013, 138(1): 414-420. DOI:10.1016/j.foodchem.2012.11.001 |
[49] |
ZHANG Q Z, TONG X H, LI Y, et al. Purification and characterization of antioxidant peptides from Alcalase-hydrolyzed soybean (Glycinemax L.) hydrolysate and their cytoprotective effects in human intestinal Caco-2 cells[J]. Journal of Agricultural and Food Chemistry, 2019, 67(20): 5772-5781. |
[50] |
YI G F, DIN J U, ZHAO F, et al. Effect of soybean peptides against hydrogen peroxide induced oxidative stress in HepG2 cells via Nrf2 signaling[J]. Food & Function, 2020, 11(3): 2725-2737. |
[51] |
HE S D, YU M, SUN H J, et al. Potential effects of dietary Maillard reaction products derived from 1 to 3 kDa soybean peptides on the aging ICR mice[J]. Food and Chemical Toxicology, 2019, 125: 62-70. DOI:10.1016/j.fct.2018.12.045 |
[52] |
GU L L, YE P, LI H L, et al. Lunasin attenuates oxidant-induced endothelial injury and inhibits atherosclerotic plaque progression in ApoE-/- mice by up-regulating heme oxygenase-1 via PI3K/Akt/Nrf2/ARE pathway[J]. The FASEB Journal, 2019, 33(4): 4836-4850. DOI:10.1096/fj.201802251R |
[53] |
ZHANG H J, DUAN Y W, FENG Y L, et al. Transepithelial transport characteristics of the cholesterol-lowing soybean peptide, WGAPSL, in Caco-2 cell monolayers[J]. Molecules, 2019, 24(15): 2843. DOI:10.3390/molecules24152843 |
[54] |
ZHANG H J, BARTLEY G E, ZHANG H, et al. Peptides identified in soybean protein increase plasma cholesterol in mice on hypercholesterolemic diets[J]. Journal of Agricultural and Food Chemistry, 2013, 61(35): 8389-8395. DOI:10.1021/jf4022288 |
[55] |
WANEZAKI S, SAITO S, INOUE N, et al. Soy β-conglycinin peptide attenuates obesity and lipid abnormalities in obese model OLETF rats[J]. Journal of Oleo Science, 2020, 69(5): 495-502. DOI:10.5650/jos.ess20010 |
[56] |
LAMMI C, ZANONI C, ARNOLDI A. IAVPGEVA, IAVPTGVA, and LPYP, three peptides from soy glycinin, modulate cholesterol metabolism in HepG2 cells through the activation of the LDLR-SREBP2 pathway[J]. Journal of Functional Foods, 2015, 14: 469-478. DOI:10.1016/j.jff.2015.02.021 |
[57] |
LU J L, ZENG Y, HOU W R, et al. The soybean peptide aglycin regulates glucose homeostasis in type 2 diabetic mice via IR/IRS1 pathway[J]. Journal of Nutritional Biochemisry, 2012, 23(11): 1149-1157. |
[58] |
LAMMI C, ZANONI C, ARNOLDI A. Three peptides from soy glycinin modulate glucose metabolism in human hepatic HepG2 cells[J]. International Journal of Molecular Sciences, 2015, 16(11): 27362-27370. DOI:10.3390/ijms161126029 |
[59] |
SINGH A K, JATWA R, PUROHIT A, et al. Synthetic and phytocompounds based dipeptidyl peptidase-Ⅳ (DPP-Ⅳ) inhibitors for therapeutics of diabetes[J]. Journal of Asian Natural Products Research, 2017, 19(10): 1036-1045. DOI:10.1080/10286020.2017.1307183 |
[60] |
GONZÁLEZ-MONTOYA M, HERNÁNDEZ-LEDESMA B, MORA-ESCOBEDO R, et al. Bioactive peptides from germinated soybean with anti-diabetic potential by inhibition of dipeptidyl peptidase-Ⅳ, α-amylase, and α-glucosidase enzymes[J]. International Journal of Molecular Sciences, 2018, 19(10): 2883. DOI:10.3390/ijms19102883 |
[61] |
WANG R C, ZHAO H X, PAN X X, et al. Preparation of bioactive peptides with antidiabetic, antihypertensive, and antioxidant activities and identification of α-glucosidase inhibitory peptides from soy protein[J]. Food Science & Nutrition, 2019, 7(5): 1848-1856. |
[62] |
MANIKKAM V, VASILJEVIC T, DONKOR O N, et al. A review of potential marine-derived hypotensive and anti-obesity peptides[J]. Critical Reviews in Food Science and Nutrition, 2016, 56(1): 92-112. DOI:10.1080/10408398.2012.753866 |
[63] |
DELLAFIORA L, PUGLIESE R, BOLLATI C, et al. "Bottom-up" strategy for the identification of novel soybean peptides with angiotensin-converting enzyme inhibitory activity[J]. Journal of Agricultural and Food Chemistry, 2020, 68(7): 2082-2090. DOI:10.1021/acs.jafc.9b07361 |
[64] |
DALIRI E B M, OFOSU F K, CHELLIAH R, et al. Development of a soy protein hydrolysate with an antihypertensive effect[J]. International Journal of Molecular Sciences, 2019, 20(6): 1496. DOI:10.3390/ijms20061496 |
[65] |
KOVACS-NOLAN J, ZHANG H, IBUKI M, et al. The PepT1-transportable soy tripeptide VPY reduces intestinal inflammation[J]. Biochimica et Biophysica Acta: General Subjects, 2012, 1820(11): 1753-1763. DOI:10.1016/j.bbagen.2012.07.007 |
[66] |
PAL SINGH B, VIJ S, HATI S. Functional significance of bioactive peptides derived from soybean[J]. Peptides, 2014, 54: 171-179. DOI:10.1016/j.peptides.2014.01.022 |
[67] |
YOSHIKAWA M. Bioactive peptides derived from natural proteins with respect to diversity of their receptors and physiological effects[J]. Peptides, 2015, 72: 208-225. DOI:10.1016/j.peptides.2015.07.013 |
[68] |
LAMMI C, ZANONI C, ARNOLD I, et al. Two peptides from soy β-conglycinin induce a hypocholesterolemic effect in HepG2 cells by a statin-like mechanism: comparative in vitro and in silico modeling studies[J]. Journal of Agricultural and Food Chemistry, 2015, 63(36): 7945-7951. DOI:10.1021/acs.jafc.5b03497 |
[69] |
WANG W Y, DIA V P, VASCONEZ M, et al. Analysis of soybean protein-derived peptides and the effect of cultivar, environmental conditions, and processing on lunasin concentration in soybean and soy products[J]. Journal of AOAC International, 2008, 91(4): 936-946. DOI:10.1093/jaoac/91.4.936 |
[70] |
KUBA M, TANA C, TAWATA S, et al. Production of angiotensin Ⅰ-converting enzyme inhibitory peptides from soybean protein with Monascus purpureus acid proteinase[J]. Process Biochemistry, 2005, 40(6): 2191-2196. DOI:10.1016/j.procbio.2004.08.010 |
[71] |
KARIMZADEH S, REZAEI M, YANSARI A T. Effects of canola bioactive peptides on performance, digestive enzyme activities, nutrient digestibility, intestinal morphology and gut microflora in broiler chickens[J]. Poultry Science Journal, 2016, 4(1): 27-36. |
[72] |
OSHO S O, XIAO W W, ADEOLA O. Response of broiler chickens to dietary soybean bioactive peptide and coccidia challenge[J]. Poultry Science, 2019, 98(11): 5669-5678. DOI:10.3382/ps/pez346 |
[73] |
孟可爱, 刘小飞, 马玉勇. 大豆肽对育雏鸡生产性能、免疫器官指数和血液生化指标的影响[J]. 河南农业科学, 2019, 48(12): 128-132. MENG K A, LIU X F, MA Y Y. Effects of soybean peptide on production performance, immune organ index and blood biochemical index of brooding chicken[J]. Journal of Henan Agricultural Sciences, 2019, 48(12): 128-132 (in Chinese). |
[74] |
陈亮, 张婵娟, 肖伟伟. 大豆肽在蛋鸡和肉鸡生产中应用的研究进展[J]. 中国家禽, 2017, 39(1): 42-46. CHEN L, ZHANG C J, XIAO W W. Research progress on application of soybean peptide in laying hens and broilers[J]. China Poultry, 2017, 39(1): 42-46 (in Chinese). |
[75] |
刘小飞, 孟可爱. 大豆肽对湘黄鸡生产性能和肉品质的影响[J]. 湖南生态科学学报, 2015, 2(2): 6-11. LIU X F, MENG K A. The effect of soy peptide on the production performance and meat quality of Xianghuang chickens[J]. Journal of Hunan Ecological Science, 2015, 2(2): 6-11 (in Chinese). DOI:10.3969/j.issn.1671-6361.2015.02.002 |
[76] |
权素玉, 荣超, 王珊珊, 等. 低分子质量大豆肽对断奶仔猪胃酸分泌的影响及机制[J]. 食品科学, 2015, 36(21): 249-252. QUAN S Y, RONG C, WANG S S, et al. Effect of low-molecular-weight soybean peptide on the secretion of gastric acidin weaning piglets and its mechanism[J]. Food Science, 2015, 36(21): 249-252 (in Chinese). DOI:10.7506/spkx1002-6630-201521046 |
[77] |
左倩, 朱建津, 张俊, 等. 大豆肽的体外抗氧化活性及对断奶仔猪生长性能和免疫功能的影响[J]. 中国畜牧杂志, 2015, 51(15): 56-60. ZUO Q, ZHU J J, ZHANG J, et al. Antioxidant activity of soybean peptide in vitro and its effects on growth performance and immune function of weaned piglets[J]. Chinese Journal of Animal Science, 2015, 51(15): 56-60 (in Chinese). DOI:10.3969/j.issn.0258-7033.2015.15.013 |
[78] |
左倩. 大豆肽对仔猪免疫和消化功能的影响[D]. 硕士学位论文. 无锡: 江南大学, 2016: 8-31. ZUO Q. Effects of soy peptides on immune and digestive function of piglets[D]. Master's Thesis. Wuxi: Jiangnan University, 2016: 8-31. (in Chinese) |
[79] |
岳洪源. 大豆生物活性肽对仔猪生长性能的影响及其机理的研究[D]. 硕士学位论文. 北京: 中国农业大学, 2004: 24-43. HONG Y Y. Study on effect of soybean bioactive peptides on growth performance and mechanism in weanling pigs[D]. Master's Thesis. Beijing: China Agricultural University, 2004: 24-43. (in Chinese) |
[80] |
左伟勇, 洪伟鸣, 陈高, 等. 低分子质量大豆肽对断奶仔猪肠道免疫功能的影响[J]. 南京农业大学学报, 2013, 36(5): 108-112. ZUO W Y, HONG W M, CHEN G, et al. Effect of low molecular weight soybean peptide on intestinal immunity in weanling piglets[J]. Journal of Nanjing Agricultural University, 2013, 36(5): 108-112 (in Chinese). |
[81] |
陈美松, 赵秋华. 利用发酵豆粕代替鱼粉对断奶仔猪产能和肠道细菌的影响试验[J]. 上海畜牧兽医通讯, 2019(5): 24-25, 27. CHEN M S, ZHAO Q H. Effects of fermented soybean meal instead of fish meal on productivity and intestinal bacteria of weaned piglets[J]. Shanghai Journal of Animal Husbandry and Veterinary Medicine, 2019(5): 24-25, 27 (in Chinese). |
[82] |
樊靖, 吴会敏, 郭伟利, 等. 大豆蛋白活性肽培育淡水鱼种试验[J]. 科学养鱼, 2011(2): 64-65. PAN J, WU H M, GUO W L, et al. Experiment of culturing fresh water fish with soybean protein active peptide[J]. Scientific Fish Farming, 2011(2): 64-65 (in Chinese). |
[83] |
马静. 微生物发酵豆粕产活性大豆肽饲料的研究进展[J]. 饲料工业, 2016, 37(8): 27-31. MA J. The research progress of microorganism fermented soybean meal produce with active soybean peptide in feed[J]. Feed Industry, 2016, 37(8): 27-31 (in Chinese). |
[84] |
KIM S S, GALAZ G B, PHAM M A, et al. Effects of dietary supplementation of a meju, fermented soybean meal, and Aspergillus oryzae for juvenile parrot fish (Oplegnathus fasciatus)[J]. Asian Australasian Journal of Animal Sciences, 2009, 22(6): 849-856. DOI:10.5713/ajas.2009.80648 |
[85] |
程成荣, 刘永坚. 杂交罗非鱼饲料中发酵豆粕替代鱼粉的研究[J]. 广东饲料, 2004, 13(2): 26-27. CHENG C R, LIU Y J. Study on replacement of fish meal with fermented soybean meal in feed of hybrid tilapia[J]. Guangdong Feed, 2004, 13(2): 26-27 (in Chinese). DOI:10.3969/j.issn.1005-8613.2004.02.014 |
[86] |
张吉鸥, 熊立根, 邹庆华, 等. 功能大豆寡肽蛋白饲料在奶牛生产中的应用研究[J]. 饲料与畜牧: 新饲料, 2013(1): 8-12. ZHANG J O, XIONG L G, ZOU Q H, et al. The study on application of functional soy oligopeptide-protein feeds (FSOPF) in dairy cow[J]. Feed and Animal Husbandry: New Feed, 2013(1): 8-12 (in Chinese). |
[87] |
马永超, 范文娟, 饶淑梅, 等. 大豆肽减轻β-淀粉样蛋白肽诱导的小鼠原代海马神经元损伤[J]. 解剖学杂志, 2020, 43(1): 37-42. MA Y C, FAN W J, RAO S M, et al. Soybean peptide attenuates Aβ25-35-induced neuronal injury in primary cultured hippocampal neurons[J]. Chinese Journal of Anatomy, 2020, 43(1): 37-42 (in Chinese). |