动物营养学报    2021, Vol. 33 Issue (11): 6340-6348    PDF    
黑水虻幼虫粉替代鱼粉对加州鲈生长性能、形体指标、体成分及营养物质沉积率的影响
彭凯1,2,3,4 , 萧鸿发1,2,3 , 莫文艳1,2,3 , 王国霞1,2,3 , 黄燕华4,5     
1. 广东省农业科学院动物科学研究所, 广州 510640;
2. 广东省畜禽育种与营养研究重点实验室, 广州 510640;
3. 农业农村部华南动物营养与饲料重点实验室, 广州 510640;
4. 广州飞禧特生物科技有限公司, 广州 510640;
5. 仲恺农业工程学院健康养殖创新研究院, 广州 510225
摘要: 本试验旨在研究黑水虻幼虫粉替代鱼粉对加州鲈生长性能、形体指标、体成分及营养物质沉积率的影响。选择初始体重约为4.9 g的健康加州鲈鱼苗525尾,随机分为5组,每组3个重复,每个重复35尾。5组试验鱼分别投喂以黑水虻幼虫粉替代饲料中0(G0,作为对照)、7.5%(G7.5)、15.0%(G15)、22.5%(G22.5)、30.0%(G30)鱼粉的等氮等脂饲料,试验期为62 d。结果表明:与G0组相比,G30组饲料系数显著升高(P < 0.05),蛋白质效率显著降低(P < 0.05)。各组间存活率、摄食量、末体重、增重率及特定生长率无显著差异(P > 0.05)。与G0组相比,G7.5和G15组脏体比显著升高(P < 0.05),G15、G22.5和G30组肠体比显著升高(P < 0.05),G30组肝体比显著降低(P < 0.05)。各组间肥满度、胃体比及腹脂率无显著差异(P > 0.05)。与G0组相比,G15和G22.5组全鱼粗灰分和钙含量显著下降(P < 0.05)。各组间全鱼水分、粗蛋白质、粗脂肪及总磷含量无显著差异(P > 0.05)。与G0组相比,G15和G22.5组全鱼钙沉积率显著下降(P < 0.05)。各组间蛋白质、脂肪、灰分及磷沉积率无显著差异(P > 0.05)。综上所述,饲料中添加黑水虻幼虫粉替代30.0%的鱼粉可显著增加加州鲈的饲料系数和肠体比,显著降低蛋白质效率和肝体比。饲料中添加黑水虻幼虫粉替代15.0%和22.5%的鱼粉可显著降低加州鲈全鱼粗灰分和钙的含量,抑制体内钙的沉积。
关键词: 黑水虻幼虫粉    加州鲈    生长性能    营养物质沉积    
Effects of Replacing Fish Meal with Black Soldier Fly Larvae Meal on Growth Performance, Physical Indexes, Body Composition and Nutrient Retention Rates of Micropterus salmoides
PENG Kai1,2,3,4 , XIAO Hongfa1,2,3 , MO Wenyan1,2,3 , WANG Guoxia1,2,3 , HUANG Yanhua4,5     
1. Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
2. Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China;
3. Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture in Rural Affairs, Guangzhou 510640, China;
4. Guangzhou Fishtech Biotechnology Co., Ltd., Guangzhou 510640, China;
5. Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
Abstract: A 62-day feeding trail was conducted to evaluate the effects of replacing fish meal with black soldier fly larvae meal on growth performance, physical indexes, body composition and nutrient retention rates of Micropterus salmoides. A total of 525 juvenile Micropterus salmoides with an initial body weight about 4.9 g were divided into 5 groups with 3 replicates in each group and 35 fish in each replicate. Five isoproteic and isolipidic diets were formulated by adding black soldier fly larvae meal to replace 0 (G0, as control), 7.5% (G7.5), 15.0% (G15), 22.5% (G22.5) and 30.0% (G30) of fish meal in diets. The results showed as follows: compared with G0 group, the feed conversion ratio was significantly increased (P < 0.05) and protein efficiency ratio was significantly decreased (P < 0.05) in G30 group. There were no significant differences in survival rate, feed intake, final body weight, weight gain rate and specific growth rate among groups (P > 0.05). The viscerosomatic index in G7.5 and G15 groups as well as the intestinesomatic index in G15, G22.5 and G30 groups were significantly increased compared with G0 group (P < 0.05), but the hepatosomatic index in G30 group was significantly decreased (P < 0.05). There were no significant differences in condition factor, gastric somatic index and intraperitoneal fat ratio among group (P > 0.05). Whole body ash and calcium contents in G15 and G22.5 groups were significantly decreased compared with G0 group (P < 0.05), but there were no significant differences in whole body moisture, crude protein, crude lipid and total phosphorus contents among groups (P > 0.05). The calcium retention rate in G15 and G22.5 groups was significantly decreased compared with G0 group (P < 0.05), but there were no significant differences in protein, lipid, ash and phosphorus retention rates among groups (P > 0.05). In conclusion, adding black soldier fly larvae meal in the diet to replace 30.0% fish meal can significantly increase the feed conversion ratio and intestinesomatic index, but significantly reduce the protein efficiency ratio and hepatosomatic index of Micropterus salmoides. Replacement of 15.0% and 22.5% fish meal with black soldier fly larvae meal can significantly reduce the whole body ash and calcium contents and inhibit calcium retention in the whole body of Micropterus salmoides.
Key words: black soldier fly larvae meal    Micropterus salmoides    growth performance    nutrient retention    

水产饲料习惯以鱼粉作为主要的动物性蛋白质原料,然而近年来鱼粉资源的匮乏以及价格持续不断的上涨,迫使饲料工业不得不寻求鱼粉的替代品,以确保水产养殖可持续发展。植物性蛋白质原料(如豆粕、杂粕等)由于蛋白质含量低、氨基酸组成不平衡、存在抗营养因子、缺乏鱼粉特殊功能成分(如牛磺酸、羟脯氨酸)等原因[1-2],达不到鱼粉应用效果,往往造成饲料适口性差、动物生产性能下降以及肠道炎症等问题[3]。在过去的十几年时间,对昆虫蛋白的研究及其在水产饲料中替代鱼粉的应用受到国际社会的广泛关注。鱼类有采食昆虫作为生物饵料的天性,昆虫蛋白具有良好的适口性,可作为水产动物良好的蛋白质和脂肪来源,甚至富含几丁质、月桂酸等生物活性成分[4-6],是较为理想的鱼粉替代品。

黑水虻(Hermetia illucens)属于双翅目水虻科腐生性昆虫,又名亮斑扁角水虻,黑水虻能够利用畜禽粪便和生活垃圾产生高价值的动物性蛋白质和油脂,其生物转化率高、繁殖周期短、生长速度快、适口性好,因此被广泛应用于城市环境治理和饲料工业。黑水虻幼虫粉必需氨基酸模式与鱼粉十分相似,适合作为动物蛋白质原料[7]。研究表明,黑水虻幼虫粉可部分或完全替代鱼粉,且对水产动物的生长性能和饲料营养物质消化率无负面影响[3, 8-13]。本课题组前期研究表明,黑水虻幼虫粉替代饲料中50%的鱼粉不影响花鲈的生长性能,但显著增加了全鱼脂肪沉积,且损坏了肝脏和肠道组织结构[13]。Wang等[3]报道,脱脂黑水虻虫粉替代饲料中64%的鱼粉不影响花鲈的生长性能,但显著降低了花鲈全鱼粗灰分含量和灰分沉积率。陈晓瑛等[14]研究表明,黑水虻幼虫粉替代饲料中40%的鱼粉显著降低了黄颡鱼的生长性能,增加了全鱼粗脂肪含量和脂肪沉积率,但对全鱼粗蛋白质和粗灰分沉积率无显著影响。这说明饲料中添加黑水虻幼虫粉替代鱼粉对水产动物的生长性能及营养物质沉积的影响不同,可能归因于动物品种及黑水虻虫粉替代鱼粉比例的不同。

加州鲈(Micropterus salmoides),又名大口黑鲈,原产于北美洲,是我国南方养殖的优质肉食性淡水鱼类之一。近年来,受消费者青睐,加州鲈养殖规模不断扩大。2019年,全国加州鲈养殖产量近50万t[15],在促进我国渔业增效和水产养殖业发展中起重要支撑作用。黑水虻虫粉替代鱼粉已经在花鲈上进行了研究[3, 13],但其在加州鲈上的应用效果仍未见报道。因此,本试验以加州鲈为试验动物,主要研究黑水虻幼虫粉替代鱼粉对加州鲈生长性能、形体指标、体成分及营养物质沉积率的影响,旨为黑水虻幼虫粉替代鱼粉及其在加州鲈养殖中的应用提供参考。

1 材料与方法 1.1 试验饲料

试验用鱼粉为秘鲁鱼粉,营养成分含量(干物质基础)如下:粗蛋白质66%、粗脂肪8%、粗灰分15%。试验用黑水虻幼虫粉由餐厨有机物养殖的8日龄鲜虫制成,其营养成分含量(干物质基础)如下:粗蛋白质48.3%、粗脂肪19.5%、粗灰分11.5%、几丁质6.0%。黑水虻幼虫粉的氨基酸含量(干物质基础)与胡俊茹等[13]的报道一致。基础饲料中鱼粉含量为45%,在基础饲料中分别添加0、4.64%、9.28%、13.92%和18.56%黑水虻幼虫粉,替代0(G0,作为对照)、7.5%(G7.5)、15.0%(G15)、22.5%(G22.5)和30.0%(G30)的鱼粉,配制5种等氮等脂试验饲料。试验饲料组成及营养水平如表 1所示。所有饲料原料过60目标准筛,混合均匀后通过SLX-80型双螺杆挤压机制成2.0 mm颗粒饲料,55 ℃烘干后冷却至室温,于-20 ℃冰箱中保存备用。

表 1 试验饲料组成及营养水平(干物质基础) Table 1 Composition and nutrient levels of experimental diets (DM basis) 
1.2 试验设计与饲养管理

选择初始体重约为4.9 g的健康加州鲈鱼苗525尾,随机分为5组,每组3个重复,每个重复35尾,随机分配到15个圆柱形玻璃纤维桶(直径80 cm×高70 cm,容积为350 L),分别投喂5种试验饲料。采取饱食投喂方式,于每天08:00和18:00分别投喂1次,每天记录饲料投喂量、死亡情况及水质情况,试验期为62 d。试验期间水质指标为:水温27~30 ℃,溶解氧浓度>6.0 mg/L,氨氮浓度 < 0.10 mg/L,亚硝酸盐浓度 < 0.01 mg/L,pH 7.6~7.9。

1.3 样品采集与分析

饲喂62 d后停止投料,禁食24 h后采集样品。统计每缸中试验鱼的数量和重量。每缸随机取10尾鱼,采用40 mg/L的MS-222麻醉剂进行麻醉,测量鱼体重量和体长。每缸随机取6尾鱼进行解剖,剥离内脏团,分离肝脏、肠道、胃及腹腔脂肪。每缸随机取4尾鱼,称重后置于65 ℃烘干,用于全鱼体成分分析。

饲料和全鱼样品的常规营养指标参照国标方法检测,其中水分含量采用105 ℃常压干燥法(参照GB/T 6435—1986)测定,粗蛋白质含量采用凯氏定氮法(参照GB/T 6432—1994)测定,粗脂肪含量采用乙醚抽提法(参照GB/T 6432—1994)测定,粗灰分含量采用550 ℃灼烧法(参照GB/T 6438—1992)测定,钙含量采用乙二胺四乙酸(EDTA)滴定法(GB/T 6436—2002)测定,总磷含量采用钼黄比色法(GB/T 6437—2002)测定。

1.4 指标计算

存活率(SR,%)=100×终末尾数/初始尾数;

摄食量(FI,g/尾)=摄食饲料总量(g)/[(初始尾数+终末尾数)/2];

增重率(WGR,%)=100×[终末体重(g)-初始体重(g)]/初始体重(g);

特定生长率(SGR,%/d)=100×[ln终末体重(g)-ln初始体重(g)]/饲养天数;

饲料系数(FCR)=摄食饲料总量(g)/[终末体重(g)-初始体重(g)];

蛋白质效率(PER,%)=100×[终末体重(g)-初始体重(g)]/[摄入饲料总量(g)×饲料粗蛋白质含量(%)];

肥满度(CF,g/cm3)=100×体重(g)/体长(cm)3

脏体比(VSI,%)=100×内脏重(g)/体重(g);

肠体比(ISI,%)=100×肠重(g)/体重(g);

肝体比(HSI,%)=100×肝脏重(g)/体重(g);

胃体比(GSI,%)=100×肝脏重(g)/体重(g);

腹脂率(IFR,%)=100×腹腔脂肪重(g)/体重(g);

蛋白质沉积率(PR,%)=100×[终末体重(g)×终末鱼体粗蛋白质含量(%)-初始体重(g)×初始鱼体粗蛋白质含量(%)]/[摄入饲料总量(g)×饲料粗蛋白质含量(%)];

脂肪沉积率(LR,%)=100×[终末体重(g)×终末鱼体粗脂肪含量(%)-初始体重(g)×初始鱼体粗脂肪含量(%)]/[摄入饲料总量(g)×饲料粗脂肪含量(%)];

灰分沉积率(AR,%)=100×[终末体重(g)×终末鱼体粗灰分含量(%)-初始体重(g)×初始鱼体粗灰分含量(%)]/[摄入饲料总量(g)×饲料粗灰分含量(%)];

钙沉积率(CR,%)=100×[终末体重(g)×终末鱼体钙含量(%)-初始体重(g)×初始鱼体钙含量(%)]/[摄入饲料总量(g)×饲料钙含量(%)];

磷沉积率(PR,%)=100×[终末体重(g)×终末鱼体总磷含量(%)-初始体重(g)×初始鱼体总磷含量(%)]/[摄入饲料总量(g)×饲料总磷含量(%)]。

1.5 数据处理与分析

采用SPSS 17.0统计软件中单因素方差分析(one-way ANOVA)和Duncan氏均值多重比较法对试验结果的差异显著性进行分析处理。先对数据进行方差齐性检验,若不满足方差齐性,则采用Dunnett-T3检验法进行多重比较。试验数据用平均值±标准误(mean±SE)表示,显著性水平为P < 0.05。

2 结果 2.1 黑水虻幼虫粉替代鱼粉对加州鲈生长性能的影响

表 2可知,5组加州鲈存活率均大于94%,各组间无显著差异(P > 0.05)。与G0组相比,G30组饲料系数显著升高(P < 0.05),蛋白质效率显著降低(P < 0.05)。各组间加州鲈摄食量、终末体重、增重率及特定生长率无显著差异(P > 0.05)。

表 2 黑水虻幼虫粉替代鱼粉对加州鲈生长性能的影响 Table 2 Effects of replacing fish meal with black soldier fly larvae meal on growth performance of Microptenus salmoides
2.2 黑水虻幼虫粉替代鱼粉对加州鲈形体指标的影响

表 3可知,与G0组相比,G7.5和G15组脏体比显著升高(P < 0.05),G15、G22.5和G30组肠体比显著升高(P < 0.05),G30组肝体比显著降低(P < 0.05)。各组间加州鲈肥满度、胃体比及腹脂率无显著差异(P > 0.05)。

表 3 黑水虻幼虫粉替代鱼粉对加州鲈形体指标的影响 Table 3 Effects of replacing fish meal with black soldier fly larvae meal on physical indexes of Microptenus salmoides
2.3 黑水虻幼虫粉替代鱼粉对加州鲈体成分的影响

表 4可知,与G0相比,G15和G22.5组全鱼粗灰分和钙含量显著下降(P < 0.05)。各组间加州鲈全鱼水分、粗蛋白质、粗脂肪及总磷含量无显著差异(P > 0.05)。

表 4 黑水虻幼虫粉替代鱼粉对加州鲈体成分的影响(湿重基础) Table 4 Effects of replacing fish meal with black soldier fly larvae meal on body composition of Microptenus salmoides (wet weight basis) 
2.4 黑水虻幼虫粉替代鱼粉对加州鲈营养物质沉积率的影响

表 5可知,与G0组相比,G15和G22.5组钙沉积率显著下降(P < 0.05)。各组间加州鲈蛋白质、脂肪、灰分及磷沉积率无显著差异(P > 0.05)。

表 5 黑水虻幼虫粉替代鱼粉对加州鲈营养物质沉积率的影响 Table 5 Effects of replacing fish meal with black soldier fly larvae meal on nutrient retention rates of Microptenus salmoides 
3 讨论 3.1 黑水虻幼虫粉替代鱼粉对加州鲈生长性能的影响

黑水虻幼虫粉替代鱼粉及其对生长性能的影响已在建鲤[11]、镜鲤[16]、花鲈[3, 13]、黄颡鱼[12, 17]、杂交鳢[18]、虹鳟[10]、非洲鲶鱼[19]、大西洋鲑[20]、凡纳滨对虾[21-22]等水产动物上进行了研究,但目前还未见其在加州鲈上应用效果的研究。本试验研究了黑水虻幼虫粉替代鱼粉对加州鲈生长性能的影响,结果表明黑水虻幼虫粉替代饲料30%的鱼粉不影响加州鲈的存活率、摄食量、增重率和特定生长率,但显著增加了饲料系数,降低了蛋白质效率。这说明饲料中添加黑水虻幼虫粉不影响饲料适口性,但替代30%鱼粉对加州鲈的生长性能产生了不利影响。黑水虻幼虫粉替代鱼粉也被报道对大菱鲆[23]、西伯利亚鲟[24]、黄颡鱼[12]和凡纳滨对虾[22]的生长具有抑制作用。黑水虻幼虫粉替代饲料中30.0%的鱼粉降低了加州鲈的生长性能,可能归因于黑水虻幼虫粉含有的几丁质成分。几丁质能够抑制消化道中营养物质的吸收,从而降低水产动物的生长性能[25-26]。本试验中G30组饲料中几丁质的含量为1.1%,但即使饲料中1%含量的几丁质也能够抑制大西洋鲑的摄食量和生长性能[27-28]。Wang等[22]研究表明,饲料中几丁质含量为2.1%(几丁质来源于黑水虻虫粉)时显著降低了凡纳滨对虾的生长性能。Kroeckel等[23]报道,黑水虻虫粉替代鱼粉使饲料中几丁质含量升高,1.6%~7.3%的几丁质含量显著降低了饲料中蛋白质和脂肪的消化率,抑制了大菱鲆的生长。

3.2 黑水虻幼虫粉替代鱼粉对加州鲈形体指标的影响

形体指标是评价鱼体生长与健康的重要指标,当脏体比、肝体比、肠体比、腹脂率等形体指标增加时,内脏器官可能因为炎症或脂肪沉积而出现肥大现象,不仅影响内脏器官的生理功能,还会降低饲料利用率[29]。较低的肝体比表明鱼体的肝脏负荷可控制在其自身肝功能调节的范围内,从而避免肝病或脂肪肝的形成[30]。本试验结果表明,黑水虻幼虫粉替代鱼粉对加州鲈肝体比的影响表现为随鱼粉替代量增加先增加后降低的趋势。在30.0%替代比例下,鱼体肝体比显著下降,说明适量添加黑水虻幼虫粉有益于促进加州鲈肝脏健康。与肝体比相反,黑水虻幼虫粉替代鱼粉显著增加了肠体比,说明饲料中添加黑水虻幼虫粉可能会影响加州鲈的肠道发育,具体原因有待进一步研究。腹部是鱼类脂肪沉积的主要部位,腹脂率是评价鱼体脂肪代谢和健康的重要指标,代表体内脂肪在腹腔中的沉积率。本试验结果表明,黑水虻幼虫粉替代鱼粉不影响加州鲈的腹脂率,这与Wang等[3]在花鲈上的研究结果相似。王国霞等[17]在黄颡鱼上的研究表明,脱脂黑水虻幼虫粉替代60%鱼粉显著降低了鱼体腹脂率,归因于黑水虻幼虫粉含有的几丁质干扰了胆固醇的吸收并抑制了脂肪沉积。本试验与王国霞等[17]的研究结果存在差异,可能是由于试验动物品种和黑水虻幼虫粉添加量不同造成的。

3.3 黑水虻幼虫粉替代鱼粉对加州鲈体成分和营养物质沉积率的影响

体成分是鱼类营养学研究的主要内容之一,是评价鱼类营养及生长状况的重要指标。本试验结果表明,黑水虻幼虫粉替代鱼粉不影响加州鲈全鱼水分、粗蛋白质和粗脂肪含量,这与本课题之前在花鲈上的研究结果[3, 13]一致。相似的研究结果也在建鲤[11, 31]、虹鳟[32]、尖齿鲈[10]、黄颡鱼[12, 33]等水产动物上进行了报道。前人研究表明,黑水虻幼虫粉替代鱼粉可降低虹鳟[10]、黄颡鱼[33]和花鲈[3]的全鱼粗灰分含量。本试验结果表明,黑水虻幼虫粉替代饲料中15.0%和22.5%的鱼粉显著降低了加州鲈全鱼粗灰分和钙含量。黑水虻幼虫粉替代鱼粉降低全鱼粗灰分含量可能归因于钙含量的下降。然而,饲料中添加黑水虻幼虫粉替代鱼粉并不影响虹鳟[5]、建鲤[31]、凡纳滨对虾[4]和黄颡鱼[17]的全鱼粗灰分含量。即使是同一品种,黑水虻幼虫粉替代鱼粉对水产动物全鱼粗灰分含量的影响效果也不同,如Renna等[10]报道脱脂黑水虻幼虫粉替代饲料中25%的鱼粉(基础饲料中鱼粉含量为600 g/kg)可降低虹鳟全鱼粗灰分含量,但Dumas等[5]研究表明脱脂黑水虻幼虫粉替代饲料中100%的鱼粉(基础饲料中鱼粉含量为200 g/kg)不影响虹鳟全鱼粗灰分含量,Hu等[33]研究表明黑水虻幼虫粉替代饲料中30%的鱼粉(基础饲料中鱼粉含量为300 g/kg)可降低黄颡鱼全鱼粗灰分含量,但王国霞等[17]报道脱脂黑水虻幼虫粉替代饲料中60%的鱼粉(基础饲料中鱼粉含量为250 g/kg)不影响黄颡鱼全鱼粗灰分含量。以上研究结果不一致的原因可能是由于动物品种、黑水虻虫粉添加量以及黑水虻幼虫的来源和化学组成(采食不同基质的黑水虻虫粉,或全脂与脱脂黑水虻虫粉)不同。本试验中,黑水虻幼虫粉替代鱼粉降低了加州鲈的钙沉积率,可能归因于全鱼钙含量的下降。Hu等[33]报道,昆虫外骨骼中钙、磷等矿质盐含量丰富,黑水虻虫粉替代鱼粉可以改变黄颡鱼机体中矿物质含量。黑水虻虫粉对加州鲈体内钙沉积的调控作用及机理有待进一步深入研究。

4 结论

综上所述,饲料中添加黑水虻幼虫粉替代30.0%鱼粉可显著增加加州鲈的饲料系数和肠体比,降低蛋白质效率和肝体比;饲料中添加黑水虻幼虫粉替代15.0%和22.5%的鱼粉可显著降低加州鲈全鱼粗灰分和钙的含量,抑制体内钙的沉积。

参考文献
[1]
AKSNES A, MUNDHEIM H, TOPPE J, et al. The effect of dietary hydroxyproline supplementation on salmon (Salmo salar L.) fed high plant protein diets[J]. Aquaculture, 2008, 275(1/4): 242-249.
[2]
PINTO W, RONNESTAD I, DINIS M T, et al. Taurine and fish development: insights for the aquaculture industry[C]//EL IDRISSI A, L'AMOREAUX W. Taurine 8. Advances in experimental medicine and biology, Vol 776. New York: Springer, 2013: 329-334.
[3]
WANG G X, PENG K, HU J R, et al. Evaluation of defatted black soldier fly (Hermetia illucens L.) larvae meal as an alternative protein ingredient for juvenile Japanese seabass (Lateolabrax japonicus) diets[J]. Aquaculture, 2019, 507: 144-154.
[4]
CUMMINS V C, RAWLES S D, THOMPSON K R, et al. Evaluation of black soldier fly (Hermetia illucens) larvae meal as partial or total replacement of marine fish meal in practical diets for Pacific white shrimp (Litopenaeus vannamei)[J]. Aquaculture, 2017, 473: 337-344.
[5]
DUMAS A, RAGGI T, BARKHOUSE J, et al. The oil fraction and partially defatted meal of black soldier fly larvae (Hermetia illucens) affect differently growth performance, feed efficiency, nutrient deposition, blood glucose and lipid digestibility of rainbow trout (Oncorhynchus mykiss)[J]. Aquaculture, 2018, 492: 24-34.
[6]
GASCO L, FINKE M, VAN H A. Can diets containing insects promote animal health?[J]. Journal of Insects as Food and Feed, 2018, 4(1): 1-4.
[7]
LOCK E R, ARSIWALLA T, WAAGBO R. Insect larvae meal as an alternative source of nutrients in the diet of Atlantic salmon (Salmo salar) postsmolt[J]. Aquaculture Nutrition, 2016, 22(6): 1202-1213.
[8]
SEALEY W M, GAYLORD T G, BARROWS F T, et al. Sensory analysis of rainbow trout, Oncorhynchus mykiss, fed enriched black soldier fly prepupae, Hermetia illucens[J]. Journal of the World Aquaculture Society, 2011, 42(1): 34-45.
[9]
MAGALHAES R, SANCHEZ L A, LEAL R S, et al. Black soldier fly (Hermetia illucens) pre-pupae meal as a fish meal replacement in diets for European seabass (Dicentrarchus labrax)[J]. Aquaculture, 2017, 476: 79-85.
[10]
RENNA M, SCHIAVONE A, GAI F, et al. Evaluation of the suitability of a partially defatted black soldier fly (Hermetia illucens L.) larvae meal as ingredient for rainbow trout (Oncorhynchus mykiss Walbaum) diets[J]. .Journal of Animal Science and Biotechnology, 2017, 8: 57.
[11]
ZHOU J S, LIU S S, JI H, et al. Effect of replacing dietary fish meal with black soldier fly larvae meal on growth and fatty acid composition of Jian carp (Cyprinus carpio var.Jian)[J]. Aquaculture Nutrition, 2018, 24(1): 424-433.
[12]
XIAO X P, JIN P, ZHENG L Y, et al. Effects of black soldier fly (Hermetia illucens) larvae meal protein as a fishmeal replacement on the growth and immune index of yellow catfish (Pelteobagrus fulvidraco)[J]. Aquaculture Research, 2018, 49(4): 1569-1577.
[13]
胡俊茹, 王国霞, 莫文艳, 等. 黑水虻幼虫粉替代鱼粉对鲈鱼幼鱼生长性能、体组成、血浆生化指标和组织结构的影响[J]. 动物营养学报, 2018, 30(2): 613-623.
HU J R, WANG G X, MO W Y, et al. Effects of fish meal replacement by black soldier fly (Hermetia illucens L.) larvae meal on growth performance, body composition, plasma biochemical indexes and tissue structure of juvenile Lateolabrax japonicas[J]. Chinese Journal of Animal Nutrition, 2018, 30(2): 613-623 (in Chinese).
[14]
陈晓瑛, 胡俊茹, 王国霞, 等. 黑水虻幼虫粉替代鱼粉对黄颡鱼幼鱼生长性能、肌肉品质及血清生化指标的影响[J]. 动物营养学报, 2019, 31(6): 2788-2799.
CHEN X Y, HU J R, WANG G X, et al. Effects of fish meal replacement by black soldier fly (Hermetia illucens) larvae meal on growth performance, serum biochemical indices and meat quality of juvenile yellow catfish (Pelteobagrus fulvidraco)[J]. Chinese Journal of Animal Nutrition, 2019, 31(6): 2788-2799 (in Chinese).
[15]
农业农村部渔业渔政管理局, 全国水产技术推广总站, 中国水产学会. 2020年中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2020.
Ministry of Agriculture and Rural Affairs of the People's Republic of China,, National Fisheries Technology Extension Center,, China Society of Fisheries.. 2020 China fishery statistical yearbook[M]. Beijing: China Agriculture Press, 2020 (in Chinese).
[16]
XU X, JI H, BELGHIT I, et al. Black soldier fly larvae as a better lipid source than yellow mealworm or silkworm oils for juvenile mirror carp (Cyprinus carpio var.specularis)[J]. Aquaculture, 2020, 527: 735453.
[17]
王国霞, 陈冰, 孙育平, 等. 脱脂亮斑扁角水虻幼虫粉替代鱼粉对黄颡鱼幼鱼生长性能、营养素沉积率、血清生化指标和消化酶活性的影响[J]. 水产学报, 2020, 44(6): 987-998.
WANG G X, CHEN B, SUN Y P, et al. Effects of replacing fish meal with defatted black soldier fly (Hermetia illucens) larvae meal on growth performance, nutrient retention, serum biochemical parameters and digestive enzymes activity of juvenile Pelteobagrus fulvidraco[J]. Journal of Fisheries of China, 2020, 44(6): 987-998 (in Chinese).
[18]
王国霞, 莫文艳, 范怡杰, 等. 黑水虻对杂交鳢生长、肌肉组成和血清指标的影响[J]. 水产科学, 2019, 38(5): 603-609.
WANG G X, MO W Y, FAN Y J, et al. Effect of black soldier fly larvae on growth performance, muscular composition and serum indices of hybrid snakehead Channa argus×C. maculate[J]. Fisheries Science, 2019, 38(5): 603-609 (in Chinese).
[19]
FAWOLE F J, ADEOYE A A, TIAMIYU L O, et al. Substituting fishmeal with Hermetia illucens in the diets of African catfish (Clarias gariepinus): effects on growth, nutrient utilization, haemato-physiological response, and oxidative stress biomarker[J]. Aquaculture, 2020, 518: 734849.
[20]
LI Y, KORTNER T M, CHIKWATI E M, et al. Total replacement of fish meal with black soldier fly (Hermetia illucens) larvae meal does not compromise the gut health of Atlantic salmon (Salmo salar)[J]. Aquaculture, 2020, 520: 734967.
[21]
胡俊茹, 王国霞, 黄文庆, 等. 黑水虻幼虫粉替代鱼粉对凡纳滨对虾幼虾生长性能、体组成、血清生化指标和抗氧化能力的影响[J]. 动物营养学报, 2019, 31(11): 5293-5301.
HU J R, WANG G X, HUANG W Q, et al. Effects of fish meal replacement by black soldier fly (Hermetia illucens) larvae meal on growth performance, body composition, serum biochemical indexes and antioxidant ability of juvenile Litopenaeus vannamei[J]. Chinese Journal of Animal Nutrition, 2019, 31(11): 5293-5301 (in Chinese).
[22]
WANG G X, PENG K, HU J R, et al. Evaluation of defatted Hermetia illucens larvae meal for Litopenaeus vannamei: effects on growth performance, nutrition retention, antioxidant and immune response, digestive enzyme activity and hepatic morphology[J/OL]. Aquaculture Nutrition, 2021. (2021-02-17)[2021-02-20]. https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/anu.13240. doi: 10.1111/anu.1324.
[23]
KROECKEL S, HARJES A G E, ROTH I, et al. When a turbot catches a fly: evaluation of a pre-pupae meal of the black soldier fly (Hermetia illucens) as fish meal substitute-growth performance and chitin degradation in juvenile turbot (Psetta maxima)[J]. Aquaculture, 2012, 364/365: 345-352. DOI:10.1016/j.aquaculture.2012.08.041
[24]
CAIMI C, RENNA M, LUSSIANA C, et al. First insights on black soldier fly (Hermetia illucens L.) larvae meal dietary administration in Siberian sturgeon (Acipenser baerii Brandt) juveniles[J]. Aquaculture, 2020, 515: 734539.
[25]
LINDSAY G J H. Adsorption of rainbow trout (Salmo gairdneri) gastric lysozymes and chitinase by cellulose and chitin[J]. Aquaculture, 1984, 42(3/4): 241-246.
[26]
刘兴, 孙学亮, 李连星, 等. 黑水虻替代鱼粉对锦鲤生长和健康状况的影响[J]. 大连海洋大学学报, 2017, 32(4): 422-427.
LIU X, SUN X L, LI L X, et al. Effects of dietary fish meal replaced by Hermetia illucens meal on growth and health of koi carp Cyprinus carpio[J]. Journal of Dalian Fisheries University, 2017, 32(4): 422-427 (in Chinese).
[27]
SHIAU S Y, YU Y P. Dietary supplementation of chitin and chitosan depresses growth in tilapia, Oreochromis niloticus×O. aureus[J]. Aquaculture, 1999, 179(1/2/3/4): 439-446.
[28]
GOPALAKANNAN A, AR UL, V. Immunomodulatory effects of dietary intake of chitin, chitosan and levamisole on the immune system of Cyprinus carpio and control of Aeromonas hydrophila infection in ponds[J]. Aquaculture, 2006, 255(1/4): 179-187.
[29]
OLSEN R E, SUONTAMA J, LANGMYHR E, et al. The replacement of fish meal with Antarctic krill, Euphausia superba in diets for Atlantic salmon, Salmo salar[J]. Aquaculture Nutrition, 2006, 12(4): 280-290.
[30]
韩星星. 脱脂黑水虻虫粉在大黄鱼幼鱼配合饲料中的应用研究[D]. 硕士学位论文. 厦门: 集美大学, 2019.
HAN X X. Study on the application of defatted black soldier fly larvae meal on the formulated diets for juvenile large yellow croker (Larimichthys crocea)[D]. Master's Thesis. Xiamen: Jimei University, 2019. (in Chinese)
[31]
LI S L, JI H, ZHANG B X, et al. Defatted black soldier fly (Hermetia illucens) larvae meal in diets for juvenile Jian carp (Cyprinus carpio var.Jian): growth performance, antioxidant enzyme activities, digestive enzyme activities, intestine and hepatopancreas histological structure[J]. Aquaculture, 2017, 4(477): 62-70.
[32]
ST-HILAIRE S, SHEPPARD C, TOMBERLIN J, et al. Fly prepupae as a feedstuff for rainbow trout, Oncorhynchus mykiss[J]. Journal of the World Aquaculture Society, 38(1): 59-67.
[33]
HU J R, WANG G X, HUANG Y H, et al. Effects of substitution of fish meal with black soldier fly (Hermetia illucens) larvae meal, in yellow catfish (Pelteobagrus fulvidraco) diets[J]. Israeli Journal of Aquaculture-Bamidgeh, 2017, 69: 1-9.