2. 中国农业科学院北京畜牧兽医研究所, 北京 100193
2. Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
围产期是奶牛养殖过程中最关键的饲养阶段。这一时期由于营养、生理和代谢上的应激,使动物机体抗氧化功能降低,导致自由基产生和清除失衡,产生氧化应激[1]。持续的氧化应激可通过产生大量的氧自由基来攻击细胞,诱导脂质过氧化,并引起细胞膜结构和功能发生改变,造成生产性能、机体免疫功能和炎症应答能力下降,对病原微生物的易感性增强,进而引起乳腺疾病,如奶牛乳房炎[2],给生产造成严重的经济损失[3],而且影响奶牛的健康状况。金银花作为一种药用价值极高的植物而被广泛用作食品、保健饮料添加剂[4],其富含黄酮类、挥发油类、有机酸、三萜皂类化合物等60多种活性成分[5],具有抗癌、抗菌、抗氧化、抗炎、保肝等功效[6]。研究表明,金银花提取物能够通过调控奶牛瘤胃微生物的发酵模式[7],缓解奶牛热应激[8],调节围产期奶牛炎症反应和氧化应激[9],一定程度上促进乳腺上皮细胞(mammary epithelial cells,MEC)增殖并提高泌乳能力[10],且不产生耐药性、无残留,在预防围产期奶牛乳房炎发生和促进奶牛健康养殖上有广阔的应用前景。
1 围产期奶牛乳房炎的致病机制 1.1 奶牛体内自由基稳态失衡引起的氧化应激-免疫失衡-炎症反应联动效应围产期奶牛经历了从乳腺萎缩到发育、从胎儿的成长到分娩以及从干奶到乳汁的合成和分泌的生理变化[11],期间奶牛体内自由基稳态失衡引起的氧化应激-免疫失衡-炎症反应联动效应发生动态变化是导致奶牛发生炎症性疾病乳房炎的主要因素[12]。在围产后期,为了满足胎儿生长和哺乳所需的能量和其他营养物质,奶牛的代谢需求和氧气需求显著增加,机体在进行营养物分配的协调转换时导致奶牛能量负平衡及过量的活性氧(reactive oxygen species,ROS)富集[13],过量的ROS蓄积于细胞内,和机体抗氧化防御能力之间的不平衡使奶牛处于氧化应激[14]。长时间氧化应激导致机体免疫功能失衡[15],激活炎症信号通路,进而增加促炎细胞因子如肿瘤坏死因子-α(TNF-α)、白细胞介素-6(IL-6),白细胞介素-1β(IL-1β)的表达,导致奶牛乳腺产生炎症反应和疾病,最终导致奶牛免疫功能下降,引发奶牛乳房炎[16]。此外,围产期产生的过量ROS会引起奶牛MEC氧化应激,严重损害MEC的结构,破坏生物膜系统及其功能,使得MEC大量凋亡,导致奶牛健康状况下降,从而提高了奶牛乳房炎的发病率[17]。
1.2 局部免疫缺失导致致病菌入侵局部免疫的第一道防线是乳头。乳头的末端括约肌闭合,乳头管的内衬角蛋白积聚以及角蛋白含有的具有杀菌活性的抗菌脂肪酸成分阻止致病菌渗透[18]。但是围产期奶牛乳头管内衬角蛋白形成还不完全,当乳汁大量分泌使得乳房内压增加,乳头管内的平滑肌变得更加松弛,增加了致病菌进入乳头感染乳腺的机率[19]。最常见的致病菌主要有金黄色葡萄球菌(Staphylococcus aureus)、大肠杆菌(Escherichia coli)和链球菌(Streptococcu)。据报道,Staphylococcus aureus入侵MEC后在MEC内定植并产生大量毒力因子,迅速在细胞表面表达后与宿主细胞外基质成分黏附,损害宿主细胞的同时破坏了机体的免疫系统[20]。Escherichia coli通过乳头管道侵入乳房,迅速引发炎症反应,局部临床症状较明显,有时甚至出现全身性临床症状[21]。与Staphylococcus aureus感染相比,Escherichia coli引发的急性乳房炎的奶牛更容易出现弥散性血管内凝血的临床表现[22]。Streptococcus通过产生生物膜入侵MEC,吞噬并破坏机体的免疫细胞[23]。这增加了病原微生物感染奶牛乳腺组织的风险,病原微生物的刺激对奶牛乳腺组织造成不可逆的损伤,MEC数量减少、活性降低[24],导致产奶量下降[25]。
致病菌入侵乳腺组织后大量繁殖并在乳腺内产生大量内毒素,包括脂多糖(lipopolysaccharide,LPS)和脂磷壁酸(lipteichoic acid,LTA)等。内毒素抑制奶牛MEC的增殖,促进MEC合成并分泌促炎因子[IL-1β、IL-6、白细胞介素-8(IL-8)等]和细胞因子(TNF-α等)[26],并刺激MEC或巨噬细胞(macrophages)的免疫反应[27-28]。免疫反应启动后核转录因子-κB(nuclear factor-κB,NF-κB)途径被激活,该途径产生和调节参与宿主防御的促炎细胞因子。Toll样受体4(Toll-like receptor 4,TLR4)是识别LPS的主要受体[29],LPS的刺激使TLR4被激活,随后激活髓样分化因子88(MyD88)的依赖途径,而MyD88依赖途径激活了核因子-κB抑制蛋白激酶(inhibitor of nuclear factor-κB kinase,IκBk)和NF-κB,NF-κB的核转位促进了炎性细胞因子TNF-α、IL-1β和IL-6的表达[30],进一步增加细胞因子IL-8的产生和趋化因子配体3和5的释放,破坏奶牛MEC,导致乳房炎[31]。此外,机体会产生大量的白细胞和巨噬细胞来消除病原体,导致乳体细胞数(SCC)升高[32],进而堵塞乳腺导管,使乳汁无法排出[33],同时乳蛋白、乳糖和乳脂的合成受到抑制[34],牛奶中维生素和钙(Ca+)含量也会下降[35],从而进一步损害乳腺组织并降低乳品质。
2 金银花提取物预防围产期奶牛乳房炎的潜在作用机制 2.1 抗氧化作用围产期奶牛由于营养物质摄入不足、能量代谢加快、内分泌激素急剧变化等原因,导致能量需求和耗氧量需求增大,ROS生成增多,ROS的生成与机体抗氧化防御系统之间的不平衡导致机体产生氧化应激[36]。氧化应激是围产后期奶牛发生免疫抑制和炎症反应的一个重要原因,会导致乳房炎症等[13]。提高围产期奶牛的总抗氧化能力(total antioxidant capacity,T-AOC)能有效对抗围产期氧化应激引起的奶牛乳房炎[37]。反映机体T-AOC的指标主要包括过氧化氢(H2O2)、羟自由基、丙二醛(malondialdehyde,MDA)、α-生育酚、谷胱甘肽过氧化物酶(glutathione peroxidase,GSH-Px)、超氧化物歧化酶(superoxide dismutase,SOD)、过氧化氢酶等[38]。唐志文[39]研究表明,在饲粮中添加1~2 g/kg含有10%绿原酸的金银花提取物显著降低了奶牛血液中ROS水平,显著提高奶牛血液中T-AOC和SOD活性,使体内抗氧化酶的活性增强,有效缓解了围产期奶牛的氧化应激。Ma等[40]研究表明,饲粮中添加28 g/d的金银花提取物可以提高奶牛血清中GSH-Px活性和T-AOC,显著降低了血清中MDA含量。符运斌等[41]研究发现,在精料中添加0.2%的金银花提取物可以提高肉牛血清中T-AOC以及GSH-Px和SOD活性,并降低了血清中MDA含量。宋小珍等[42]研究发现,精料中添加0.2%的金银花提取物可显著提高肉牛血清中T-AOC和GSH-Px活性,并降低了血清中MDA含量。金银花中的绿原酸可以有效清除机体内的过氧化物自由基,如α-生育酚、超氧阴离子自由基、羟自由基等,除此之外,金银花提取物在脂溶性体系中有更强的抗氧化能力[43]。金银花提取物能够有效提高抗氧化水平的机制可能在于:发挥作用的主效因子是多酚类化合物,含有1~2个与芳香环相连的羟基,与自由基反应形成单电子氧化产物被迅速分解为非自由基产物;多酚类化合物中和自由基,促进核因子E2相关因子2(nuclear factor erythroidderived 2-like 2,NRF2)驱动细胞保护酶表达,激活了抗氧化酶血红素加氧酶-1(heme oxygenase 1,HO-1)的表达,抑制了细胞内ROS的产生,改善了细胞氧化损伤的程度[44-45]。以上研究表明,金银花提取物能够提高机体抗氧化水平,具有很强的抗氧化和清除自由基的能力,对促进奶牛健康养殖有重要意义。
2.2 抗炎作用围产期奶牛由于代谢异常和生理状态的改变以及妊娠晚期产生的分娩应激,不仅会使奶牛体内出现大量的ROS,而且会导致机体释放皮质甾类激素,破坏奶牛的免疫系统且免疫能力急剧下降,从而引发乳房炎等炎症性疾病[46],围产期奶牛炎症反应的直接表现是炎症细胞因子浓度发生改变。唐志文[39]研究表明,在饲粮中添加1~2 g/kg含有10%绿原酸的金银花提取物可以显著降低围产期奶牛血液中能够引起局部炎症反应的炎症指标(IL-1β、IL-6、触珠蛋白)含量,有效地改善了围产期奶牛的抗炎能力。金银花提取物显著降低了血清促炎标志物TNF-α、IL-1β和C-反应蛋白(C-reactive protein,CRP)含量,还明显抑制NF-κB炎症反应信号通路的表达[47]。Wang等[48]使用由金银花等中药组成的中药配方能显著降低乳房炎血清和乳腺组织中炎症指标TNF-α和IL-6含量,有效抑制炎症反应,减少乳房炎的发生。此外,金银花花蕾乙醇提取物HS-23可抑制TLR4蛋白和mRNA的表达,抑制MyD88含量的增加,通过抑制TLR4信号通路减轻炎症反应[49]。金银花提取物新绿原酸显著降低LPS刺激而激活的IκBk磷酸化,抑制NF-κB的活化,降低TNF-α、IL-1β和IL-6含量[50]。
此外,金银花提取物可抑制炎症反应的多种信号传导途径[50]。Han等[51]发现,从冻干金银花中提取的多酚类化合物通过下调诱导型一氧化氮合酶(inducible nitric oxide synthase,iNOS)和环氧合酶-2(cyclooxygenase-2,COX-2)表达,显著抑制了LPS诱导的IL-1β和TNF-α的含量以及一氧化氮(nitric oxide,NO)和前列腺素E2(prostaglandin E2,PGE2)的表达,通过抑制炎症细胞因子和介质抑制小胶质细胞BV-2产生的炎症。金银花提取物能够抑制小胶质细胞BV-2炎症是由于金银花提取物抑制了NF-κB激活下游的TNF-α、IL-1β、单核细胞趋化蛋白-1(monocyte chemoattractant protein-1,MCP-1)、基质金属蛋白酶-9(matrix metalloproteinase-9,MMP-9)基因表达,以及ROS的产生[52]。上述研究表明,金银花提取物抗炎活性物质通过抑制NF-κB信号通路,进而下调下游的促炎细胞因子和趋化因子的表达发挥抗炎作用。因此,金银花提取物通过抑制促炎细胞因子来发挥抑制炎证反应的作用,可能是一种有效预防围产期奶牛乳房炎的新途径。
2.3 抗菌作用围产期奶牛局部免疫防线的缺失使大量致病菌进入乳头感染MEC,引起MEC炎症反应,导致奶牛发生乳房炎[18]。Staphylococcus aureus、Escherichia coli和Streptococcu是最常见的奶牛乳房炎致病菌。研究表明,金银花提取物可通过抑制甚至杀死致病菌,达到预防奶牛乳房炎的作用,其抑菌机制主要有2个方面:第一,抑制细菌生物膜的成熟。细菌的生物被膜依附在由多糖、蛋白质和胞外DNA组成的高度水合基质中,这种环境为细菌繁殖提供了许多益处,包括保护细菌免受外部威胁,提高细菌对抗菌剂的抗药性等[53]。金银花提取物以剂量和时间依赖的方式显著抑制了乳导管中的细菌生物膜的形成,导致细菌生物被膜发育不成熟[54]。第二,抑制细菌蛋白质的合成和表达。任妮[55]研究表明,1 000 μg/mL金银花水提取物能有效修复Staphylococcus aureus所引起的奶牛MEC损伤。谷静娟[56]研究发现,金银花水煎液有预防Staphylococcus aureus感染乳腺作用和抑制乳腺组织的细菌生长作用,可减轻乳腺病变和炎症损伤,使乳腺功能恢复正常。此外,还有研究表明,金银花提取物对致病菌有抑制作用。崔一喆等[57]也发现,灌注0.2 mL/d金银花提取物可显著降低Staphylococcus aureus和Escherichia coli对小鼠的致病率。张忠斌等[58]利用改良石硫法制得的金银花提取物,对Staphylococcus aureus和Escherichia coli有较强的抗菌效果,抑菌圈直径在2.41~3.47 mm。许钦坤等[59]也采用牛津杯法对Escherichia coli和Staphylococcus aureus进行体外抑菌试验,研究证实金银花提取物对这2种菌有很强的抑菌效果,最低抑菌浓度(minimum inhibitory concentration,MIC)均为31.20 mg/mL。高海成[60]通过电泳试验分析金银花提取物对细菌蛋白质的DNA的影响,证实金银花提取物能够导致Staphylococcus aureus和Escherichia coli蛋白质条带的严重缺失,同时DNA含量明显下降。上述研究表明,金银花提取物抑制Staphylococcus aureus和Escherichia coli的作用机制可能是金银花提取物的活性成分抑制了细菌细胞内的核酸的产生,导致细菌无法进行DNA的复制和RNA的合成,抑制了蛋白质的合成和表达,抑制了细菌外多糖基质和细胞内大分子物质的合成来抵抗致病菌,在预防围产期奶牛乳房炎方面具有一定的参考价值。
3 小结与展望金银花提取物不仅能为预防奶牛乳房炎提供新的防治策略,更为通过营养调控手段为奶牛健康养殖提供技术途径。但是,目前金银花提取物预防围产期奶牛乳房炎的作用机制研究存在许多不足之处:1)金银花提取物对机体氧化应激-免疫失衡-炎症反应联动效应的作用机制及作用靶点有待进一步解析;2)金银花提取物中活性物质与奶牛机体免疫互作网络模型有待构建。另外,今后研究课题还需对金银花提取物营养活性物质主效因子和指纹图谱技术进行更深入的研究。
[1] |
童海达, 王佳茗, 宋英. Keap1-Nrf2-ARE在机体氧化应激损伤中的防御作用[J]. 癌变·畸变·突变, 2013, 25(1): 71-75. TONG H D, WANG J M. Protective effect of Keap1-NRF2-ARE on oxidative stress injury[J]. Carcinogenesis, Aberrance and Mutation, 2013, 25(1): 71-75. (in Chinese) |
[2] |
SORDILLO L M. Factors affecting mammary gland immunity and mastitis susceptibility[J]. Livestock Production Science, 2005, 98(1/2): 89-99. |
[3] |
AGHAMOHAMMADI M, HAINE D, KELTON D F, et al. Herd-level mastitis-associated costs on Canadian dairy farms[J]. Frontiers in veterinary science, 2018, 5: 100. DOI:10.3389/fvets.2018.00100 |
[4] |
ZHANG T, LIU H, BAI X, et al. Fractionation and antioxidant activities of the water-soluble polysaccharides from Lonicera japonica Thunb[J]. International Journal of Biological Macromolecules, 2020, 151: 1058-1066. DOI:10.1016/j.ijbiomac.2019.10.147 |
[5] |
张颖, 王林泠, 李世升. 金银花中绿原酸含量及提取效果影响因素研究综述[J]. 黄冈师范学院学报, 2017, 37(3): 32-36. ZHANG Y, WANG L L, LI S S. Review of chlorogenic acid content in honeysuckle and influencing factors of extraction effect[J]. Journal of Huanggang Normal University, 2017, 37(3): 32-36 (in Chinese). DOI:10.3969/j.issn.1003-8078.2017.03.07 |
[6] |
高铎, 马峰涛, 孙鹏. 金银花提取物的生物学功能及其在养殖中的应用[J]. 动物营养学报, 2019, 31(5): 2045-2051. GAO D, MA F T, SUN P. Biological function of honeysuckle extract and its application in aquaculture[J]. Chinese Journal of Animal Nutrition, 2019, 31(5): 2045-2051 (in Chinese). DOI:10.3969/j.issn.1006-267x.2019.05.010 |
[7] |
黄祥元, 唐伟, 龙冰雁. 金银花提取物对肉牛瘤胃体外发酵、挥发性脂肪酸组成及气体产生的影响[J]. 中国饲料, 2019(24): 55-58. HUANG X Y, TANG W, LONG B Y. Effects of honeysuckle extract on rumen fermentation, volatile fatty acid composition and gas production in vitro[J]. China Feed, 2019(24): 55-58 (in Chinese). |
[8] |
马峰涛, 单强, 金宇航, 等. 金银花提取物对热应激奶牛生产性能、血清生化指标和免疫功能的影响[J]. 动物营养学报, 2020, 32(5): 2209-2217. MA F T, SHAN Q, JIN Y H, et al. Effects of honeysuckle extract on performance, serum biochemical index and immune function of heat-stressed dairy cows[J]. Chinese Journal of Animal Nutrition, 2020, 32(5): 2209-2217 (in Chinese). DOI:10.3969/j.issn.1006-267x.2020.05.030 |
[9] |
唐志文, 蒋林树, 杨亮, 等. 金银花提取物在围产期奶牛氧化应激及炎症中的应用前景[J]. 动物营养学报, 2018, 30(10): 3843-3849. TANG Z W, JIANG L S, YANG L, et al. Application prospect of honeysuckle extract on oxidative stress and inflammation in perinatal cows[J]. Chinese Journal of Animal Nutrition, 2018, 30(10): 3843-3849 (in Chinese). DOI:10.3969/j.issn.1006-267x.2018.10.007 |
[10] |
任妮, 宋岩岩, 吴卫妮, 等. 金银花水提取物对山羊乳腺上皮细胞增殖及β-酪蛋白表达的影响[J]. 西北农业学报, 2013, 22(7): 19-23. REN N, SONG Y Y, WU W N, et al. Effect of extracts from Flos lonicerae on proliferation and expression of beta-casein of goat mammary epithelial cell in vitro[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2013, 22(7): 19-23 (in Chinese). |
[11] |
弓剑, 晓敏. 围产期奶牛免疫功能障碍及其发生原因[J]. 中国饲料, 2016(14): 15-18. GONG J, XIAO M. Immune dysfunction and its causes in perinatal dairy cows[J]. China Feed, 2016(14): 15-18 (in Chinese). |
[12] |
卢德勋. 动物营养学科发展在战略方向上的重大突破: 构建动物健康营养理论和技术体系及其实际应用[J]. 动物营养学报, 2021, 33(1): 1-12. LU D X. A major breakthrough in development of animal nutrition in strategic direction: building an animal health and nutrition theory and technology system and its application[J]. Chinese Journal of Animal Nutrition, 2021, 33(1): 1-12 (in Chinese). DOI:10.3969/j.issn.1006-267x.2021.01.001 |
[13] |
SORDILLO L M, AITKEN S L. Impact of oxidative stress on the health and immune function of dairy cattle[J]. Veterinary Immunology and Immunopathology, 2009, 128(1/3): 104-109. |
[14] |
SORDILLO L M. Nutritional strategies to optimize dairy cattle immunity[J]. Journal of Dairy Science, 2016, 99(6): 4967-4982. DOI:10.3168/jds.2015-10354 |
[15] |
OSORIO J S, TREVISI E, JI P, et al. Biomarkers of inflammation, metabolism, and oxidative stress in blood, liver, and milk reveal a better immunometabolic status in peripartal cows supplemented with Smartamine M or MetaSmart[J]. Journal of Dairy Science, 2014, 97(12): 7437-7450. DOI:10.3168/jds.2013-7679 |
[16] |
SUN X, JIA H, XU Q, et al. Lycopene alleviates H2O2-induced oxidative stress, inflammation and apoptosis in bovine mammary epithelial cells via the NFE2L2 signaling pathway[J]. Food & Function, 2019, 10(10): 6276-6285. |
[17] |
YEUM K J, ALDINI G, CHUNG H Y, et al. The activities of antioxidant nutrients in human plasma depend on the localization of attacking radical species[J]. The Journal of Nutition, 2003, 133(8): 2688-2691. |
[18] |
SORDILLO L M. Mammary gland immunobiology and resistance to mastitis[J]. The Veterinary Clinics of North America: Food Animal Practice, 2018, 34(3): 507-523. DOI:10.1016/j.cvfa.2018.07.005 |
[19] |
SORDILLO L M, STREICHER K L. Mammary gland immunity and mastitis susceptibility[J]. Journal of Mammary Gland Biology and Neoplasia, 2002, 7(2): 135-146. DOI:10.1023/A:1020347818725 |
[20] |
MONISTERO V, GRABER H, POLLERA C, et al. Staphylococcus aureus isolates from bovine mastitis in eight countries: genotypes, detection of genes encoding different toxins and other virulence genes[J]. Toxins, 2018, 10(6): 247. DOI:10.3390/toxins10060247 |
[21] |
BURVENICH C, BANNERMAN D D, LIPPOLIS J D, et al. Cumulative physiological events influence the inflammatory response of the bovine udder to Escherichia coli infections during the transition period[J]. Journal of Dairy Science, 2007, 90(Suppl.1): E39-E54. |
[22] |
BANI ISMAIL Z A, DICKINSON C. Alterations in coagulation parameters in dairy cows affected with acute mastitis caused by E.coli and S.aureus pathogens[J]. Veterinary Research Communications, 2010, 34(6): 533-539. DOI:10.1007/s11259-010-9424-z |
[23] |
CROWLEY R C, LEIGH J A, WARD P N, et al. Differential protein expression in Streptococcus uberis under planktonic and biofilm growth conditions[J]. Applied and Environmental Microbiology, 2011, 77(1): 382-384. DOI:10.1128/AEM.01099-10 |
[24] |
ZHAO X, LACASSE P. Mammary tissue damage during bovine mastitis: causes and control[J]. Journal of Animal Science, 2008, 86(Suppl.13): 57-65. |
[25] |
OLIVER S P, LEWIS M J, GILLESPIE B E, et al. Prepartum antibiotic treatment of heifers: milk production, milk quality and economic benefit[J]. Journal of Dairy Science, 2003, 86(4): 1187-1193. DOI:10.3168/jds.S0022-0302(03)73702-3 |
[26] |
WU Y, SUN Y, ZHANG Z, et al. Effects of peptidoglycan, lipoteichoic acid and lipopolysaccharide on inflammation, proliferation and milk fat synthesis in bovine mammary epithelial cells[J]. Toxins, 2020, 12(8): 497. DOI:10.3390/toxins12080497 |
[27] |
TANG D L, KANG R, COYNE C B, et al. PAMPs and DAMPs: signal 0s that spur autophagy and immunity[J]. Immunological Reviews, 2012, 249(SI): 158-175. |
[28] |
CHENG N, LIANG Y, DU X, et al. Serum amyloid A promotes LPS clearance and suppresses LPS-induced inflammation and tissue injury[J]. EMBO Reports, 2018, 19(10): e45517. |
[29] |
蔡炳冈, 朱进, 汪茂荣. Toll样受体4信号通路研究进展[J]. 医学研究生学报, 2015, 28(11): 1228-1232. CAI B G, ZHU J, WANG M R. Progress of toll-like receptor 4 signaling pathway[J]. Journal of Medical Postgraduates, 2015, 28(11): 1228-1232 (in Chinese). |
[30] |
AKIRA S, TAKEDA K. Toll-like receptor signalling[J]. Nature Reviews Immunology, 2004, 4(7): 499-511. DOI:10.1038/nri1391 |
[31] |
CALDEIRA M, BRUCKMAIER R M, WELLNITZ O. Meloxicam affects the inflammatory responses of bovine mammary epithelial cells[J]. Journal of Dairy Science, 2019, 102(11): 10277-10290. DOI:10.3168/jds.2019-16630 |
[32] |
HOLMØY I H, TOFTAKER I, KIRKEBY C, et al. A cohort study of the effect of Streptococcus agalactiae on milk yield and somatic cell count in Norwegian dairy cows[J]. Journal of Dairy Science, 2019, 102(9): 8385-8399. DOI:10.3168/jds.2018-16155 |
[33] |
陈岩. 母牛乳房炎的病因、危害、症状、治疗方法和预防[J]. 现代畜牧科技, 2020(4): 86-87. CHEN Y. Etiology, harm, symptoms, treatment and prevention of cow mastitis[J]. Technical Advisor for Animal Husbandry, 2020(4): 86-87 (in Chinese). |
[34] |
邢玫, 王振雄, 李岩. 规模化奶牛场奶牛乳房炎感染情况调查报告[J]. 新疆畜牧业, 2007(3): 33-34. XING M, WANG Z X, LI Y. Investigation report on cow mastitis infection in large-scale dairy farms[J]. Xinjiang Animal Husbandry, 2007(3): 33-34 (in Chinese). DOI:10.3969/j.issn.1003-4889.2007.03.011 |
[35] |
谢怀根, 许世勇. 某奶牛场奶牛乳房炎调查结果及分析[J]. 当代畜牧, 2003(5): 21-23. XIE H G, XU SHI Y. Investigation results and analysis of dairy cow mastitis in a dairy farm[J]. Contemporary Animal Husbandry, 2003(5): 21-23 (in Chinese). |
[36] |
ABUELO A, HERNÁNDEZ J, BENEDITO J L, et al. Redox biology in transition periods of dairy cattle: role in the health of periparturient and neonatal animals[J]. Antioxidants (Basel, Switzerland), 2019, 8(1): 20. |
[37] |
LEBLANC S J, LISSEMORE K D, KELTON D F, et al. Major advances in disease prevention in dairy cattle[J]. Journal of Dairy Science, 2006, 89(4): 1267-1279. DOI:10.3168/jds.S0022-0302(06)72195-6 |
[38] |
GONG J, XIAO M. Effect of organic selenium supplementation on Selenium status, oxidative stress, and antioxidant status in selenium-adequate dairy cows during the periparturient period[J]. Biological Trace Element Research, 2018, 186(2): 430-440. DOI:10.1007/s12011-018-1323-0 |
[39] |
唐志文. 金银花提取物对围产期奶牛健康状况及生产性能的作用效果研究[D]. 硕士学位论文. 北京: 中国农业科学院, 2018. TANG Z W. Effect of honeysuckle extract on health status and production performance of perinatal dairy cows[D]. Master's Thesis. Beijing: Chinese Academy of Agricultural Sciences, 2018. (in Chinese) |
[40] |
MA F T, SHAN Q, JIN Y H, et al. Effect of Lonicera japonica extract on lactation performance, antioxidant status, and endocrine and immune function in heat-stressed mid-lactation dairy cows[J]. Journal of Dairy Science, 2020, 103(11): 10074-10082. DOI:10.3168/jds.2020-18504 |
[41] |
符运斌, 黄涛, 瞿明仁, 等. 金银花提取物对热应激肉牛血清激素及抗氧化指标的影响[J]. 动物营养学报, 2016, 28(3): 926-931. FU Y B, HUANG T, QU M R, et al. Effects of honeysuckle extract on serum hormones and antioxidant indexes of heat stressed beef cattle[J]. Chinese Journal of Animal Nutrition, 2016, 28(3): 926-931 (in Chinese). DOI:10.3969/j.issn.1006-267x.2016.03.035 |
[42] |
宋小珍, 符运斌, 黄涛, 等. 金银花提取物对高温条件下肉牛抗氧化指标和骨骼肌肌纤维结构的影响[J]. 动物营养学报, 2015, 27(11): 3534-3540. SONG X Z, FU Y B, HUANG T, et al. Effects of honeysuckle extract on antioxidant indexes and skeletal muscle fiber structure of beef cattle under high temperature[J]. Chinese Journal of Animal Nutrition, 2015, 27(11): 3534-3540 (in Chinese). DOI:10.3969/j.issn.1006-267x.2015.11.026 |
[43] |
XIANG Z, NING Z. Scavenging and antioxidant properties of compound derived from chlorogenic acid in South-China honeysuckle[J]. LWT-Food Science and Technology, 2008, 41(7): 1189-1203. DOI:10.1016/j.lwt.2007.08.006 |
[44] |
BAO L, LI J, ZHA D, et al. Chlorogenic acid prevents diabetic nephropathy by inhibiting oxidative stress and inflammation through modulation of the Nrf2/HO-1 and NF-κB pathways[J]. International Immunopharmacology, 2018, 54: 245-253. DOI:10.1016/j.intimp.2017.11.021 |
[45] |
YAO J, PENG S, XU J, et al. Reversing ROS-mediated neurotoxicity by chlorogenic acid involves its direct antioxidant activity and activation of Nrf2-ARE signaling pathway[J]. BioFactors, 2019, 45(4): 616-626. |
[46] |
MAVANGIRA V, SORDILLO L M. Role of lipid mediators in the regulation of oxidative stress and inflammatory responses in dairy cattle[J]. Research in Veterinary Science, 2018, 116: 4-14. DOI:10.1016/j.rvsc.2017.08.002 |
[47] |
LIU D, YU X, SUN H, et al. Flos lonicerae flavonoids attenuate experimental ulcerative colitis in rats via suppression of NF-κB signaling pathway[J]. Naunyn-Schmiedeberg's Archives of Pharmacology, 2020, 393(12): 2481-2494. DOI:10.1007/s00210-020-01814-4 |
[48] |
WANG L U, HE C, HE B, et al. Effects of Jin-Ying-Tang on Staphy lococcus aureus-induced mastitis in rabbit[J]. Immunopharmacology and Immunotoxicology, 2012, 34(5): 786-793. DOI:10.3109/08923973.2012.655423 |
[49] |
KIM S J, YOON S J, KIM Y M, et al. HS-23, Lonicera japonica extract, attenuates septic injury by suppressing Toll-like receptor 4 signaling[J]. Journal of Ethnopharmacology, 2014, 155(1): 256-266. DOI:10.1016/j.jep.2014.05.021 |
[50] |
PARK S Y, JIN M L, YI E H, et al. Neochlorogenic acid inhibits against LPS-activated inflammatory responses through up-regulation of Nrf2/HO-1 and involving AMPK pathway[J]. Environmental Toxicology and Pharmacology, 2018, 62: 1-10. DOI:10.1016/j.etap.2018.06.001 |
[51] |
HAN M H, LEE W S, NAGAPPAN A, et al. Flavonoids isolated from flowers of Lonicera japonica thunb.inhibit inflammatory responses in BV2 microglial cells by suppressing TNF-αand IL-β through PI3K/Akt/NF-kb signaling pathways[J]. Phytotherapy Research: PTR, 2016, 30(11): 1824-1832. DOI:10.1002/ptr.5688 |
[52] |
KWON S H, MA S X, HONG S, et al. Lonicera japonica Thunb. extract inhibits lipopolysaccharide-stimulated inflammatory responses by suppressing NF-κB signaling in BV-2 microglial cells[J]. Journal of Medicinal Food, 2015, 18(7): 762-775. DOI:10.1089/jmf.2014.3341 |
[53] |
BIRARDA G, DELNERI A, LAGATOLLA C, et al. Multi-technique microscopy investigation on bacterial biofilm matrices: a study on Klebsiella pneumoniae clinical strains[J]. Analytical and Bioanalytical Chemistry, 2019, 411(27): 7315-7325. DOI:10.1007/s00216-019-02111-7 |
[54] |
MINAMI M, TAKASE H, NAKAMURA M, et al. Effect of Lonicera caerulea var.emphyllocalyx fruit on biofilm formed by porphyromonas gingivalis[[J]. BioMed Research International, 2019, 2019: 3547858. |
[55] |
任妮. 金银花对金黄色葡萄球菌致山羊乳腺上皮细胞损伤的修复作用[D]. 硕士毕业论文. 杨凌: 西北农林科技大学, 2012. REN N. Repair effect of honeysuckle on goat mammary epithelial cell damage caused by Staphylococcus aureus[D]. Master's Thesis. Yangling: Northwest A&F University, 2012. (in Chinese) |
[56] |
谷静娟. 清热解毒药抗金黄色葡萄球菌黏附乳腺上皮细胞机理研究[D]. 硕士学位论文. 乌鲁木齐: 新疆农业大学, 2014. GU J J. Mechanism of antipyretic and detoxification drugs on Staphylococcus aureus adhesion to mammary epithelial cells[D]. Master's Thesis. Urumqi: Xinjiang Agricultural University, 2014. (in Chinese) |
[57] |
崔一喆, 王秋菊, 王新, 等. 金银花提取物对常见致病菌的体内外抑菌活性测定[J]. 黑龙江畜牧兽医, 2015(5): 155-157. CUI Y Z, WANG Q J, WANG X, et al. Determination of antibacterial activity of honeysuckle extract against common pathogenic bacteria in vitro and in vivo[J]. Heilongjiang Animal Science and Veterinary Medicine, 2015(5): 155-157 (in Chinese). |
[58] |
张忠斌, 沈洪宽, 孙玉风, 等. 金银花中酚酸类有效成分的提取及其抗菌活性研究[J]. 中国民族民间医药, 2019, 28(16): 27-29. ZHANG Z B, SHEN H K, SUN Y F, et al. Study on the extraction and antibacterial activity of phenolic acids from Flos lonicerae[J]. Chinese Journal of Ethnomedicine and Ethnopharmacy, 2019, 28(16): 27-29 (in Chinese). |
[59] |
许钦坤, 赵翠燕. 金银花提取物对4种病原菌的体外抑菌效果研究[J]. 韶关学院学报, 2019, 40(12): 58-60. XU Q K, ZHAO C Y. Study on the antibacterial effect of Flos lonicerae extract against four pathogens in vitro[J]. Journal of Shaoguan University, 2019, 40(12): 58-60 (in Chinese). DOI:10.3969/j.issn.1007-5348.2019.12.012 |
[60] |
高海成. 金银花提取物抗菌作用机制的前期研究[D]. 硕士学位论文. 合肥: 合肥工业大学, 2011. GAO H C. Preliminary study on antibacterial mechanism of honeysuckle extract[D]. Master's Thesis. Hefei: Hefei University of Technology, 2011. (in Chinese) |