动物营养学报    2021, Vol. 33 Issue (10): 5802-5808    PDF    
脂多糖刺激24 h后对仔猪腓肠肌炎症和蛋白质降解相关基因与miRNA表达的影响
范佳俊 , 黄兴法 , 汪洋 , 李先根 , 万志成 , 刘玉兰 , 康萍     
武汉轻工大学动物营养与饲料科学湖北省重点实验室, 武汉 430023
摘要: 本试验旨在探讨脂多糖(LPS)刺激24 h后,与仔猪腓肠肌炎症和蛋白质降解相关基因与miRNA的表达变化。试验选用12头健康的28日龄断奶的杜×长×大三元杂交仔猪[体重为(7.09±0.90)kg],随机分为对照组(n=6)和LPS组(n=6),所有试验猪自由采食和饮水,预试期为15 d。在试验第15天,LPS组仔猪腹腔注射100 μg/kg BW的LPS,并于注射24 h后麻醉屠宰,对照组仔猪则腹腔注射等量的无菌生理盐水,并于注射后立即麻醉屠宰,取腓肠肌样品待测。结果显示:LPS处理24 h后,腓肠肌炎症细胞因子白细胞介素-1β(IL-1β)和肿瘤坏死因子-α(TNF-α),以及Toll样受体4(TLR4)信号通路关键基因TLR4、骨髓分化因子88(MyD88)、白细胞介素受体相关激酶1(IRAK1)mRNA的表达量显著上升(P < 0.05),且核因子-κB(NF-κB)和蛋白质降解相关基因叉头转录因子4(FOXO4)mRNA的表达量也显著上升(P < 0.05)。LPS处理24 h后,腓肠肌miR-145的表达量显著上升(P < 0.05),而miR-30b、miR-155、miR-132、miR-130a和miR-146a的表达量显著下降(P < 0.05)。综上所述,LPS处理24 h后的仔猪腓肠肌损伤可能是通过TLR4信号通路介导FOXO4表达上调所引起的。miRNA可能参与LPS刺激后24 h腓肠肌炎症和蛋白质降解反应的调控。
关键词: 脂多糖    腓肠肌    断奶仔猪    炎症    蛋白质降解    miRNA    
Effects of Lipopolysaccharide on Inflammation and Protein Degradation-Related Genes and miRNA Expression in Gastrocnemius of Piglets after 24 h Stimulation
FAN Jiajun , HUANG Xingfa , WANG Yang , LI Xiangen , WAN Zhicheng , LIU Yulan , KANG Ping     
Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
Abstract: This experiment was conducted to investigate the expression changes of genes and miRNA related to inflammation and protein degradation in gastrocnemius of weaned piglets challenged by lipopolysaccharide (LPS) at 24 h. Twelve healthy Duroc×Landrace×Yorkshine 28-day-old weaned piglets[body weight: (7.09±0.90) kg] were selected, and randomly divided into 2 groups: control group (n=6) and LPS group (n=6). All piglets were allowed ad libitum access to water and feed. On day 15 of experiment, the piglets in LPS group were injected with LPS (100 μg/kg BW) and sacrificed at 24 h post-injection. The control group received the same amount of sterile saline, and sacrificed immediately after the injection. Gastrocnemius samples were selected for testing. The results showed as follows: at 24 h after LPS treatment, the mRNA expression levels of inflammatory factors interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), as well as the key genes of Toll-like receptor 4 (TLR4) signaling pathway including TLR4, myeloid differentiation factor 88 (MyD88) and interleukin receptor-associated kinase 1 (IRAK1) were significantly increased in gastrocnemius (P < 0.05), and the mRNA expression levels of nuclear factor-κB (NF-κB) and protein degradation-related gene forkhead box O4 (FOXO4) were also significantly increased (P < 0.05). Moreover, miR-145 expression level in gastrocnemius was significantly increased (P < 0.05), and the expression levels of miR-30b, miR-155, miR-132, miR-130a and miR-146a were significantly decreased at 24 h after LPS treatment (P < 0.05). The results indicate that the gastrocnemius injury can be caused by the up-regulation of FOXO4 expression mediated by TLR4 signaling pathway at 24 h after LPS treatment. The miRNA may be involved in muscle inflammation and protein degradation at 24 h after LPS stimulation.
Key words: lipopolysaccharide    gastrocnemius    weaned piglet    inflammation    protein degradation    miRNA    

养殖环境中的不利因素引起的动物应激以及与之相关的生产性能下降一直是现代养殖业面临的重要问题。骨骼肌作为脊椎动物机体含量最丰富的组织,参与了多种重要功能[1]。因此,探究调控肌肉炎症的相关分子机制,对减少外界不利因素给养殖业带来的经济损失尤为重要。

脂多糖(LPS)又称内毒素,是常见的一种病原体相关分子模式(PAMP),可经Toll样受体4(TLR4)和核苷酸结合寡聚域受体(NOD)信号通路,激活核因子-κB(NF-κB),从而诱导肿瘤坏死因子-α(TNF-α)、白细胞介素-1β(IL-1β)和白细胞介素-6(IL-6)等炎症因子的合成与释放[2-4]。且NF-κB可通过激活叉头转录因子(FOXO)/泛素-蛋白酶体途径(UPP)导致肌肉蛋白质的降解[5-6]。肌萎缩F-box蛋白(MAFbx)和肌环脂蛋白1(MuRF1)是UPP信号通路中引起肌肉蛋白降解的关键蛋白[6]。此外,IL-1β和TNF-α可通过激活磷酸化p38/丝裂原活化蛋白激酶(p38/MAPK)途径提高MAFbx表达,从而加速肌肉蛋白质降解[7]。miRNA是一类单链非编码小分子RNA,广泛存在于真核细胞生物中,其主要作用方式是通过抑制靶mRNA翻译或使其降解,从而在转录后水平调控基因的表达[8]。人类基因组中miRNA数量从几百到数千不等[9],且每种miRNA都可能调节数以千百计基因的表达[10]。目前已知miRNA可参与调节天然免疫细胞和适应性免疫细胞的成熟、增殖、分化和激活[9]。腓肠肌是小腿浅层的大块肌肉,可表达多个Toll样受体(TLR)和NOD[11]。相关研究表明腓肠肌蛋白质的加速降解可能是由NF-κB转录活性增强引起的[12],但目前还没有miRNA对腓肠肌炎症反应和蛋白质降解调控作用的相关研究。因此,本试验通过LPS应激模型,主要探讨断奶仔猪腓肠肌炎症和蛋白质降解相关基因以及与两者相关的miRNA在LPS处理24 h后的表达变化,以期为后续研究miRNA在炎症和蛋白质降解反应中的调控机制提供支持。

1 材料与方法 1.1 试验设计

试验选用12头健康的28日龄断奶杜×长×大三元杂交仔猪[体重为(7.09±0.90) kg],随机分为对照组(6头)和LPS组(6头)。LPS组仔猪于试验第15天给予腹腔注射100 μg/kg BW的LPS(大肠杆菌血清型055:B5,纯度>97%),对照组仔猪给予腹膜注射等量的无菌生理盐水[2]

1.2 饲养管理

采用单栏饲喂,每栏1头猪,栏大小为1.80 m×1.10 m,光照为12 h光与12 h暗循环,保持舍内清洁与通风,并控制环境温度在22~25 ℃,试验期间自由采食与饮水。基础饲粮为玉米-豆粕型饲粮,参考NRC(1998)[13]饲养标准制定,其组成及营养水平见表 1

表 1 基础饲粮组成及营养水平(风干基础)   % Table 1 Composition and nutrient levels of the basal diet (air-dry basis)
1.3 样品收集

对照组注射生理盐水后立即麻醉屠宰,LPS组注射LPS 24 h后麻醉屠宰,取腓肠肌样品保存至-80 ℃冰箱待测。

1.4 指标测定

肌肉中相关基因mRNA引物序列及表达量测定参照陈逢等[14]。miRNA表达量的测定则依据SYBR Green PCR Mix(购自Gene Pharma公司)和mirVanaTM qRT-PCR Primer Set(购自TaKaRa公司)说明书进行,并以U6为内参,使用2-ΔΔCt法计算miRNA表达量[15]

1.5 数据统计与分析

试验数据采用SPSS 22.0软件进行独立样本t检验,结果采用平均值±标准误表示,P < 0.05表示差异显著,以0.05<P < 0.10表示有趋势。

2 结果与分析 2.1 LPS刺激24 h后对仔猪腓肠肌炎症和蛋白质降解相关基因表达的影响

表 2可知,LPS处理24 h后,炎性因子IL-1βTNF-α mRNA的表达量显著上升(P < 0.05),且TLR4信号通路关键基因TLR4MyD88和白细胞介素受体相关激酶1(IRAK1)mRNA的表达量显著上升(P < 0.05),同时NF-κBFOXO4 mRNA的表达量也显著上升(P < 0.05);此外,NOD信号通路的关键基因NOD2 mRNA的表达量呈现上升趋势(P=0.06),但MuRF1 mRNA的表达量呈现下降趋势(P=0.07)。

表 2 LPS刺激24 h后对仔猪腓肠肌中TLR4和NOD信号通路关键基因表达的影响 Table 2 Effects of LPS on expression of inflammation and protein degradation-related genes in gastrocnemius of piglets after 24 h stimulation
2.2 LPS刺激24 h后对仔猪腓肠肌炎症和蛋白质降解相关miRNA表达的影响

表 3可知,LPS处理24 h后,miR-145的表达量显著上升(P < 0.05),miR-30b、miR-155、miR-132、miR-130a和miR-146a的表达量显著下降(P < 0.05),miR-370的表达量呈现下降趋势(P=0.06)。

表 3 LPS刺激24 h后对仔猪腓肠肌炎症和蛋白质降解相关miRNA表达的影响 Table 3 Effects of LPS on expression of inflammation and protein degradation-related miRNA in gastrocnemius of piglets after 24 h stimulation
3 讨论

LPS刺激是构建仔猪免疫应激模型最经典的方式[16],可引起全身多处的炎症反应和组织结构功能损伤,并加速肌肉蛋白质降解[2]。相关研究表明,LPS引发的炎症反应是一种急性炎症反应[17]。TLR4是介导LPS应答的主要受体,被LPS激活的TLR4信号通路可激活下游因子NF-κB,诱导炎性因子的表达[18]。炎性因子IL-1β和TNF-α能通过激活p38/MAPK途径上调MAFbx表达[7]。NF-κB还可通过FOXO/UPP,活化MuRF1和MAFbx,最终导致肌肉蛋白质的降解[5-6, 19]

本试验结果显示LPS处理24 h后仔猪腓肠肌中TLR4信号通路关键基因(TLR4MyD88IRAK1)、炎性因子(IL-1βTNF-α)和肌肉蛋白质降解相关基因(FOXO4)mRNA表达量均显著上调,而NOD信号通路关键基因[NOD1NOD2、受体相互作用蛋白激酶2 (RIPK2)]mRNA表达量无显著变化。这说明LPS通过激活TLR4信号通路上调NF-κB的表达,进而促进炎性因子IL-1βTNF-α以及与肌肉蛋白质降解相关基因FOXO4的表达,从而影响肌肉炎症和蛋白质降解反应。万志成等[20]发现,LPS处理4 h后,TLR4MyD88NOD2RIPK2TNF-αNF-κB以及与肌肉蛋白质降解相关基因FOXO1MuRF1在腓肠肌中的表达量均显著上升,这与本研究结果基本相符,说明LPS刺激后,在较长时间内依然促进腓肠肌炎症和蛋白质降解,而LPS诱导的FOXO表达可能在炎症发生的不同时期表达量并不相同。然而,李先根等[21]对LPS处理后不同时间点背最长肌的研究结果显示,LPS处理24 h后TLR4和NOD信号通路关键基因以及NF-κB mRNA表达量均未呈现显著上升,这与本研究结果并不相符,原因可能是由于取样部位不同所致,LPS可能更易导致腓肠肌炎症反应。

目前已知miRNA参与调节天然免疫细胞和适应性免疫细胞的成熟、增殖、分化和激活[9],且同一miRNA在同一组织中炎症发生的不同时期表达量并不一致[22]。前人研究表明,miR-145和miR-146a参与先天免疫,可抑制天然免疫炎症信号的激活[23]。本试验结果显示,LPS处理24 h后,IL-1βTNF-α mRNA的表达量均显著上升,与此同时miR-145的表达量亦显著上升,表明miR-145在炎症反应后期可能具有抗炎作用;相反的,miR-146a的表达量显著下降,相关研究表明在LPS诱导的炎症模型中miR-146a的表达量峰值出现在处理后的2 h[22],这可能是由于其仅在炎症反应前期发挥抗炎作用。此外,Fordham等[24]研究表明,miR-30b表达量上升可抑制由LPS诱导的促炎细胞因子TNF-α和IL-6的释放。Li等[25]对大鼠脑缺血再灌注损伤造模24 h后的研究显示miR-30b表达量未呈现显著上升。本试验结果显示,LPS处理24 h后,随着TNF-α mRNA表达量的显著上升,miR-30b的表达量显著下降,可能是由于LPS处理24 h后炎症反应已有所缓解,因此未检测到miR-30b表达量的上调。张圆芳[26]研究表明,miR-155表达量下降可抑制炎性因子TNF-α、IL-1β等的释放,从而改善炎症损伤。Tili等[27]研究表明,在LPS处理的小鼠中高表达的miR-155可促使更多的TNF-α被表达,从而加剧炎症反应。与之相反,在本研究中,miR-155的表达量在LPS刺激24 h后显著下降,但炎性因子IL-1βTNF-α mRNA表达量显著上升,原因可能是TNF-α表达量的增加可抑制miR-155的表达,以避免更激烈的炎症反应。许多研究表明,miR-132可通过抑制IL-1βNF-κB的表达发挥抗炎作用[28]。相关研究表明在LPS诱导的炎症模型中miR-132表达量峰值出现在处理后2 h[22]。本试验结果显示,miR-132表达量在LPS处理24 h后显著下降,而IL-1βNF-κB mRNA表达量显著上升,可能是由于miR-132仅在炎症前期发挥抗炎作用。另有研究表明miR-130a可能与TNF-α之间存在负相关[29]。该结论与本试验结果一致,LPS处理24 h后TNF-α mRNA的表达量显著上升,miR-130a的表达量显著下降。

4 结论

LPS处理24 h后可能主要通过激活TLR4信号通路上调NF-κB的表达,进而促进炎性因子IL-1βTNF-α以及与肌肉蛋白质降解相关基因FOXO4的表达,从而促进仔猪腓肠肌炎症和蛋白质降解反应。miRNA则可能通过影响仔猪腓肠肌炎症因子表达,进而调控炎症发生与肌肉蛋白质降解。

参考文献
[1]
HUANG J R, ZHU X P. The molecular mechanisms of calpains action on skeletal muscle atrophy[J]. Physiological Research, 2016, 65(4): 547-560.
[2]
陈逢. 鱼油通过TLR4和NOD信号通路对脂多糖诱导的仔猪肠道、肝脏损伤和肌肉蛋白质降解的调控作用[D]. 硕士学位论文. 武汉: 武汉轻工大学, 2013.
CHEN F. Regulation of fish oil on intestinal and liver injury and muscle protein degradation induced by lipopolysaccharide in piglets through TLR4 and NOD signaling pathways[D]. Master's Thesis. Wuhan: Wuhan Polytechnic University, 2013. (in Chinese)
[3]
汪洋. 程序性坏死信号通路在脂多糖诱导的仔猪肠道损伤中的作用[D]. 硕士学位论文. 武汉: 武汉轻工大学, 2019.
WANG Y. Role of programmed necrosis signaling pathway in lipopolysaccharide-induced intestinal injury in piglets[D]. Master's Thesis. Wuhan: Wuhan Polytechnic University, 2019. (in Chinese)
[4]
MCKERNAN D P. Pattern recognition receptors as potential drug targets in inflammatory disorder[J]. Advances in Protein Chemistry and Structural Biology, 2020, 119: 65-109.
[5]
VAN QUICKELBERGHE E, DE SUTTER D, VAN LOO G, et al. A protein-protein interaction map of the TNF-induced NF-κB signal transduction pathway[J]. Scientific data, 2018, 5: 180289. DOI:10.1038/sdata.2018.289
[6]
ZHONG C, PU L Y, FANG M M, et al. ATRA regulates innate immunity in liver ischemia/reperfusion injury via RARα/Akt/Foxo1 signaling[J]. Biological & Pharmaceutical Bulletin, 2018, 41(4): 530-535.
[7]
UWADA J, YAZAWA T, NAKAZAWA H, et al. Store-operated calcium entry (SOCE) contributes to phosphorylation of p38 MAPK and suppression of TNF-α signalling in the intestinal epithelial cells[J]. Cellular Signalling, 2019, 63: 109358. DOI:10.1016/j.cellsig.2019.109358
[8]
BARTEL D P. MicroRNAs: genomics, biogenesis, mechanism, and function[J]. Cell, 2004, 116(2): 281-297. DOI:10.1016/S0092-8674(04)00045-5
[9]
WANG J, YANG L Z, ZHANG J S, et al. Effects of microRNAs on skeletal muscle development[J]. Gene, 2018, 668: 107-113. DOI:10.1016/j.gene.2018.05.039
[10]
BRENNAN G P, HENSHALL D C. MicroRNAs as regulators of brain function and targets for treatment of epilepsy[J]. Nature Reviews Neurology, 2020, 16(9): 506-519. DOI:10.1038/s41582-020-0369-8
[11]
YADAV A, DAHUJA A, DABUR R. Dynamics of Toll-like receptors signaling in skeletal muscle atrophy[J/OL]. Current Medicinal Chemistry, 2021. (2021-02-01). https://pubmed.ncbi.nlm.nih.gov/33530901/.doi: 10.2174/0929867328666210202113734.
[12]
BARREIRO E, PUIG-VILANOVA E, MARIN-CORRAL J, et al. Therapeutic approaches in mitochondrial dysfunction, proteolysis, and structural alterations of diaphragm and gastrocnemius in rats with chronic heart failure[J]. Journal of Cellular Physiology, 2016, 231(7): 1495-1513. DOI:10.1002/jcp.25241
[13]
NRC. Nutrient requirements of swine[S]. 10th ed. Washington, D.C. : The National Academies Press, 1998.
[14]
陈逢, 刘玉兰, 李权, 等. TLR4信号通路关键基因在断奶仔猪不同组织中的mRNA表达[J]. 中国畜牧杂志, 2013, 49(17): 53-57.
CHEN F, LIU Y L, LI Q, et al. The mRNA expression of key genes in TLR4 signaling pathway in different tissues of weaned piglets[J]. Chinese Journal of Animal Science, 2013, 49(17): 53-57 (in Chinese). DOI:10.3969/j.issn.0258-7033.2013.17.013
[15]
LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method[J]. Methods, 2001, 25(4): 402-408. DOI:10.1006/meth.2001.1262
[16]
LIU Y L, HUANG J J, HOU Y Q, et al. Dietary arginine supplementation alleviates intestinal mucosal disruption induced by Escherichia coli lipopolysaccharide in weaned pigs[J]. The British Journal of Nutrition, 2008, 100(3): 552-560. DOI:10.1017/S0007114508911612
[17]
ZHAO Y, MA D, DONG B C, et al. Per2 attenuates LPS-induced chondrocyte injury through the PTEN/PI3K/Akt signalling pathway[J]. Bioscience Reports, 2020, 40(5).
[18]
KHAN H U, AAMIR K, JUSUF P R, et al. Lauric acid ameliorates lipopolysaccharide (LPS)-induced liver inflammation by mediating TLR4/MyD88 pathway in Sprague Dawley (SD) rats[J]. Life Sciences, 2021, 265: 118750. DOI:10.1016/j.lfs.2020.118750
[19]
王胜军, 刘妍, 刘玉兰, 等. 炎症反应致肌肉蛋白质降解机理的研究进展[J]. 中国畜牧兽医, 2016, 43(9): 2379-2387.
WANG S J, LIU Y, LIU Y L, et al. Research progress on the mechanisms of inflammation-induced muscle protein degradation[J]. China Animal Husbandry & Veterinary Medicine, 2016, 43(9): 2379-2387 (in Chinese).
[20]
万志成, 汪龙梅, 张琳, 等. 香菇多糖对脂多糖刺激断奶仔猪肌肉组织炎症反应及蛋白质降解相关基因表达的影响[J]. 动物营养学报, 2020, 32(3): 1327-1333.
WAN Z C, WANG L M, ZHANG L, et al. Effects of lentinan on expression of inflammation and protein degradation-related genes in muscle of weaned piglets challenged by lipopolysaccharide[J]. Chinese Journal of Animal Nutrition, 2020, 32(3): 1327-1333 (in Chinese).
[21]
李先根, 汪洋, 王秀英, 等. 脂多糖刺激对断奶仔猪肌肉炎症和蛋白质降解相关基因表达的影响[J]. 中国畜牧杂志, 2019, 55(4): 74-77.
LI X G, WANG Y, WANG X Y, et al. Effects of lipopolysaccharide challenge on genes related to muscle inflammation and protein degradation of weaned piglets[J]. Chinese Journal of Animal Science, 2019, 55(4): 74-77 (in Chinese).
[22]
KANG P, HUANG X F, WAN Z C, et al. Kinetics of changes in gene and microRNA expression related with muscle inflammation and protein degradation following LPS-challenge in weaned piglets[J]. Innate Immunity, 2021, 27(1): 23-30. DOI:10.1177/1753425920971032
[23]
WU H, FAN H, SHOU Z X, et al. Extracellular vesicles containing miR-146a attenuate experimental colitis by targeting TRAF6 and IRAK1[J]. International Immunopharmacology, 2019, 68: 204-212. DOI:10.1016/j.intimp.2018.12.043
[24]
FORDHAM J B, NAQVI A R, NARES S. Regulation of miR-24, miR-30b, and miR-142-3p during macrophage and dendritic cell differentiation potentiates innate immunity[J]. Journal of Leukocyte Biology, 2015, 98(2): 195-207. DOI:10.1189/jlb.1A1014-519RR
[25]
LI Y, YI M, WANG D, et al. LncRNA KCNQ1OT1 regulates endoplasmic reticulum stress to affect cerebral ischemia-reperfusion injury through targeting miR-30b/GRP78[J]. Inflammation, 2020, 43(6): 2264-2275. DOI:10.1007/s10753-020-01295-w
[26]
张圆芳. 基于miR-146a、miR-155调控NF-κB信号通路探讨芍药甘草汤治疗颈型颈椎病兔颈肌炎症损伤的作用机制[D]. 硕士学位论文. 福州: 福建中医药大学, 2017.
ZHANG Y F. Mechanism of Shaoyao Gancao decoction on inflammatory injury of cervical muscle in rabbits with cervical spondylosis based on miR-146a and miR-155 regulating NF-κB signaling pathway[D]. Master's Thesis. Fuzhou: Fujian University of Traditional Chinese Medical, 2017. (in Chinese)
[27]
TILI E, MICHAILLE J J, CIMINO A, et al. Modulation of miR-155 and miR-125b levels following lipopolysaccharide/TNF-alpha stimulation and their possible roles in regulating the response to endotoxin shock[J]. Journal of Immunology, 2007, 179(8): 5082-5089. DOI:10.4049/jimmunol.179.8.5082
[28]
OSTRYCHARZ E, WASIK U, KEMPINSKA-PODHORODECKA A, et al. Melatonin protects cholangiocytes from oxidative stress-induced proapoptotic and proinflammatory stimuli via miR-132 and miR-34[J]. International Journal of Molecular Sciences, 2020, 21(24): 9667. DOI:10.3390/ijms21249667
[29]
LI Z C, HAN N, LI X, et al. Decreased expression of microRNA-130a correlates with TNF-α in the development of osteoarthritis[J]. International Journal of Clinical and Experimental Pathology, 2015, 8(3): 2555-2564.