动物营养学报    2021, Vol. 33 Issue (6): 3259-3270    PDF    
低蛋白质饲粮中添加半胱氨酸对肉仔鸡生长性能、胴体组成、血清生化指标及氮代谢的影响
冯倩倩 , 王晶 , 武书庚 , 邱凯 , 齐广海 , 张海军     
中国农业科学院饲料研究所, 农业农村部饲料生物技术重点开放实验室, 生物饲料开发国家工程研究中心, 北京 100081
摘要: 本试验旨在研究低蛋白质(LP)饲粮中添加半胱氨酸(Cys)对肉仔鸡生长性能、胴体组成、血清生化指标及氮代谢的影响,以确定肉仔鸡LP饲粮中Cys的适宜添加水平。选取432只1日龄、体重相近的健康爱拔益加(AA)肉仔鸡公雏,随机分为6个组,每组6个重复,每个重复12只鸡。正对照(PC)组饲喂基础饲粮[前期(1~21日龄)和后期(22~42日龄)蛋白质水平分别为22%和20%],负对照(NC)组的蛋白质水平在PC组的基础上降低4.5个百分点(前期和后期蛋白质水平分别为17.5%和15.5%),Cys组在NC组的基础上分别添加0.05%、0.10%、0.15%和0.20%的Cys。各组前期和后期总含硫氨基酸水平分别为0.83%和0.79%。试验期42 d,分为前期和后期2个阶段。结果表明:1)饲粮蛋白质水平降低4.5个百分点,21和42日龄肉仔鸡的平均体重(ABW)、各生长阶段的平均日增重(ADG)和平均日采食量(ADFI)均显著降低(P < 0.05),试验前期的料重比(F/G)显著提高(P < 0.05);添加0.10%和0.15% Cys后,21和42日龄的ABW、试验后期和试验全期的ADG和ADFI均显著提高(P < 0.05),且均随Cys添加水平的提高呈线性和二次提高(P < 0.05),试验前期的F/G显著降低(P < 0.05),达到了与PC组相似的生长性能。2)饲粮添加Cys未见显著影响42日龄肉仔鸡的全净膛率(EP)和腿肌率(LMP)(P>0.05),但有提高LMP的趋势(0.05≤P < 0.10);饲粮添加Cys线性和二次降低胸肌率(BMP)(P < 0.05),腹脂率(AFP)显著提高(P < 0.05)。3)饲粮添加Cys对21和42日龄肉仔鸡的血清生化指标无显著影响(P>0.05)。4)饲粮添加Cys显著降低19~21日龄和40~42日龄肉仔鸡的氮摄入量、氮排泄量和氮存留量(P < 0.05),显著提高19~21日龄的氮存留率(P < 0.05)。5)二次曲线拟合结果表明,LP饲粮中Cys添加水平为0.13%~0.17%时,生长性能和氮代谢最佳。综上所述,LP饲粮中添加0.15% Cys能改善肉仔鸡的体增重、采食量和F/G,提高氮存留率;以生长性能和氮代谢为判断指标,推荐肉仔鸡LP饲粮中Cys的适宜添加水平为0.13%~0.17%(Cys占总含硫氨基酸的比例为45%~49%)。
关键词: 肉仔鸡    低蛋白质饲粮    半胱氨酸    含硫氨基酸    生长性能    胴体组成    氮代谢    
Effects of Cysteine Supplementation in Low Protein Diet on Growth Performance, Carcass Composition, Serum Biochemical Parameters and Nitrogen Metabolism of Broilers
FENG Qianqian , WANG Jing , WU Shugeng , QIU Kai , QI Guanghai , ZHANG Haijun     
Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
Abstract: This experiment was conducted to investigate the effects of cysteine (Cys) supplementation in low protein (LP) diet on growth performance, carcass composition, serum biochemical parameters and nitrogen metabolism of broilers, in order to determine the optimal supplemental level of Cys in LP diet of broilers. Four hundred and thirty-two 1-day-old healthy Arbor Acres (AA) male broilers with similar body weight were randomly allotted into 6 groups with 6 replicates per group and 12 broilers per replicate. The broilers in positive control (PC) group were fed the basal diet (the protein levels in early stage during 1 to 21 days of age and later stage during 22 to 42 days of age were 22% and 20%, respectively), the protein level of negative control (NC) group was reduced by 4.5% on the basis of PC group (the protein levels in early stage and later stage were 17.5% and 15.5%, respectively), and those in Cys groups were supplemented with 0.05%, 0.10%, 0.15% and 0.20% Cys on the basis of the NC group, respectively. The levels of total sulfur amino acid were 0.83% and 0.79% in early stage and later stage, respectively. The experiment lasted for 42 days with 2 periods. The results showed as follows: 1) the protein level in diet reduced by 4.5% significantly decreased average body weight (ABW) of broilers at 21 and 42 days of age and average daily gain (ADG) and average daily feed intake (ADFI) during all stages (P < 0.05), significantly increased the ratio of feed to gain (F/G) during early stage (P < 0.05). Adding 0.10% and 0.15% Cys to LP diet significantly increased ABW at 21 and 42 days of age and ADG and ADFI during later stage and whole stage (P < 0.05), and all of them increased linearly and quadratically with Cys supplemental level increasing(P < 0.05), significantly decreased F/G during early stage (P < 0.05), the addition of Cys recovered growth performance fed LP diet to similar level of that in PC group. 2) LP diet supplemented Cys did not significantly affected eviscerated percentage (EP) and leg muscle percentage (LMP) (P>0.05), but tended to increased LMP of broilers at 42 days of age (0.05 ≤ P < 0.10). LP diet supplemented Cys linearly and quadratically decreased breast muscle percentage (BMP) (P < 0.05), and significantly increased abdominal fat percentage (AFP) (P < 0.05). 3) No significant differences in serum biochemical parameters were observed among all groups of broilers at 21 and 42 days of age (P>0.05). 4) LP diet supplemented Cys significantly decreased nitrogen intake, nitrogen excretion and nitrogen retention rate of broilers during 19 to 21 days of age and 40 to 42 days of age (P < 0.05), and significantly elevated nitrogen retention rate during 19 to 21 days of age (P < 0.05). 5) The quadric curve fitting results showes that optimal Cys supplemental level in LP diet for the best growth performance and nitrogen metabolism was 0.13% to 0.17%. In conclusion, LP diet supplemented 0.15% Cys can improve body weight gain, feed intake and F/G of broilers, and elevate nitrogen retention rate. Based on growth performance and nitrogen metabolism, the Cys supplemental level in LP diet of broilers is recommended to be 0.13% to 0.17% (Cys accounts for 45% to 49% of total sulfur amino acids).
Key words: broilers    low protein diet    cysteine    sulfur amino acids    growth performance    carcass composition    nitrogen metabolism    

近年来,低蛋白质(LP)饲粮技术受到畜牧行业的高度关注。一方面,由于LP饲粮能节约豆粕等蛋白质饲料资源,降低养殖成本;另一方面,LP饲粮对减少畜禽生产中氮排泄和降低环境污染大有裨益[1]。然而,伴随饲粮粗蛋白质水平的降低,必需氨基酸水平也会降低,从而会对动物的生长性能和胴体组成产生负面影响[2-3]。因此,为确保动物在LP饲粮条件下的正常、健康生长,需适度提高饲粮中限制性氨基酸水平[4]

半胱氨酸(Cys)被认为是肉仔鸡LP饲粮中的限制性氨基酸[5]。LP饲粮中仅添加蛋氨酸(Met)来满足肉仔鸡的含硫氨基酸(主要包括Met和Cys)需求时,不仅可能导致Met供应过量而忽略了Cys的需求,更可能会降低Met的利用率并对肉仔鸡的生长产生不利影响[6]。Cys作为动物体内一种条件性必需氨基酸和功能性氨基酸,除合成蛋白质外,还会影响代谢中间体(如甲基供体等)的产量,进而影响动物的生长、发育和营养代谢等过程[7]。NRC(1994)推荐1~21日龄肉仔鸡对Cys的需要量为0.40%[8]。Kalinowski等[9]根据羽化率推荐1~21日龄雄性肉仔鸡对Cys的需要量为0.39%~0.44%。当饲粮蛋白质水平降低时,Cys水平也相应降低,这可能会加剧LP饲粮的负面影响。研究表明,LP饲粮中添加Met时,Cys水平可能会影响Met的利用率[5]。有研究发现,通过降低饲粮中Met水平来适度提高Cys水平,肉仔鸡的生长性能、胴体组成和营养物质消化率会得到改善[9-11]。但迄今为止,关于肉仔鸡LP饲粮中Cys应用研究的报道少见。因此,本试验通过在LP饲粮中添加不同水平的Cys,研究其对肉仔鸡生长性能、胴体组成、血清生化指标和氮代谢的影响,筛选出LP饲粮中Cys的适宜添加水平,以期为肉仔鸡的氨基酸营养提供理论依据。

1 材料与方法 1.1 试验材料

爱拔益加(AA)肉仔鸡公雏购自北京某有限公司。试验所用L-半胱氨酸盐酸盐一水合物[L-Cys·HCl·H2O,Cys含量68.3%]购于河北某生物制品有限公司。

1.2 试验设计

选用432只1日龄、体重相近的健康AA肉仔鸡公雏,随机分为6个组,每组6个重复,每个重复12只鸡。正对照(PC)组饲喂基础饲粮[前期(1~21日龄)和后期(22~42日龄)蛋白质水平分别为22%和20%],负对照(NC)组的蛋白质水平在PC组的基础上降低4.5个百分点(前期和后期蛋白质水平分别为17.5%和15.5%),Cys组在NC组的基础上分别添加0.05%、0.10%、0.15%和0.20%的Cys。各组前期和后期总含硫氨基酸水平分别为0.83%和0.79%。试验期42 d,分为前期和后期2个阶段。基础饲粮参照NRC(1994)和《鸡饲养标准》(NY/T 33—2004),采用标准回肠可消化(SID)氨基酸模式配制,其组成及营养水平见表 1

表 1 基础饲粮组成及营养水平(风干基础) Table 1 Composition and nutrient levels of basal diets (air-dry basis)  
1.3 饲养管理

试验期间肉仔鸡自由采食、饮水,24 h光照。试验前3 d室温33 ℃,此后每周降低2 ℃,直到24 ℃并维持。按照《AA肉仔鸡饲养管理手册》操作,正常防疫和消毒,鸡舍通风良好。试验过程中,每日记录鸡舍温度(23.5~24.5 ℃)和相对湿度(55%~60%),打扫卫生,记录死淘鸡数。

1.4 测定指标与方法 1.4.1 生长性能指标

分别于21和42日龄时,以重复为单位称空腹鸡重,记录各重复采食量。计算平均体重(ABW)、平均日增重(ADG)、平均日采食量(ADFI)、料重比(F/G)和死淘率(MER)。

1.4.2 胴体组成指标

于42日龄时,每个重复选取1只接近平均体重的试鸡,屠宰称重,分离胸肌、腿肌和腹脂,计算全净膛率(EP)、胸肌率(BMP)、腿肌率(LMP)和腹脂率(AFP)。

1.4.3 血清生化指标

分别于21和42日龄时,每个重复选取1只接近平均体重的试鸡,翅静脉采血,分离血清后于-20 ℃冷冻保存,备测。血清总蛋白(TP)、白蛋白(ALB)、尿酸(UA)、尿素氮(UN)、葡萄糖(GLU)、肌酐(CRE)含量和谷丙转氨酶(ALT)、谷草转氨酶(AST)活性采用KHB-1280全自动生化仪测定,试剂盒购买于上海某生物工程股份有限公司。

1.4.4 氮代谢指标

分别于19~21日龄和40~42日龄时,每个重复鸡笼下设粪盘,采用全收粪法开展氮平衡试验。记录每日采食量,以重复为单位进行收粪,连续收集新鲜粪样3 d,剔除毛屑杂物,用10%的盐酸固定氮(每100 g加入20 mL HCl),充分混匀。随后取出100 g粪样,于65 ℃烘箱中干燥72 h至恒重,室温回潮24 h再粉碎过40目筛,保存待测。计算公式如下:

1.5 数据统计分析

数据采用SPSS 19.0软件进行单因素方差分析(one-way ANONA),并采用Duncan氏法进行多重比较。生长性能和氮代谢指标以每笼鸡为单位,其他指标以单只试鸡为单位统计。用回归分析来评价Cys添加水平的一次和二次曲线效应,其中回归模型为:yij=α+β1xi+eij(一次线性),yij=α+β1xi+β2xi2+eij(二次曲线)。yij为响应变量;α为截距;β1β2为回归系数;xi为Cys添加效应(i=0,2,6,10),eij为第ij个观测误差。死淘率数据在方差分析前进行反正弦转换。数据用平均值和标准误(SE)表示,以P < 0.05为差异显著性标准,以0.05≤P < 0.10为差异有显著性趋势标准。

2 结果 2.1 LP饲粮中添加Cys对肉仔鸡生长性能的影响

表 2可知,与PC组相比,LP饲粮组肉仔鸡各生长阶段的生长性能指标在数值上均有一定程度的降低;22~42日龄时,0.10%和0.15% Cys添加组的ABW、ADG、ADFI和F/G与PC组相比无显著差异(P>0.05);1~42日龄时,0.10%、0.15%和0.20% Cys添加组的ADG、ADFI和F/G与PC组相比无显著差异(P>0.05)。在各生长阶段,肉仔鸡的ABW、ADG、ADFI均随Cys添加水平的提高呈线性和二次变化(P < 0.01),且0.05%、0.10%、0.15%和0.20% Cys添加组的ABW、ADG和ADFI均显著高于NC组(P < 0.05);1~21日龄时,F/G随Cys添加水平的提高呈线性和二次提高(P < 0.01);22~42日龄和1~42日龄时,LP饲粮组的F/G与PC组相比无显著差异(P>0.05)。各生长阶段LP饲粮组肉仔鸡的死淘率与PC组相比均无显著差异(P>0.05)。

表 2 LP饲粮中添加Cys对肉仔鸡生长性能的影响 Table 2 Effects of Cys supplementation in low protein diet on growth performance of broilers
2.2 LP饲粮中添加Cys对肉仔鸡胴体组成的影响

表 3可知,LP饲粮中添加Cys未见显著影响42日龄肉仔鸡的EP和LMP(P>0.05),但LP饲粮组的LMP较PC组有提高的趋势(0.05≤P < 0.10)。42日龄肉仔鸡的BMP随Cys添加水平的提高呈线性和二次变化(P < 0.05),其中0.10%、0.15%和0.20% Cys添加组的BMP显著低于NC组(P < 0.05)。LP饲粮组肉仔鸡的AFP均显著高于PC组(P < 0.05)。

表 3 LP饲粮中添加Cys对42日龄肉仔鸡胴体组成的影响 Table 3 Effects of Cys supplementation in low protein diet on carcass composition of broilers at 42 days of age  
2.3 LP饲粮中添加Cys对肉仔鸡血清生化指标的影响

表 4可知,LP饲粮中添加Cys对21和42日龄肉仔鸡血清中TP、ALB、UA、UN、GLU、CRE含量和ALT、AST活性均无显著影响(P>0.05),但0.20% Cys添加组21日龄时的ALT活性有线性降低的趋势(0.05≤P < 0.10)。

表 4 LP饲粮中添加Cys对肉仔鸡血清生化指标的影响 Table 4 Effects of Cys supplementation in low protein diet on serum biochemical parameters of broilers
2.4 LP饲粮中添加Cys对肉仔鸡氮代谢的影响

表 5可知,19~21日龄时,LP饲粮组肉仔鸡的NI、NEx和NR显著低于PC组(P < 0.05),NRR显著高于PC组(P < 0.05),其中NI和NR随Cys添加水平的提高呈线性和二次升高(P < 0.05)。40~42日龄时,LP饲粮组肉仔鸡的NI、NEx和NR显著低于PC组(P < 0.05),其中NI随Cys添加水平的提高呈线性和二次提高(P < 0.05),各组的NRR差异不显著(P>0.05)。

表 5 LP饲粮中添加Cys对肉仔鸡氮代谢的影响 Table 5 Effects of Cys supplementation in low protein diet on nitrogen metabolism of broilers
2.5 基于回归模型对肉仔鸡LP饲粮中Cys添加水平的估算

表 6可知,以ABW(21和42日龄)、ADG和ADFI(1~21日龄、22~42日龄和1~42日龄)及F/G(1~21日龄)为判断指标,二次曲线拟合结果表明,肉仔鸡LP饲粮中Cys的适宜添加水平分别为0.139%和0.131%, 0.138%、0.136%和0.136%, 0.131%、0.131%和0.131%, 0.162%。对BMP(42日龄)、NI(19~21日龄和40~42日龄)和NR(19~21日龄)进行二次曲线拟合,以BMP、NI和NR为判断指标,肉仔鸡LP饲粮中Cys的适宜添加水平分别为0.206%, 0.141%和0.230%, 0.148%。

表 6 基于回归模型对肉仔鸡LP饲粮中Cys添加水平的估算 Table 6 Estimation of Cys supplemental level in low protein diet of broilers based on regression model
3 讨论 3.1 LP饲粮中添加Cys对肉仔鸡生长性能的影响

Cys是Met代谢转硫途径中的重要中间产物,可生成牛磺酸、谷胱甘肽和硫化氢等物质,在机体抗氧化防御、营养代谢和调控细胞信号通路等方面发挥重要作用[12-14]。Met是家禽玉米-豆粕型饲粮中的第一限制性氨基酸,可单向转化为Cys,因此肉仔鸡LP饲粮中通常添加Met来满足总含硫氨基酸的需求。然而,机体内Met转化为Cys的效率未知,且饲料原料中Cys的含量并不一致,这可能会导致Met供应过量,同时会忽略Cys的重要性[1, 11]。Si等[1]报道,当肉仔鸡玉米-豆粕型饲粮中分别用DL-Met、L-Cys、豆粕和玉米蛋白粉提供0.05%的总含硫氨基酸时,肉仔鸡可获得相似的体增重和饲料效率,但L-Cys相比其他含硫氨基酸源作用效果更突出,这可能暗示肉仔鸡玉米-豆粕型饲粮中Cys的限制作用更突出。研究也表明,额外添加Cys能削弱过量Met对机体生理稳态的不利影响[15]。相似地,提高LP饲粮中Cys和Met的比例,不仅可节约Met的作用,还可提高Met的生物利用率[11]。Graber等[6]和Moran[16]报道,提高饲粮Cys和Met的比例对肉仔鸡生长期的作用效果更明显。基于Graber等[6]的研究,2~8周龄肉仔鸡对Cys需要量要从0.34%提高至0.44%。Moran[16]发现,当玉米-豆粕型饲粮中Cys供应量占总含硫氨基酸的40%~51%时,肉仔鸡的生长不受负面影响,且饲料效率随着Cys供应水平的增加而提高。但当Cys供应量占总含硫氨基酸的60%~77%时,肉仔鸡的生长性能受损[17-20],这可能与Cys影响动物采食行为有关[19-21]。以上这些证据表明,Cys是玉米-豆粕型饲粮中的限制性氨基酸,且肉仔鸡对Cys的需要量存在适宜范围,过低或过高都不利于肉仔鸡的生长。有研究报道,以肉仔鸡体增重、饲料效率和体蛋白质沉积率为判断依据,生长前期肉仔鸡对Cys的需要量分别占总含硫氨基酸的54%、56%和60%[6, 22]。相比正常蛋白质饲粮,LP饲粮中必需氨基酸缺乏可能有更明显的限制作用。添加必需氨基酸可避免LP饲粮带来的负面影响[23-24]。然而,当饲粮蛋白质水平降低超过3个百分点时,即使所有必需氨基酸满足需求,肉仔鸡的生长性能仍然会受损[25-26]。本试验也表明,当饲粮蛋白质水平降低4.5个百分点时(超过3个百分点),肉仔鸡的生长性能严重受损,这可能与饲粮蛋白质水平过度降低而导致饲粮含硫氨基酸(Met和Cys)不平衡或非必需氨基酸(如甘氨酸)缺乏有关[27-28]。本研究表明,试验前期,LP饲粮中添加0.15% Cys(Cys占总含硫氨基酸比例为47%)可显著改善肉仔鸡的ADG和ADFI;试验后期和试验全期,LP饲粮中添加0.10%和0.15% Cys(Cys分别占总含硫氨基酸的40%和47%)可提高肉仔鸡的ABW、ADG和ADFI,改善F/G;试验各个时期,LP饲粮中添加Cys对肉仔鸡的死淘率无显著影响。该结果提示LP饲粮中添加Cys对肉仔鸡各个时期的生长均有改善作用,但生长后期效果更明显,这与前人研究结果基本一致。LP饲粮中添加Cys促进肉仔鸡的生长,可能与Cys作为限制性氨基酸参与蛋白质的合成以及作为甲基供体之一参与氨基酸的转运和再生、促进机体内氨基酸平衡有关[12]

3.2 LP饲粮中添加Cys对肉仔鸡胴体组成的影响

胴体组成是反映机体营养素沉积和肌肉品质的重要指标。研究表明,饲粮蛋白质水平会显著影响肉仔鸡的胴体组成。Wang等[27]报道,饲粮蛋白质水平降低4.0~4.5个百分点时,42日龄肉仔鸡的AFP显著提高。本试验中,降低饲粮蛋白质水平对42日龄肉仔鸡的EP和LMP无显著影响,但随着Cys添加水平的提高,BMP显著降低,AFP显著升高,LMP有提高趋势。也就是说,在总含硫氨基酸不变的基础上,随着LP饲粮中Cys水平的提高(Met水平降低),肌肉沉积倾向于由胸肌向腿肌转移。这与先前Jariyahatthakij等[24]报道一致,即BMP对饲粮中Met含量最为敏感[29],LP饲粮中添加适量Met有利于增加胸肉重,改善胴体组成。本试验结果显示,LP饲粮中添加Cys并没有降低肉仔鸡的腹脂沉积,这可能与LP饲粮中能量蛋白比有关。LP饲粮中添加合成氨基酸通常会提高肉仔鸡的AFP,这可能是由于饲粮蛋白质水平降低,减少了多余氨基酸代谢过程的能量消耗,从而导致多余的能量转化为脂肪[30]。此外,还可能与LP饲粮中玉米用量多,导致饲粮净能增加有关[31]。本试验提示,LP饲粮中添加Cys有利于腿部蛋白质的沉积,而提高Met水平有利于胸部蛋白质的沉积,这对肉仔鸡LP饲粮的推广应用有重要参考价值。

3.3 LP饲粮中添加Cys对肉仔鸡血清生化指标的影响

血清生化指标与机体营养代谢和疾病密切相关,当机体受饲粮影响时,必定可通过血液指标反映出来。TP和ALB有维持组织蛋白平衡、血液渗透压和pH稳定等作用[32]。机体营养状况良好,蛋白质合成增加,TP和ALB含量升高。UA和UN是体内含氮物质(蛋白质和氨基酸)的代谢产物,其含量可间接反映机体蛋白质和核酸代谢情况。血液CRE是肌肉肌酸和磷酸的代谢产物,与体内肌肉总量密切相关,不易受到饲料成分的影响[33]。ALT和AST是动物机体2种重要的转氨酶,是反映氨基酸代谢的重要指标。当机体蛋白质水平升高时,会增加氨基酸的代谢速率,从而升高转氨酶的活性。本试验结果显示,LP饲粮中添加Cys对21和42日龄肉仔鸡血清中TP、ALB、UA、UN、GLU、CRE含量和ALT、AST活性均无显著影响;21日龄肉仔鸡血清中ALT活性有随Cys添加水平的提高而降低的趋势,但AST活性无相同的变化趋势,说明饲粮中添加Cys并非通过降低肝细胞膜的通透性降低ALT活性,而可能是加速血液中ALT的清除或抑制肝脏ALT的合成,降低ALT活性,具体原因有待进一步研究。

3.4 LP饲粮中添加Cys对肉仔鸡氮代谢的影响

目前,畜禽粪尿中含氮物质造成的环境污染问题日益突出,而饲粮蛋白质水平与氮素排放密切相关。配制满足动物营养需求的LP氨基酸平衡饲粮被认为是实现“畜牧业减排”的有效举措。研究表明,肉仔鸡饲粮蛋白质水平每降低1个百分点,氮排泄量就可降低10%[34]。Si等[1]报道,LP饲粮中添加合成氨基酸可在不影响肉仔鸡生长性能的前提下,最大限度地减少饲粮蛋白质资源的浪费和氮排放量。张建[35]研究表明,LP饲粮中添加Met可进一步降低氮排泄量,提高氮沉积率,从而减少氮对环境的污染。Belloir[36]发现,当饲粮蛋白质水平(19%)降低2个百分点时,氮的利用率可由60%提高至67%,进一步降低蛋白质水平2个百分点时,氮的利用率高达73%,与Shao等[37]研究结果一致。本试验结果显示,当饲粮蛋白质水平降低4.5个百分点时,19~21日龄和40~42日龄肉仔鸡的氮摄入量、氮排泄量和氮存留量均显著降低,其中氮排泄量和氮存留量的减少主要与氮总摄入量减少有关。此外,LP饲粮中添加Cys能提高19~21日龄肉仔鸡的氮存留率,但对40~42日龄肉仔鸡的氮存留率无显著影响,表明LP饲粮中添加Cys可能更有利于维持肉仔鸡生长前期的氮代谢平衡,增加机体氮的沉积。因此,LP饲粮中添加Cys对家禽养殖生产中增加氮沉积和降低粪尿中氮素对环境的污染有一定的指导意义。

3.5 基于回归模型对肉仔鸡LP饲粮中Cys添加水平的估算

本试验结果表明,LP饲粮中添加Cys可在一定程度上改善肉仔鸡的生长性能,提高19~21日龄的氮摄入量和氮存留量,但对血清生化代谢无显著影响。Cys添加呈二次效应,二次曲线拟合表明,饲粮Cys添加水平为0.13%~0.17%时,可获得最佳体增重、采食量、饲料转化率、氮摄入量和氮存留量。因此,综合考量生长性能和氮代谢指标,建议肉仔鸡LP饲粮中Cys适宜添加水平为0.13%~0.17%(Cys占总含硫氨基酸比例为45%~49%)。

4 结论

① 在蛋白质水平降低4.5个百分点且总含硫氨基酸满足需要的饲粮中,添加0.15% Cys(Cys占总含硫氨基酸比例为47%)能改善肉仔鸡各生长阶段的体增重、采食量和饲料效率,提高19~21日龄的氮存留率,但对肉仔鸡的全净膛率、腿肌率和血清生化指标无显著影响。

② 以生长性能和氮代谢为判断指标,推荐肉仔鸡玉米-豆粕型LP饲粮中Cys的适宜添加水平为0.13%~0.17%(Cys占总含硫氨基酸的比例为45%~49%)。

参考文献
[1]
SI J, FRITTS C A, WALDROUP P W, et al. Effects of excess methionine from meeting needs for total sulfur amino acids on utilization of diets low in crude protein by broiler chicks[J]. Journal of Applied Poultry Research, 2004, 13(4): 579-587. DOI:10.1093/japr/13.4.579
[2]
CORZO A, FRITTS C A, KIDD M T, et al. Response of broiler chicks to essential and non-essential amino acid supplementation of low crude protein diets[J]. Animal Feed Science and Technology, 2005, 118(3/4): 319-327.
[3]
SIEGERT W, WILD K J, SCHOLLENBERGER M, et al. Effect of glycine supplementation in low protein diets with amino acids from soy protein isolate or free amino acids on broiler growth and nitrogen utilisation[J]. British Poultry Science, 2016, 57(3): 424-434. DOI:10.1080/00071668.2016.1163523
[4]
KIDD M T, KERR B J, FIRMAN J D, et al. Growth and carcass characteristics of broilers fed low-protein, threonine-supplemented diets[J]. Journal of Applied Poultry Research, 1996, 5(2): 180-190. DOI:10.1093/japr/5.2.180
[5]
BAKER D H. Comparative nutrition and metabolism: explication of open questions with emphasis on protein and amino acids[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(50): 17897-17902. DOI:10.1073/pnas.0509317102
[6]
GRABER G, SCOTT H M, BAKER D H. Sulfur amino acid nutrition of the growing chick: effect of age on the capacity of cystine to spare dietary methionine[J]. Poultry Science, 1971, 50(5): 1450-1455. DOI:10.3382/ps.0501450
[7]
CHEN X P, CHEN T, SUN J J, et al. Lower methionine/cystine ratio in low-protein diet improves animal reproductive performance by modulating methionine cycle[J]. Food Science & Nutrition, 2019, 7(9): 2866-2874.
[8]
NRC. Nutrient requirements of poultry[M]. 9th ed. Wahshington, D.C.: The National Academies Press, 1994.
[9]
KALINOWSKI A, MORAN E T, Jr, WYATT C. Methionine and cystine requirements of slow-and fast-feathering male broilers from zero to three weeks of age[J]. Poultry Science, 2003, 82(9): 1423-1427. DOI:10.1093/ps/82.9.1423
[10]
SIEGERT W, AHMADI H, RODEHUTSCORD M. Meta-analysis of the influence of dietary glycine and serine, with consideration of methionine and cysteine, on growth and feed conversion of broilers[J]. Poultry Science, 2015, 94(8): 1853-1863. DOI:10.3382/ps/pev129
[11]
PACHECO L G, SAKOMURA N K, SUZUKI R M, et al. Methionine to cystine ratio in the total sulfur amino acid requirements and sulfur amino acid metabolism using labelled amino acid approach for broilers[J]. BMC Veterinary Research, 2018, 14(1): 364. DOI:10.1186/s12917-018-1677-8
[12]
丁景华, 张永亮. 蛋氨酸和胱氨酸互作关系研究进展[J]. 广东饲料, 2008, 17(1): 32-33, 16.
DING J H, ZHANG Y L. Research progress on the interaction between methionine and cystine[J]. Guangdong Feed, 2008, 17(1): 32-33, 16 (in Chinese). DOI:10.3969/j.issn.1005-8613.2008.01.019
[13]
印遇龙, 孔祥峰, 伍国耀, 等. 动物功能性氨基酸营养研究进展[C]//王康宁. 动物营养研究进展——中国畜牧兽医学会动物营养学分会第八届全国代表大学暨第十届学术研讨会论文集. 北京: 中国农业科学技术出版社, 2008: 132-145.
YIN Y L, KONG X F, WU G Y, et al. The research progress in animal functional amino acid nutrition[C]//WANG K N. The research progress in animal nutrition——Proceedings of the 8th national representative university and 10th academic symposium of animal nutrition branch of Chinese society of animal husbandry and veterinary medicine. Beijing: China Agricultural Science and Technology Press, 2008: 132-145. (in Chinese)
[14]
WU G Y, FANG Y Z, YANG S, et al. Glutathione metabolism and its implications for health[J]. The Journal of Nutrition, 2004, 134(3): 489-492. DOI:10.1093/jn/134.3.489
[15]
SAMUELS S E. Diet, total plasma homocysteine concentrations and mortality rates in broiler chickens[J]. Canadian Journal of Animal Science, 2003, 83(3): 601-604. DOI:10.4141/A02-029
[16]
MORAN E T, Jr. Cystine requirement of feather-sexed broiler chickens with sex and age[J]. Poultry Science, 1981, 60(5): 1056-1061. DOI:10.3382/ps.0601056
[17]
DILGER R N, BAKER D H. DL-methionine is as efficacious as L-methionine, but modest L-cystine excesses are anorexigenic in sulfur amino acid-deficient purified and practical-type diets fed to chicks[J]. Poultry Science, 2007, 86(11): 2367-2374. DOI:10.3382/ps.2007-00203
[18]
SASSE C E, BAKER D H. Sulfur utilization by the chick with emphasis on the effect of inorganic sulfate on the cystine-methionine interrelationship[J]. The Journal of Nutrition, 1974, 104(2): 244-251. DOI:10.1093/jn/104.2.244
[19]
FEATHERSTON W R, ROGLER J C. Methionine-cystine interrelations in chicks fed diets containing suboptimal levels of methionine[J]. The Journal of Nutrition, 1978, 108(12): 1954-1958. DOI:10.1093/jn/108.12.1954
[20]
SELL D R, FEATHERSTON W R, ROGLER J C. Methionine-cystine interrelationships in chicks and rats fed diets containing suboptimal levels of methionine[J]. Poultry Science, 1980, 59(8): 1878-1884. DOI:10.3382/ps.0591878
[21]
HIRAKAWA M S D A, BAKER D H. Sulfur amino acid nutrition of the growing puppy: determination of dietary requirements for methionine and cystine[J]. Nutrition Research, 1985, 5(6): 631-642. DOI:10.1016/S0271-5317(85)80244-X
[22]
WHEELER K B, LATSHAW J D. Sulfur amino acid requirements and interactions in broilers during two growth periods[J]. Poultry Science, 1981, 60(1): 228-236. DOI:10.3382/ps.0600228
[23]
OSPINA-ROJAS I C, MURAKAMI A E, DUARTE C R A, et al. Valine, isoleucine, arginine and glycine supplementation of low-protein diets for broiler chickens during the starter and grower phases[J]. British Poultry Science, 2014, 55(6): 766-773. DOI:10.1080/00071668.2014.970125
[24]
JARIYAHATTHAKIJ P, CHOMTEE B, POEIKHAMPHA T, et al. Methionine supplementation of low-protein diet and subsequent feeding of low-energy diet on the performance and blood chemical profile of broiler chickens[J]. Animal Production Science, 2017, 58(5): 878-885.
[25]
DEAN D W, BIDNER T D, SOUTHERN L L. Glycine supplementation to low protein, amino acid-supplemented diets supports optimal performance of broiler chicks[J]. Poultry Science, 2006, 85(2): 288-296. DOI:10.1093/ps/85.2.288
[26]
NAMROUD N F, SHIVAZAD M, ZAGHARI M. Effects of fortifying low crude protein diet with crystalline amino acids on performance, blood ammonia level, and excreta characteristics of broiler chicks[J]. Poultry Science, 2008, 87(11): 2250-2258. DOI:10.3382/ps.2007-00499
[27]
WANG W W, WANG J, WU S G, et al. Response of broilers to gradual dietary protein reduction with or without an adequate glycine plus serine level[J]. Italian Journal of Animal Science, 2020, 19(1): 127-136. DOI:10.1080/1828051X.2019.1704634
[28]
POWELL S, BIDNER T D, SOUTHERN L L. Effects of glycine supplementation at varying levels of methionine and cystine on the growth performance of broilers fed reduced crude protein diets[J]. Poultry Science, 2011, 90(5): 1023-1027. DOI:10.3382/ps.2010-01247
[29]
MAJDEDDIN M, GOLIAN A, KERMANSHAHI H, et al. Effects of methionine and guanidinoacetic acid supplementation on performance and energy metabolites in breast muscle of male broiler chickens fed corn-soybean diets[J]. British Poultry Science, 2019, 60(5): 554-563. DOI:10.1080/00071668.2019.1631447
[30]
BREGENDAHL K, SELL J L, ZIMMERMAN D R. Effect of low-protein diets on growth performance and body composition of broiler chicks[J]. Poultry Science, 2002, 81(8): 1156-1167. DOI:10.1093/ps/81.8.1156
[31]
BARZEGAR S, WU S B, CHOCT M, et al. Factors affecting energy metabolism and evaluating net energy of poultry feed[J]. Poultry Science, 2020, 99(1): 487-498. DOI:10.3382/ps/pez554
[32]
陈将, 刘国华, PIRZADO S A, 等. 低蛋白质饲粮补充缬氨酸对肉鸡生长性能、屠宰性能和血清指标的影响[J]. 动物营养学报, 2019, 31(4): 1604-1612.
CHEN J, LIU G H, PIRZADO S A, et al. Effects of valine supplementation in low-protein diets on growth performance, slaughter performance and serum indices of broilers[J]. Chinese Journal of Animal Nutrition, 2019, 31(4): 141-149 (in Chinese).
[33]
李蕴玉, 贾青辉, 王秀梅, 等. 低磷低蛋白日粮添加植酸酶和蛋白酶对肉鸡血清生化指标的影响[J]. 黑龙江畜牧兽医, 2016(6): 121-123.
LI Y Y, JIA Q H, WANG X M, et al. Effects of adding phytase and protease to low-phosphorus and low-protein diets on serum biochemical indexes of broilers[J]. Heilongjiang Animal Science and Veterinary Medicine, 2016(11): 121-123 (in Chinese).
[34]
冯倩倩, 武书庚, 齐广海, 张海军. 肉仔鸡低蛋白质饲粮的研究进展[J]. 动物营养学报, 2020, 32(9): 4010-4019.
FENG Q Q, WU S G, QI G H, et. Advances on study of low protein diets in broiles[J]. Chinese Journal of Animal Nutrition, 2020, 32(9): 4010-4019. (in Chinese)
[35]
张建. 肉鸡低蛋白日粮蛋氨酸需要量研究[D]. 硕士学位论文. 杨凌: 西北农林科技大学, 2013: 19-26.
ZHANG J. Research on methionine requirement in broiler low protein diets[D]. Master's Thesis. Yangling: Northwest A & F University, 2013: 19-26. (in Chinese)
[36]
BELLOIR P, MÉDA B, LAMBERT W, et al. Reducing the CP content in broiler feeds: impact on animal performance, meat quality and nitrogen utilization[J]. Animal, 2017, 11(11): 1881-1889. DOI:10.1017/S1751731117000660
[37]
SHAO D, SHEN Y R, ZHAO X, et al. Low-protein diets with balanced amino acids reduce nitrogen excretion and foot pad dermatitis without affecting the growth performance and meat quality of free-range yellow broilers[J]. Italian Journal of Animal Science, 2018, 17(3): 698-705. DOI:10.1080/1828051X.2017.1400414