霉菌毒素是霉菌在基质中生长时所产生的有毒的代谢物[1]。研究表明,霉菌毒素可以引起人或者动物的各种病害[2-3],其中黄曲霉毒素与苯并芘、亚硝酸盐并称三大致癌物[4]。而一旦有霉菌毒素产生,其稳定的理化性质使其在谷物的采收、运输及储藏过程中长期存在[5]。丁燕玲等[6]对我国2015—2020年大部分地区的饲料原料及全价饲料的调查发现,普遍存在霉菌毒素污染情况,其中最为严重的是华东地区,其次是华中、华北地区,而玉米中黄曲霉毒素B1(AFB1)、呕吐毒素(DON,又称脱氧雪腐镰刀菌烯醇)污染有逐渐加剧趋势,全价饲料中霉菌毒素污染严重,检出率和阳性值普遍偏高。Gruber-Dorninger等[7]在10年内收集了100个国家的饲料并对其进行霉菌毒素污染调查,结果发现88%的动物饲料中至少存在1种霉菌毒素。为加强饲料质量安全监管,我国农业农村部每年都会进行全国饲料质量安全监督抽查工作。因此,为保障动物产品质量安全,利用现代仪器分析手段建立高效可靠的痕量检测技术尤为重要。
目前,针对霉菌毒素在饲料中的检测方法多集中在快速检测和液相色谱质谱联用(LC-MS)分析上。这2类技术手段各有利弊,快速检测具有检测快速、灵敏等特点[8-10],但容易产生假阳性;LC-MS分析具有结果精确、灵敏度高等特点[11-13],但前处理过程和仪器条件较快速检测复杂[14-15]。因此,本文对国内外在饲料中霉菌毒素的检测标准,以及近5年来国内外学者利用主流的LC-MS技术在饲料原料及产品上对霉菌毒素的检测方法进行综述,为开展饲料中霉菌毒素检测提供技术参考。
1 饲料原料及产品中常见的霉菌毒素 1.1 常见的霉菌毒素种类霉菌毒素污染引起的饲料腐败会直接影响饲料安全。被霉菌毒素污染的饲料会带来动物生产力下降、饲料转换效率降低、营养利用受损等问题[16]。饲料原料及产品中常见的霉菌毒素包括黄曲霉毒素(AFs)、赭曲霉毒素(OA)、玉米赤霉烯酮(ZEN)、呕吐毒素、T-2毒素(T-2)及伏马毒素(FBs)等[17]。其中,黄曲霉毒素是由5个杂环组成的呋喃香豆素衍生物,目前已知20余种黄曲霉毒素,常见的为黄曲霉毒素B1、B2、G1、G2及其在牛奶中代谢物黄曲霉毒素M1、M2[18];目前已知的赭曲霉毒素主要包括赭曲霉毒素A、B、C、α、β[19];玉米赤霉烯酮和呕吐毒素在谷物中也普遍存在,欧洲委员会要求欧洲食品安全局就饲料中含有玉米赤霉烯酮及其代谢产物(α-玉米赤霉烯醇、β-玉米赤霉烯醇、α-玉米赤霉醇、β-玉米赤霉醇)、呕吐毒素及其代谢产物(3-乙酰基脱氧雪腐镰刀菌烯醇、15-乙酰基脱氧雪腐镰刀菌烯醇、脱氧雪腐镰刀菌烯醇-3-葡萄糖苷)对动物健康的风险开展研究[20-21];伏马毒素已知的种类为16种,主要分为伏马毒素A(主要有伏马毒素A1)、伏马毒素B(主要包括伏马毒素B1、B2和B3)、伏马毒素C和伏马毒素P,毒性最强的为伏马毒素B1[22-23];T-2毒素主要包括T-2三醇和HT-2毒素[24-25]。
1.2 霉菌毒素的危害霉菌毒素对动物和人类的健康存在巨大的威胁。黄曲霉毒素被国际癌症研究机构评定为Ⅰ类致癌物质,也是肝癌的主要致癌物质[26]。其中黄曲霉毒素B1的毒性是砒霜的68倍,诱发肝癌的能力是二甲基亚硝胺的75倍[27]。黄曲霉毒素对畜禽的免疫系统、生殖系统及生长发育都会产生危害。伏马毒素同样可引起神经毒性、致癌性、免疫毒性及器官毒性,其可引起马属动物的特异性疾病——马脑白质软化症,具有极高的致死率[28]。玉米赤霉烯酮则具有强烈的雌激素代谢活性,在猪的动物毒理试验中表现最为敏感,可引起猪雌激素中毒症,使初情前期的小母猪出现阴门红肿、生殖器脱出、不规则发情或假发情等症状,严重时会发生流产,小公猪出现乳头增大和睾丸萎缩等雌性化症状[2]。
1.3 霉菌毒素限量标准目前,我国、欧盟及美国颁布的相关法规均未覆盖所有霉菌毒素种类[29]。在我国《饲料卫生标准》(GB 13078—2017)中,对饲料原料及产品只规定了黄曲霉毒素B1、赭曲霉毒素A、玉米赤霉烯酮、呕吐毒素、T-2毒素及伏马毒素B1、B2的限量标准。其中,黄曲霉毒素B1在植物油脂(玉米油、花生油除外)、仔猪和雏禽浓缩饲料、仔猪和雏禽配合饲料中限量最低,为10 μg/kg;赭曲霉毒素A在饲料原料及产品中不得超过100 μg/kg;玉米赤霉烯酮在青年母猪配合饲料中限量最低,为0.1 mg/kg;呕吐毒素在犊牛、羔羊、泌乳期精料补充料和猪配合饲料中限量最低,为1 mg/kg;T-2毒素在植物性饲料原料以及猪、禽配合饲料中不得超过0.5 mg/kg;伏马毒素(伏马毒素B1+B2)在马和兔精料补充料、猪浓缩饲料以及猪、兔和马的配合饲料中限量最低,为5 mg/kg。在进口饲料和饲料添加剂质量复核检测中,也只针对卫生标准中的霉菌毒素种类进行监测。
欧盟委员会指令2002/32/EC中规定了黄曲霉毒素B1的最高限量(奶用动物配合饲料和其他补充饲料限量最低,为5 μg/kg)[29-30],在欧盟委员会2006/576/EC指南限量中规定了呕吐毒素(猪补充饲料和配合饲料限量最低,为900 μg/kg)、玉米赤霉烯酮(小猪补充饲料和配合饲料限量最低,为100 μg/kg)、赭曲霉毒素A(猪补充饲料和配合饲料限量最低,为50 μg/kg)及伏马毒素B1、B2(猪、马、兔、宠物补充饲料和配合饲料限量最低,为5 000 μg/kg)的限量[29, 31]。美国食品与药品管理局(FDA)只对3种霉菌毒素做了限量规定,包括黄曲霉毒素、伏马毒素、呕吐毒素。其中,黄曲霉毒素(黄曲霉毒素B1、B2、G1和G2的总量)法规限量最低为20 μg/kg,伏马毒素(伏马毒素B1、B2和B3的总量)法规限量最低为1 000 μg/kg,呕吐毒素建议容忍量最低为1 000 μg/kg[29, 32-34]。
我国及各国家在饲料中真菌毒素限量标准制定方面都有待于进一步完善。我国所规定的饲料品种未来应再覆盖进出口饲料和饲用农产品等类别,个别重要的毒素种类也应做限量要求,以提高饲料卫生标准,保障人类和动物健康安全。
2 饲料中霉菌毒素检测标准当前,国内外一些标准制定机构和组织对饲料中霉菌毒素的检测方法都做出了相应的标准(表 1),所用仪器和方法检出限也不尽相同。各种标准按照检测方法分类,可分为色谱仪器方法和快速检测方法[35]。国际标准化组织(ISO)目前仅针对黄曲霉毒素、赭曲霉毒素和玉米赤霉烯酮有相应检测方法的标准[36]。国际分析化学师协会(AOAC)对霉菌毒素颁布了一些标准,其中包括黄曲霉毒素、玉米赤霉烯酮。欧盟标准委员会(CEN)也对饲料中黄曲霉毒素、玉米赤霉烯酮、赭曲霉毒素A及呕吐毒素的检测做出了相应标准。我国对《饲料卫生标准》中有限量要求的霉菌毒素都有相应的检测标准。各种霉菌毒素的检测标准中,分析方法也呈现出传统技术和革新技术并存。其中样品检测的主要技术手段——高效液相色谱(HPLC)法在霉菌毒素检测中发挥了重要作用,我国国标中推荐的各种霉菌毒素检测均使用HPLC法,其结果具有较高的准确性、可靠性;但HPLC法的缺点是对于一些性质与分子质量相近的物质难以有效分离,需要一定的前处理步骤来保证检测结果的准确性[37]。利用LC-MS技术对饲料中多种霉菌毒素的检测已有相应的行业标准,不需要进行衍生化就可对多种毒素同时进行定性和定量检测,特异性强、灵敏度高、检出限低,也是目前被广泛采用的霉菌毒素同步检测方法。
![]() |
表 1 国内外标准体系中霉菌毒素的检测标准 Table 1 Standard for detection of mycotoxins in domestic and foreign standard systems |
利用LC-MS技术检测霉菌毒素过程中,第1步就是样品的前处理。霉菌毒素检测的前处理技术主要包括提取和净化。样品提取是指根据霉菌毒素在有机溶液中的溶解特性,使用合适的有机溶剂将其从饲料原料及产品中分离出来[38]。提取液中添加少量水可以湿润基质,增强有机溶剂在样品中的渗透能力,提高提取效率,因此通常采用有机溶剂与水混合溶液对霉菌毒素进行提取,如乙腈/水/甲酸(80 ∶ 19 ∶ 1,体积比)溶液等[39]。其中提取液中添加有机酸(缓冲液)可以保持稳定的pH,可以提高回收率[40]。研究表明,利用乙腈/水(80 ∶ 20,体积比)溶液进行提取时,伏马毒素的回收率低,仅有25%~43%;而用甲醇/水(80 ∶ 20,体积比)溶液进行提取时,伏马毒素的回收率可提高到80%~110%[41]。
而在提取过程中,由于饲料原料及产品基质中存在的脂肪、蛋白质、色素等物质也会被同时提取,在进仪器检测时往往会有干扰,因此还需要合适的净化方法去除部分杂质。近几年研究多集中在开发不同净化处理技术上,目前国内外使用的净化方法大致包括稀释[41]、免疫亲和柱、多功能净化柱及QuEChERS等。表 2总结了目前主要应用在霉菌毒素检测上的净化方法[42-48]。于2021年4月1日起实施的农业行业标准《饲料中37种霉菌毒素的测定液相色谱串联质谱法》中,采用了一种国产新型杂质吸附型固相萃取柱MLJ-1对饲料样品进行净化,一步过滤,大大节约了样品前处理时间,提高了检测效率[49]。
![]() |
表 2 目前检测霉菌毒素主要应用的净化方法对比 Table 2 Current main application of detection of mycotoxin purification method comparison |
研究表明,在霉菌毒素定量检测方法上大多数霉菌毒素的基质抑制效应较大,可导致检测方法的回收率偏低,从而降低方法的准确度,应采用基质加标的方法进行校正[50]。目前,普遍采用外标法和内标法进行定量。外标法需要针对每一种基质配制基质标准曲线,且需要空白基质样品,针对一些特定毒素如伏马毒素,阳性样品偏多,有时很难作为基质空白使用,采用同位素内标法进行定量可作为另一种定量方案实施[45-46, 50]。同位素稀释法只需对复杂混合物体系进行部分分离、纯化就可对物质进行定量和定性检测,无需配制基质标准曲线,但是操作繁琐,对试验结果处理也更耗时,增加成本,因此我国颁布的标准中尚未使用内标法。
3.2 液相色谱(LC)技术 3.2.1 检测器的选择在我国颁布的饲料中霉菌毒素检测方法的标准中,主要利用HPLC检测。HPLC技术主要利用溶质在两相中的分配系数、亲和力、吸附力和分子大小不同,引起排阻作用的差别来分离不同溶质,在不同时间进入检测器,从而达到分离检测的目的[51]。液相色谱检测技术的检测器,主要检测色谱柱分离处理后的成分组分随淋洗液流出后的浓度变化,并通过图形描述进行定量和定性分析。在检测器选择上,标准检测方法中黄曲霉毒素、玉米赤霉烯酮、赭曲霉毒素A、伏马毒素及T-2毒素一般利用荧光检测器[52];呕吐毒素利用紫外检测器。而荧光检测器是用紫外线照射色谱馏分,当试样组分具有荧光性能时才可被检出[53]。个别霉菌毒素应用荧光检测器时需要衍生,常见有样品前处理时加入衍生试剂柱前衍生,还可以利用光化学衍生进行柱后衍生。化学试剂衍生一般是霉菌毒素提取后在进样前加入衍生试剂,黄曲霉毒素常用三氟乙酸在40 ℃恒温水浴下衍生反应75 min,T-2毒素常用1-蒽腈在50 ℃水浴下衍生反应15 min,伏马毒素常用邻苯二甲醛等衍生。光化学柱后衍生法通常在荧光检测器之前接入了结构简单的光化学反应池,即光化学衍生器[54],这样不需要化学试剂,仪器连接和操作也方便。
3.2.2 色谱条件的优化在色谱柱的选择上,C18色谱柱基本能满足各种霉菌毒素检测的要求。流动相选择上,各种化合物在乙腈和甲醇体系下均能正常出峰,但响应强度存在差异,如HT-2毒素在乙腈体系响应远低于甲醇体系,且乙腈对同分异构体及目标物与样品基质中的干扰杂质分离度较甲醇差[41],因此大多数选甲醇体系作为流动相。而流动相中加入甲酸可以增强目标物的离子化效率,而加入乙酸铵可以改善目标物的峰形。
3.3 色谱串联质谱技术利用HPLC技术往往只能检测一种霉菌毒素,针对实际饲料原料及产品中需要多种霉菌毒素检测,因此色谱串联质谱技术的推行能大大缩短检测时间,灵敏度更高,同时可以监测多种霉菌毒素。目前主流的霉菌毒素仪器分析技术也是应用液相色谱串联质谱。测试样品先经过液相色谱仪进行分离,随后通过与质谱联用的接口,将待测溶液进行电离,在电离中产生的离子会形成一个母离子碎片,然后会通过激发电压将母离子碎片进行二次电离,通过收集产生到的离子碎片,对待测物质进行定量和定性[55]。不同的化合物母离子碎片和子离子碎片都不同,因此可以有效分离不同化合物,排除杂质干扰。
3.3.1 电离模式的选择根据霉菌毒素的化学结构特点,质谱离子源一般采用大气压电喷雾离子源(ESI源)。ESI源工作原理是利用电场产生带电液滴,经过去溶剂化过程最终产生被测物离子,进入质谱分析。在ESI源下中性分子在流动相中可结合H+、Na+、K+,发生静电喷雾,随着溶剂的蒸发,生成[M+H]+或[M+Na]+或[M+K]+准分子离子,也有的化合物在流动相中失去H+, 变成相应的负离子,在负离子模式下,可以检测到[M-H]-的准分子离子[56]。大多数霉菌毒素为正离子模式,少数霉菌毒素为负离子模式(如玉米赤霉烯酮类)[57]。其中正电离模式下获得[M+H]+(如黄曲霉毒素、赭曲霉毒素、呕吐毒素、伏马毒素)、[M+NH4]+(如T-2毒素、HT-2毒素)和[M+Na]+(如T-2三醇),负电离模式下获得[M-H]-(如玉米赤霉烯酮类)[58-59]。同时选择响应值高、质荷比大并且背景干扰低的2个子离子作为定量和定性离子[50]。也有研究表明,个别霉菌毒素利用大气压化学电离离子源(APCI源)分析效果更好。APCI源与ESI源相比,在毛细管喷嘴的下方加了个针状放电电极。APCI源是通过针状放电电极的高压放电,使溶剂分子和空气中某些中性分子电离产生H3O+、N2+、O2-、OH-等离子,这些离子再与被分析物分子进行离子-分子反应,使被分析的中性分子离子化[56]。其中呕吐毒素在APCI源下响应值为ESI源下响应值的2.1~7.4倍,玉米赤霉烯酮在APCI源下是正离子模式,响应值也提高了1倍[60]。
3.3.2 质谱仪器的选择常见的质谱技术采用低分辨三重四极杆质谱,也有研究利用超高效液相色谱-三重四级杆/线性离子阱串联质谱(QTRAP-UPLC-MS/MS)法同时测定饲料中16种真菌毒素[61]。线性离子阱串联质谱(QTRAP)系统是把三重串联四极杆技术和线性离子阱质谱技术结合在一起,既保留了串联四极杆质谱仪的优点如高灵敏度定量等功能,又克服了传统3D离子阱质谱仪的缺点如碰撞效率低等问题。同时,有研究表明高分辨质谱静电场轨道阱质谱对目标物与未知物质有更高的确证能力,能有效预防假阴性,能分辨出质量数差别极小的离子,而且能同时筛查大量分析物[62],与高分辨飞行时间质谱(TOF)相比,静电场轨道阱质谱在大大提高分辨率的同时也具备出色的定量能力。
4 小结饲料的安全问题直接影响了动物的健康,因此饲料中霉菌毒素的检测尤为重要,也是日常饲料监测工作的重点内容。目前,国内外利用LC-MS已经开发了多种霉菌毒素同时检测技术,中国农业科学院农业质量标准与检测技术研究所苏晓鸥团队和Romer Labs中国有限公司张大伟团队等在净化处理上也开发出高效方法,为当前霉菌毒素的监测提供有利的技术支撑[46, 49]。在霉菌毒素的检测方面,应根据各自检测平台所拥有的仪器而建立检测条件。HPLC能满足霉菌毒素的定量定性分析,且成本低;而LC-MS虽成本和技术要求高,但能同时快速检测多种霉菌毒素,两者各有利弊,应视需求而定。在前处理技术方面,应视所检测霉菌毒素的种类而选择不同的净化方法。然而,我国饲料中霉菌毒素限量和检测标准还有待进一步扩大范围,LC-MS技术在检测灵敏度和准确度上有着极大的优势,但检测成本较高。开发低成本、快速、操作简便的检测技术,并应用于现场同步检测多种霉菌毒素及其代谢产物是未来LC-MS技术的研究热点[63]。
[1] |
TOLA M. Occurrence, importance and control of mycotoxins: a review[J]. Cogent Food & Agriculture, 2016, 2(1): 1191103. |
[2] |
HUSSEIN H S, BRASEL J M. Toxicity, metabolism, and impact of mycotoxins on humans and animals[J]. Toxicology, 2001, 167(2): 101-134. DOI:10.1016/S0300-483X(01)00471-1 |
[3] |
STOEV S D. Food safety and increasing hazard of mycotoxin occurrence in foods and feeds[J]. Critical Reviews in Food Science and Nutrition, 2013, 53(9): 887-901. DOI:10.1080/10408398.2011.571800 |
[4] |
OSTRY V, MALIR F, TOMAN J, et al. Mycotoxins as human carcinogens-the IARC monographs classification[J]. Mycotoxin Research, 2017, 33(1): 65-73. DOI:10.1007/s12550-016-0265-7 |
[5] |
ALSHANNAQ A, YU J H. Occurrence, toxicity, and analysis of major mycotoxins in food[J]. International Journal of Environmental Research and Public Health, 2017, 14(6): 632. DOI:10.3390/ijerph14060632 |
[6] |
丁燕玲, 李孟聪, 钟名琴, 等. 2015-2020年国内饲料霉菌毒素污染调查报告统计分析[J]. 中国动物检疫, 2021, 38(3): 29-36. DING Y L, LI M C, ZHONG M Q, et al. Statistical analysis on the investigation reports concerning mycotoxin contamination in animal feed in China during 2015 to 2020[J]. Chinese Journal of Animal Health Inspection, 2021, 38(3): 29-36 (in Chinese). |
[7] |
GRUBER-DORNINGER C, JENKINS T, SCHATZMAYR G. Global mycotoxin occurrence in feed: a ten-year survey[J]. Toxins, 2019, 11(7): 375. DOI:10.3390/toxins11070375 |
[8] |
WANG Y, LIU N, NING B A, et al. Simultaneous and rapid detection of six different mycotoxins using an immunochip[J]. Biosensors & Bioelectronics, 2012, 34(1): 44-50. |
[9] |
SADHASIVAM S, BRITZI M, ZAKIN V, et al. Rapid detection and identification of mycotoxigenic fungi and mycotoxins in stored wheat grain[J]. Toxins, 2017, 9(10): 302. DOI:10.3390/toxins9100302 |
[10] |
LE V T, VASSEGHIAN Y, DRAGOI E N, et al. A review on graphene-based electrochemical sensor for mycotoxins detection[J]. Food and Chemical Toxicology, 2021, 148: 111931. DOI:10.1016/j.fct.2020.111931 |
[11] |
SINGH J, MEHTA A. Rapid and sensitive detection of mycotoxins by advanced and emerging analytical methods: a review[J]. Food Science & Nutrition, 2020, 8(5): 2183-2204. |
[12] |
ZHANG L, DOU X W, ZHANG C, et al. A review of current methods for analysis of mycotoxins in herbal medicines[J]. Toxins, 2018, 10(2): 65. DOI:10.3390/toxins10020065 |
[13] |
WARTH B, PARICH A, ATEHNKENG J, et al. Quantitation of mycotoxins in food and feed from Burkina Faso and Mozambique using a modern LC-MS/MS multitoxin method[J]. Journal of Agricultural and Food Chemistry, 2012, 60(36): 9352-9363. DOI:10.1021/jf302003n |
[14] |
KOKKONEN M K, JESTOI M N. A multi-compound LC-MS/MS method for the screening of mycotoxins in grains[J]. Food Analytical Methods, 2009, 2(2): 128-140. DOI:10.1007/s12161-008-9051-2 |
[15] |
MONBALIU S, VAN POUCKE C, DETAVERNIER C, et al. Occurrence of mycotoxins in feed as analyzed by a multi-mycotoxin LC-MS/MS method[J]. Journal of Agricultural and Food Chemistry, 2010, 58(1): 66-71. DOI:10.1021/jf903859z |
[16] |
BRYDEN W L. Mycotoxin contamination of the feed supply chain: implications for animal productivity and feed security[J]. Animal Feed Science and Technology, 2012, 173(1/2): 134-158. |
[17] |
HE Q H, XU Y, WANG D, et al. Simultaneous multiresidue determination of mycotoxins in cereal samples by polyvinylidene fluoride membrane based dot immunoassay[J]. Food Chemistry, 2012, 134(1): 507-512. DOI:10.1016/j.foodchem.2012.02.109 |
[18] |
REITER E, ZENTEK J, RAZZAZI E. Review on sample preparation strategies and methods used for the analysis of aflatoxins in food and feed[J]. Molecular Nutrition & Food Research, 2009, 53(4): 508-524. |
[19] |
ABRUNHOSA L, PATERSON R R M, VENÂNCIO A. Biodegradation of ochratoxin A for food and feed decontamination[J]. Toxins, 2010, 2(5): 1078-1099. DOI:10.3390/toxins2051078 |
[20] |
KNUTSEN H K, ALEXANDER J, BARREGÅRD L, et al. Risks for animal health related to the presence of zearalenone and its modified forms in feed[J]. EFSA Journal.European Food Safety Authority, 2017, 15(7): e04851. |
[21] |
KNUTSEN H K, ALEXANDER J, BARREGÅRD L, et al. Risks to human and animal health related to the presence of deoxynivalenol and its acetylated and modified forms in food and feed[J]. EFSA Journal.European Food Safety Authority, 2017, 15(9): e04718. |
[22] |
NISHIMWE K, BOWERS E, DE DIEU AYABAGABO J, et al. Assessment of aflatoxin and fumonisin contamination and associated risk factors in feed and feed ingredients in Rwanda[J]. Toxins, 2019, 11(5): 270. DOI:10.3390/toxins11050270 |
[23] |
李宇宇, 贾玉山, 格根图, 等. 饲用草产品主要真菌毒素污染检测、风险评估与控制研究进展[J]. 草业学报, 2021, 30(4): 191-204. LI Y Y, JIA Y S, GE G T, et al. Progress in research on detection, risk assessment and control of mycotoxins in forage products[J]. Acta Prataculturae Sinica, 2021, 30(4): 191-204 (in Chinese). |
[24] |
DE BAERE S, GOOSSENS J, OSSELAERE A, et al. Quantitative determination of T-2 toxin, HT-2 toxin, deoxynivalenol and deepoxy-deoxynivalenol in animal body fluids using LC-MS/MS detection[J]. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2011, 879(24): 2403-2415. DOI:10.1016/j.jchromb.2011.06.036 |
[25] |
HOSSAIN M Z, MCCORMICK S P, MARAGOS C M. An imaging surface plasmon resonance biosensor assay for the detection of T-2 toxin and masked T-2 toxin-3-glucoside in wheat[J]. Toxins, 2018, 10(3): 119. DOI:10.3390/toxins10030119 |
[26] |
IARC. Monographs on the evaluation of carcinogenic risk to humans[M]. Lyon: International Agency for Research on Cancer, 2002.
|
[27] |
上海飞测生物科技有限公司. 黄曲霉毒素的危害、限量标准及检测方法[J]. 食品安全导刊, 2017(13): 58-60. Shanghai Feice Biotechnology Co., Ltd.. Hazards of aflatoxin, limit standard and test method[J]. China Food Safety Magazine, 2017(13): 58-60 (in Chinese). |
[28] |
GELINEAU-VAN WAES J, VOSS K A, STEVENS V L, et al. Maternal fumonisin exposure as a risk factor for neural tube defects[J]. Advances in Food and Nutrition Research, 2009, 56: 145-181. |
[29] |
陈茹. 国内外饲料真菌毒素限量规定及评析[J]. 中国饲料, 2013(17): 38-42. CHEN R. Comparison of domestic and foreign regulation on mycotoxin in feed[J]. China Feed, 2013(17): 38-42 (in Chinese). |
[30] |
European commission. Directive 2002/32 on undesirable substances in animal feed[Z]. 2010-03-02.
|
[31] |
European Commission. Commission recommendation of 17 August 2006 on the presence of deoxynivalenol, zearalenone, ochratoxin A, T-2 and HT-2 and fumonisins in products intended for animal feeding[EB/OL]. (2006-08-17)[2021-04-25]. https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2006:229:0007:0009:EN:PDF.
|
[32] |
CPG. Sec. 683.100 Action levels for alfatoxins in animal feeds[EB/OL]. [2021-04-25]. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/cpg-sec-683100-action-levels-aflatoxins-animal-feeds.
|
[33] |
National Grain and Feed Association. Guidance for industry: fumonisin levels in human foods and animal feeds[EB/OL]. (2001-11-09)[2021-04-25]. http://feed.ngfa.org/images/uploads/NGFAComplianceGuide-FDARegulatoryGuidanceforMycotoxins8-2011.pdf#:~:text=FDA%20on%20November%209%2C%202001%20issued%20a%20%E2%80%9Cfinal,use%20of%20good%20agricultural%20and%20good%20manufacturing%20practices.%E2%80%9D.
|
[34] |
Center for Food Safety and Applied Nutrition, Center for Veterinary Medicine. Guidance for industry and FDA: advisory levels for deoxynivalenol (DON) in finished wheat products for human consumption and grains and grain by-products used for animal feed[EB/OL]. (2010-06-29)[2021-04-25]. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/guidance-industry-and-fda-advisory-levels-deoxynivalenol-don-finished-wheat-products-human.
|
[35] |
王文珺, 孙双艳, 叶金, 等. 我国现行真菌毒素检测标准概述[J]. 食品安全质量检测学报, 2019, 10(4): 837-847. WANG W J, SUN S Y, YE J, et al. Review of current Chinese of testing standard of mycotoxin[J]. Journal of Food Safety & Quality, 2019, 10(4): 837-847 (in Chinese). DOI:10.3969/j.issn.2095-0381.2019.04.004 |
[36] |
王松雪, 鲁沙沙, 张艳, 等. 国内外真菌毒素检测标准制修订现状与进展[J]. 食品工业科技, 2011, 32(3): 408-412, 416. WANG S X, LU S S, ZHANG Y, et al. Current status and advances in the standards of mycotoxin detection[J]. Science and Technology of Food Industry, 2011, 32(3): 408-412, 416 (in Chinese). |
[37] |
陈鑫璐, 邱月, 张建友, 等. 国内外谷物中多种真菌毒素限量和同步检测标准及方法研究进展[J/OL]. 中国粮油学报: 1-19. (2021-04-21)[2021-04-25]. https://kns.cnki.net/kcms/detail/detail.aspx?FileName=ZLYX20210420003&DbName=CAPJ2021. CHEN X L, QIU Y, ZHANG J Y, et al. Domestic and foreign research progress on the limit standards and simultaneous detection standards and methods of multiple mycotoxins in grain[J/OL]. Journal of the Chinese Cereals and Oils Association: 1-19. (2021-04-21)[2021-04-25]. https://kns.cnki.net/kcms/detail/detail.aspx?FileName=ZLYX20210420003&DbName=CAPJ2021. (in Chinese) |
[38] |
谢瑜杰, 陈辉, 彭涛, 等. 食品与饲料基质中真菌毒素检测技术研究进展[J]. 食品安全质量检测学报, 2018, 9(6): 1234-1246. XIE Y J, CHEN H, PENG T, et al. Research progress on the detection techniques of mycotoxins in food and forage[J]. Journal of Food Safety & Quality, 2018, 9(6): 1234-1246 (in Chinese). DOI:10.3969/j.issn.2095-0381.2018.06.004 |
[39] |
ZHANG Z W, HU X F, ZHANG Q, et al. Determination for multiple mycotoxins in agricultural products using HPLC-MS/MS via a multiple antibody immunoaffinity column[J]. Journal of Chromatography.B, Analytical Technologies in the Biomedical and Life Science, 2016, 1021: 145-152. DOI:10.1016/j.jchromb.2016.02.035 |
[40] |
ROMERA D, MATEO E M, MATEO-CASTRO R, et al. Determination of multiple mycotoxins in feedstuffs by combined use of UPLC-MS/MS and UPLC-QTOF-MS[J]. Food Chemistry, 2018, 267: 140-148. DOI:10.1016/j.foodchem.2017.11.040 |
[41] |
薛毅, 张玥, 吴银良. 液相色谱-串联质谱法同时测定饲料中17种霉菌毒素[J]. 中国畜牧杂志, 2016, 52(19): 90-94. XUE Y, ZHANG Y, WU Y L. Simultaneous determination of seventeen mycotoxins in feeds by liquid chromatography-tandem mass spectrometry[J]. Chinese Journal of Animal Science, 2016, 52(19): 90-94 (in Chinese). |
[42] |
CASTEGNARO M, TOZLOVANU M, WILD C, et al. Advantages and drawbacks of immunoaffinity columns in analysis of mycotoxins in food[J]. Molecular Nutrition & Food Research, 2006, 50(6): 480-487. |
[43] |
HU X F, HU R, ZHANG Z W, et al. Development of a multiple immunoaffinity column for simultaneous determination of multiple mycotoxins in feeds using UPLC-MS/MS[J]. Analytical and Bioanalytical Chemistry, 2016, 408(22): 6027-6036. DOI:10.1007/s00216-016-9626-5 |
[44] |
庄倩, 曲宝涵, 李彦, 等. 高效液相色谱-串联质谱法同时测定饲料中9种霉菌毒素及其代谢物[J]. 分析科学学报, 2016, 32(1): 37-42. ZHUANG Q, QU B H, LI Y, et al. Simultaneous determination of nine kinds of mycotoxins and metabolins in feed by high performance liquid chromatography-tandem mass sepectrometry[J]. Journal of Analytical Science, 2016, 32(1): 37-42 (in Chinese). |
[45] |
魏云计, 冯民, 朱臻怡, 等. 高效液相色谱-串联质谱法同时测定饲料中11种霉菌毒素[J]. 色谱, 2017, 35(8): 891-896. WEI Y J, FENG M, ZHU Z Y, et al. Simultaneous determination of 11 mycotoxins in feeds by high performance liquid chromatography-tandem mass spectrometry[J]. Chinese Journal of Chromatography, 2017, 35(8): 891-896 (in Chinese). |
[46] |
张大伟, 高和杨, 周旌, 等. 超高效液相色谱-串联质谱法同时检测饲料原料、饲料成品中18种真菌毒素含量[J]. 食品安全质量检测学报, 2018, 9(22): 5867-5876. ZHANG D W, GAO H Y, ZHOU J, et al. Simultaneous determination of 18 kinds of mycotoxins in feed ingredients and feed products by ultra performance liquid chromatography-tandem mass spectrometry[J]. Journal of Food Safety & Quality, 2018, 9(22): 5867-5876 (in Chinese). DOI:10.3969/j.issn.2095-0381.2018.22.013 |
[47] |
崔晓娜, 郭礼强, 葛爱民, 等. QuEChERS-高效液相色谱-四级杆飞行时间质谱同时测定饲料中17种霉菌毒素[J]. 江苏农业科学, 2018, 46(3): 177-181. CUI X N, GUO L Q, GE A M, et al. Simultaneous determination of 17 kinds of mycotoxins in feed by QUECHERS-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry[J]. Jiangsu Agricultural Sciences, 2018, 46(3): 177-181 (in Chinese). |
[48] |
苏秋权, 殷秋妙, 王威利, 等. 液相色谱串联质谱法同时测定饲料中6种代表性霉菌毒素[J]. 食品安全质量检测学报, 2020, 11(15): 5142-5149. SU Q Q, YIN Q M, WANG W L, et al. Simultaneous determination of 6 representative mycotoxins in feed by liquid chromatography-tandem mass spectrometry[J]. Journal of Food Safety & Quality, 2020, 11(15): 5142-5149 (in Chinese). |
[49] |
王瑞国, 郭丽丽, 王培龙, 等. 杂质吸附型净化结合超高效液相色谱-串联质谱法同时测定谷物和动物饲料中37种霉菌毒素[J]. 色谱, 2020, 38(7): 817-825. WANG R G, GUO L L, WANG P L, et al. Simultaneous determination of 37 mycotoxins in grain and animal feed by impurity adsorption purification coupled with ultra-performance liquid chromatography-tandem mass spectrometry[J]. Chinese Journal of Chromatography, 2020, 38(7): 817-825 (in Chinese). |
[50] |
范志辰, 韩铮, 郭文博, 等. 超高效液相色谱-串联质谱法同时测定不同饲料中30种真菌毒素[J]. 色谱, 2017, 35(6): 627-633. FAN Z C, HAN Z, GUO W B, et al. Simultaneous determination of 30 mycotoxins in different feed products by ultra high performance liquid chromatography-tandem mass spectrometry[J]. Chinese Journal of Chromatography, 2017, 35(6): 627-633 (in Chinese). |
[51] |
杨立华, 翟士星, 翟钰, 等. 液相色谱在食品检测方面的应用[J]. 食品安全导刊, 2017(3): 66. YANG L H, ZHAI S X, ZHAI Y, et al. Application of liquid chromatography in food detection[J]. China Food Safety Magazine, 2017(3): 66 (in Chinese). |
[52] |
KONG W J, WEI R W, LOGRIECO A F, et al. Occurrence of toxigenic fungi and determination of mycotoxins by HPLC-FLD in functional foods and spices in China markets[J]. Food Chemistry, 2014, 146: 320-326. DOI:10.1016/j.foodchem.2013.09.005 |
[53] |
武开业. 液相色谱检测器原理及应用[J]. 科技视界, 2014(31): 288-288, 257. WU K Y. Principle and application of liquid chromatography detector[J]. Horizon of Science and Technology, 2014(31): 288-288, 257 (in Chinese). DOI:10.3969/j.issn.2095-2457.2014.31.231 |
[54] |
刘颖, 金永鹏, 罗荪琳, 等. 高效液相色谱同步检测饲料中黄曲霉毒素B1、玉米赤霉烯酮及呕吐毒素的方法[J/OL]. 动物营养学报: 1-10. (2021-04-20)[2021-05-27]. https://kns.cnki.net/kcms/detail/detail.aspx?FileName=DWYX2021041900Z&DbName=CAPJ2021. LIU Y, JIN Y P, LUO S L, et al. A method for simultaneous determination of aflatoxin B1, zearalenone and deoxynivalenol in feed by high performance liquid chromatography[J/OL]. Chinese Journal of Animal Nutrition: 1-10. (2021-04-20)[2021-05-27]. https://kns.cnki.net/kcms/detail/detail.aspx?FileName=DWYX2021041900Z&DbName=CAPJ2021. (in Chinese) |
[55] |
朱青欣. 液相色谱-质谱联用技术在食品检测中的应用[J]. 食品安全导刊, 2020(20): 29-31. ZHU Q X. Application of liquid chromatography-mass spectrometry in food detection[J]. China Food Safety Magazine, 2020(20): 29-31 (in Chinese). |
[56] |
张钰萍, 陈泠竹. 液质联用仪及其常用的两种电离源的实验教学[J]. 当代化工研究, 2020(17): 114-118. ZHANG Y P, CHEN L Z. Experimental teaching of high performance liquid chromatography/mass spectrometry and two commonly used ionization sources[J]. Modern Chemical Research, 2020(17): 114-118 (in Chinese). DOI:10.3969/j.issn.1672-8114.2020.17.056 |
[57] |
DIANA DI MAVUNGU J, MONBALIU S, SCIPPO M L, et al. LC-MS/MS multi-analyte method for mycotoxin determination in food supplements[J]. Food Additives & Contaminants.Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment, 2009, 26(6): 885-895. |
[58] |
RUBERT J, SOLER C, MAÑES J. Application of an HPLC-MS/MS method for mycotoxin analysis in commercial baby foods[J]. Food Chemistry, 2012, 133(1): 176-183. DOI:10.1016/j.foodchem.2011.12.035 |
[59] |
HICKERT S, GERDING J, NCUBE E, et al. A new approach using micro HPLC-MS/MS for multi-mycotoxin analysis in maize samples[J]. Mycotoxin Research, 2015, 31(2): 109-115. DOI:10.1007/s12550-015-0221-y |
[60] |
JENSEN T, DE BOEVRE M, PREUΒKE N, et al. Evaluation of high-resolution mass spectrometry for the quantitative analysis of mycotoxins in complex feed matrices[J]. Toxins, 2019, 11(9): 531. DOI:10.3390/toxins11090531 |
[61] |
符金华, 杨琳芬, 董泽民, 等. 饲料和饲料原料等25种样品中16种真菌毒素超高效液相色谱-三重四级杆/线性离子阱串联质谱法基质效应的研究[J]. 中国饲料, 2019(21): 66-71. FU J H, YANG L F, DONG Z M, et al. The matrix effect research of determination of 16 mycotoxins by UPLC-quadrupole/Qtrap mass spectrometry in 25 kinds of feed and feedstuff samples[J]. China Feed, 2019(21): 66-71 (in Chinese). |
[62] |
曾苑, 黄少瑶, 李仲唐, 等. 静电场轨道阱质谱技术在食品检测中的发展[J]. 轻工科技, 2019, 35(3): 4-6, 9. ZENG Y, HUANG S Y, LI Z T, et al. Development of electrostatic field orbitrap mass spectrometry technology in food inspection[J]. Light Industry Science and Technology, 2019, 35(3): 4-6, 9 (in Chinese). |
[63] |
陈瑞鹏, 孙云凤, 霍冰洋, 等. 真菌毒素多重检测技术的研究进展[J/OL]. 食品科学: 1-11. (2020-12-03)[2021-05-27]. https://kns.cnki.net/kcms/detail/detail.aspx?FileName=SPKX2020112000H&DbName=CAPJ2020. CHEN R P, SUN Y F, HUO B Y, et al. Research progress of multiple detection technology of mycotoxins[J/OL]. Food Science: 1-11. (2020-12-03)[2021-05-27]. https://kns.cnki.net/kcms/detail/detail.aspx?FileName=SPKX2020112000H&DbName=CAPJ2020. (in Chinese) |