动物营养学报    2021, Vol. 33 Issue (12): 6666-6675    PDF    
氧化应激、炎症和免疫失衡三方联动效应与奶牛常见健康问题的联系及使用植物提取物进行干预的研究进展
李欣 , 童津津 , 赵佳桢 , 蒋林树     
北京农学院动物科学技术学院, 奶牛营养学北京市重点实验室, 北京 102206
摘要: 奶牛从妊娠、分娩到泌乳的各个时期机体均在经历一系列代谢和生理适应性变化。氧化应激是奶牛疾病发生的深层次代谢重要诱因,导致宿主免疫和炎症反应功能失调,增加奶牛对各种疾病的易感性。因此,缓解氧化应激对奶牛机体及代谢的损伤,是保障奶牛高效生产的重要调控手段之一。目前植物提取物因其具有优良生物活性、可增强机体免疫力、有抗氧化和替代抗生素等功效,引起人们广泛关注。因此,本文围绕奶牛在氧化应激、炎症和免疫失衡三个方面的联动效应及植物提取物在调控奶牛代谢性疾病方面的应用潜力进行综述。
关键词: 植物提取物    营养干预    氧化应激    奶牛    
Relationship between Oxidative Stress, Inflammation and Immune Imbalance in Tripartite Linkage Effect and Common Health Problems of Dairy Cows and Research Progress of Intervention with Plant Extracts
LI Xin , TONG Jinjin , ZHAO Jiazhen , JIANG Linshu     
Beijing Key Laboratory of Cow Nutrition, College of Animal Science and Technology, Beijing Agricultural University, Beijing 102206, China
Abstract: During the transition period from pregnancy, delivery to lactation, dairy cows undergo a large number of metabolic changes and physiological adaptations, especially high-yielding dairy cows are in an overloaded metabolic state. Oxidative stress is an important factor caused diseases in dairy cows, leading to dysfunction of host immune and inflammatory response, as well as increasing the susceptibility of dairy cows to various diseases. Thus, the health management of dairy cows lays a stable foundation for the high yield of the entire lactation cycle. At present, natural active substance additives have attracted widespread attention for its variety functions such as enhancing the immunity function, anti-virus and potentially replacing antibiotics. Recent studies have shown that plant extracts have many excellent biological activities, such as anti-oxidation, anti-inflammatory and immunity. This study aimed to review the linkage effects of perinatal dairy cows in the three aspects of oxidative stress, inflammation and immune function, and the application potential of plant extracts in regulating the health of perinatal dairy cows.
Key words: plant extracts    nutritional intervention    oxidative stress    dairy cows    

奶牛生产过程中易受各种应激因素影响,当机体处于多种应激源刺激或病菌感染时,奶牛体内会产生过量活性氧(ROS),超过正常的抗氧化系统清除能力,导致氧化应激的发生,进而使宿主免疫和炎症反应功能失调,从而降低奶牛的抗病能力和饲料转化率,最终造成生产性能的降低,增加奶牛对各种疾病的易感性[1]。据报道,常见的ROS有超氧阴离子(O2-)、羟自由基(·OH)和过氧化氢(H2O2)等物质,过多ROS诱发氧化应激导致奶牛机体代谢增强,会造成严重的脂质过氧化,损伤DNA,破坏细胞的完整性[2-3]。氧化应激状态下,机体可激活核转录因子E2相关因子2(nuclear factor erythroid 2-related factor 2, Nrf2),并上调其下游的抗氧化酶基因的表达,从而提高抗氧化酶活性,这有利于提高机体组织细胞对ROS的清除能力[4]。此外,ROS还可以激活核转录因子-κB(nuclear transcription factor-κB, NF-κB)进而启动免疫和炎症反应[5]。同时,奶牛易发生的能量负平衡(NEB)和各种代谢病造成机体损伤,往往也与氧化应激有着密不可分的联系,所以科学合理调节奶牛的氧化应激和机体内能量平衡至关重要。

近年来,植物提取物作为一种含有多种活性成分(如酚、醚、萜、酮、酸等)的物质,具有绿色、安全和无公害等优势,是饲料添加剂的新选择[6],特别是在改善奶牛机体免疫状态、提高饲料转化率和抗氧化能力等方面具有显著成效[6-7]。因此,本文围绕奶牛在氧化应激、炎症和免疫失衡三个方面的联动效应及植物提取物在调控奶牛代谢性疾病方面的应用潜力进行综述。

1 三方联动效应及其与奶牛常见健康问题的联系 1.1 氧化应激与抗氧化防御系统

正常情况下,机体在进行生理活动的时候不断产生自由基,有相应的抗氧化防御系统对其进行清除,从而使机体保持动态平衡。过多的自由基致使抗氧化酶的产生减少,同时内源性抗氧化物水平也下降,使自由基产生与清除的动态平衡失常,发生内源性氧化应激,导致自由基重要分子损伤且修复损伤的能力也下降,影响自由基的正常生理功能[8],诱导氧化应激的发生。ROS在一定水平内具有促进细胞正常功能的作用,一旦超过了机体抗氧化系统消除ROS的能力,会对细胞和组织造成功能障碍并产生实质性的伤害,从而启动抗氧化防御系统[7, 9]。研究发现,机体内的初级抗氧化防御系统有由超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、谷胱甘肽过氧化物酶(GSH-Px)等体内内源的抗氧化酶所组成的酶类抗氧化系统和维生素E、维生素C和β-胡萝卜素等所组成的非酶类抗氧化防御系统[9]。而且据报道,构成抗氧化防御系统的材料为抗氧化剂,其既可以从饲粮中获得也可以由机体自身合成,并暂时储存在细胞中,如维生素E就是存在于细胞膜中的主要抗氧化剂,其具有破坏细胞膜之间相关脂肪酸自动氧化的自由基链式反应的作用[10]

除此之外,氧化应激的发生还导致氧化还原敏感信号转导途径的激活,例如NF-κB途径、NLRP3炎性途径和丝裂原活化蛋白激酶(MAPK)-Nrf2-抗氧化剂反应原件(ARE)通路等,又诱导了各种促炎基因如白细胞介素-1β(IL-1β)、白细胞介素-6(IL-6)和肿瘤坏死因子-α(TNF-α)等的表达[11]。据报道,围产期奶牛产生氧化应激主要通过降低Nrf2的核移位和转录增强乳腺上皮细胞的氧化损伤,破坏蛋白质、脂质和DNA结构,致使乳腺上皮细胞凋亡,最终导致机体氧化还原不平衡[12]。MAPK-Nrf2-ARE通路是动物机体调节自身氧化还原状态和应对外来刺激的一条重要的防御通路。正常情况下,在细胞内,Nrf2被其抑制蛋白[Kelch样ECH关联蛋白1(Keap1)]保持在胞浆中的基础稳态水平,受到应激源刺激时,Nrf2从Keap1上解离出来,转移到细胞核中与其下游抗氧化靶基因上游启动子区的ARE结合,启动SOD1、CAT、醌氧化还原酶1(NQO1)和过氧化物氧化还原酶1(PRDX1),促进对过量ROS的清除[4]。因此,调节氧化应激和抗氧化防御系统的平衡对保持奶牛机体稳定具有重要意义。

1.2 氧化应激与炎症反应

奶牛发生氧化应激后,多余的ROS会导致一系列的炎症反应[13],在炎症中细菌和病毒等会破坏机体内的自由基稳态,进一步促进ROS的产生,参与病原体的复制、基因突变以及诱发宿主细胞凋亡,促使机体炎症反应的加剧[8],使奶牛机体对疾病的易感性增加,易患子宫内膜炎、乳腺炎[14-15]、蹄叶炎和酮病等[14-15]。炎症期间白细胞也会产生ROS,形成正反馈回路,从而进一步加剧围产期的氧化应激[16],造成严重的恶性循环。研究发现,奶牛产生炎症反应主要是氧化应激会导致多个信号分子的激活,主要有MAPK[17]、蛋白激酶B(PKB)[18]和NF-κB[19]等信号通路。据报道,MAPK和PKB信号通路的细胞外信号调节激酶1/2(ERK1/2)和p38MAPK因子被过量ROS激活,诱导细胞凋亡[15];另外,ROS活化ERK信号通路后启动Nalp-3炎性复合体的组装和活化引起炎症反应,Nalp-3炎性复合体是胞内模式识别受体[20];其会促进IL-1β和白细胞介素-18(IL-18)的成熟,导致炎症反应的发生[21]。除此之外,MAPK还可以通过增强TNF-α的表达,诱导细胞凋亡产生炎症反应[22]。环氧合酶-2(COX-2)在奶牛发生炎症反应包括乳腺炎时表达增强,可通过NF-κB信号通路导致机体内炎症的发生[22-23]

NF-κB是一种几乎所有细胞都含有的转录因子,在细胞正常状态下,NF-κB与它的抑制蛋白(inhibitory NF-κB, IκB)在胞质内组成无活性的复合物,当氧化应激发生时,IκB发生磷酸化并与NF-κB解离,NF-κB活化并进入细胞核与靶基因结合调控转录的发生,促使炎性因子的产生,从而启动炎症反应[24]。同时在氧化应激状态下,线粒体持续生成的ROS还可通过激活NF-κB进一步激活Nalp-3炎性复合体诱导炎症的发生[25]。氧化应激诱发炎症发生时,炎症反应诱导细胞内炎症信号分子之一过氧化物氧化还原酶2(PRDX2)的产生与释放,PRDX2释放后作为炎症介质激活细胞内TNF-α的产生与释放,又加重炎症的发生程度[26]。一方面,PRDX2被释放后可作为氧化还原依赖性炎症介质激活巨噬细胞产生和释放TNF-α,从而加重炎症反应程度;另一方面,PRDX2也是炎症级联反应的一部分,可以直接诱导TNF-α的释放,加重炎症反应程度[9]

1.3 氧化应激与免疫调节

动物机体内的免疫系统是机体对于外部侵害,保护机体免受损伤的重要防御屏障。免疫平衡是指各种免疫细胞,如巨噬细胞、嗜中性粒细胞和天然杀伤细胞以及补体因子和特定的T淋巴细胞各自及相互作用的正负效应的调节,使免疫系统的激活和抑制保持平衡状态[27]。免疫平衡是免疫系统保持稳定的根本保障,一旦免疫激活和抑制失去平衡就会产生免疫应激,导致动物机体健康受到挑战。氧化应激产生的ROS引起炎症反应时,免疫细胞表面的模式识别受体-Toll样受体(TLRs)被启动,其不仅可以识别病原相关分子模式,同时可识别因氧化应激出现的损伤相关分子模式并诱导巨噬细胞的活化,启动免疫反应[28]。研究发现,奶牛的应激主要以过度的脂质动员、炎症和氧化应激为特征,而氧化应激的发生与免疫功能受损息息相关[29]。因此,奶牛机体免疫细胞对氧化应激机制十分敏感,当免疫细胞受到刺激时产生的大量ROS无法及时清除则损害细胞功能,就会降低奶牛的免疫力[30]。简而言之,ROS可通过TLRs和Nalp-3炎性复合体激活免疫系统,加速炎症发生或免疫反应[20, 28];而炎症反应会加速ROS的产生加剧氧化应激的程度,大量的ROS会引起免疫细胞的氧化损伤,进一步降低机体的免疫能力。有研究表明,当降低奶牛Nrf2下游抗氧化基因HO-1、SOD-1和CAT表达的同时也显著降低IL-1βTNF-α的表达水平[31],这说明可通过上调Nrf2和下游抗氧化剂的表达控制炎症发生防止免疫功能受损。番茄红素作为一种强抗氧化剂作用于机体时,其主要是通过失活NF-κB信号通路和半胱天冬酶(caspase)/凋亡相关基因(Bax)凋亡通路降低促炎因子TNF-αIL-1βIL-6的表达以及细胞凋亡率,而降低细胞炎性损伤,维持细胞内免疫平衡[32]。NF-κB与Nrf2-ARE信号通路之间相互关联,前者是连接免疫系统和抗氧化的重要纽带,后者能够抵抗氧化损伤,保护机体不受外源性刺激,二者协同调节氧化应激—炎症反应—免疫失衡链系统的整体联动反应[27]。因此,本文基于三方联动的机制,提出了营养干预管理技术,即通过添加植物提取物预防自由基失衡导致的多种奶牛营养代谢疾病。

1.4 三方联动与奶牛常见疾病的联系

自由基失衡导致氧化应激进一步影响机体免疫功能失衡[33],激活炎症信号通路,增加促炎因子TNF-αIL-1βIL-6的表达,导致奶牛产生炎症反应和疾病,最终导致奶牛免疫功能下降,引发奶牛乳房炎[32]、NEB[34]、糖脂代谢异常[35]及急性瘤胃酸中毒(SARA)[36]等疾病的发生。NEB发生时,奶牛体内非酯化脂肪酸(NEFA)含量升高以满足产奶的能量需求[37]。在奶牛代谢需求增加的时期,脂肪酸是重要的能量来源,然而NEFA含量的升高被认为与氧化应激的发生、炎症的出现以及扰乱机体免疫调节等密切相关。研究发现,高NEFA血症会导致奶牛乳腺上皮细胞(BMECs)产生大量的ROS,过量的ROS导致氧化应激,致使BMECs发生氧化损伤。作为维持奶牛泌乳的基本功能单位,BMECs氧化损伤会造成乳腺功能受损,产奶量显著降低,严重影响奶业健康发展。据报道,奶牛发生NEB时,体内过量的NEFA和β-羟丁酸(BHBA)可降低抗氧化酶的活性,导致自由基清除能力降低,血清中GSH-Px和CAT活性降低,但血清中ROS、MDA和H2O2的含量显著升高,这些变化则导致了机体抗氧化系统被破坏,从而发生一系列的氧化应激损伤[12, 38]。有研究发现,在奶牛患有胰岛素依赖性糖尿病的情况下,其天冬氨酸氨基转移酶(AST)和γ谷氨酰转移酶(GGT)活性升高,受糖脂代谢异常的影响,SOD和CAT活性显著降低,但GSH-Px活性无显著变化[39]。这提示我们当奶牛糖脂代谢异常引发疾病时伴随氧化应激的发生。当SARA发生时,可破坏奶牛体内的营养物质利用效率,损害胃肠道微生物群的功能,降低胃肠道上皮的吸收和屏障能力,引发炎症反应。Zhang等[40]研究发现,围产期饲喂高精料饲粮,可导致奶牛瘤胃上皮细胞中IL-1βIL-6和IL-2等促炎因子的表达量显著升高。除此之外,SARA导致瘤胃内产生大量内毒素(LPS),LPS具有刺激血管收缩,降低血流量和血氧含量的作用,通过后肠道进入机体后引起炎症反应,会导致蹄部缺血,诱导蹄叶炎的发生[36]等。同时血液中的LPS还会随循环系统运输至肝脏,但肝脏清除能力有限,进而LPS刺激肝脏产生大量急性期蛋白(APP)、包括血清淀粉样蛋白(SAA)、结合珠蛋白(Hp)和LPS结合蛋白(LPB)等[41]。值得注意的是,当酮病发生时,奶牛在乳腺中发生NF-κB信号通路的传导,NLRP3炎症小体和抗凋亡因子-2(Bcl-2)/半胱天冬酶-9(caspase-9)细胞凋亡途径被激活,TNF-αIL-6和IL-1β等炎性因子的表达显著增加,进而激活乳腺炎症反应和凋亡途径[11],使乳腺的防御能力下降。此外,有研究发现,亚临床酮病可以导致奶牛外周血中性粒细胞吞噬能力和趋化能力的降低,由于产前和产后血液中NEFA和BHBA含量升高,导致白细胞趋化能力和吞噬能力降低,可以进一步引起乳腺对乳房炎病原体的敏感性升高,导致奶牛对乳腺炎易感率升高[42]

2 植物提取物调节奶牛常见疾病的研究进展 2.1 NEB和酮病

目前,通过补充植物提取物可以纠正NEB来减轻氧化应激引起的炎症反应和免疫失调已被广泛报道。添加植物提取物后可提高总抗氧化能力(T-AOC)和增强GSH-Px活性来改善抗氧化剂状态,抵消NEB的负面影响[43]。韩瑞阳[44]研究发现,山楂可通过降低甘油三酯、胆固醇、低密度脂蛋白含量及升高高密度脂蛋白含量,来调节脂代谢紊乱,有缓解奶牛发生NEB的潜力;此外,奶牛由于NEB引发的脂肪动员会损伤肝脏功能,碱性磷酸酶和GGT活性可反映肝脏的功能状态,当组织细胞受损时会导致它们的活性升高[39]。刘国林等[45]研究发现,在奶牛饲粮中添加山楂和黄芪,奶牛血浆中的碱性磷酸酶、GGT活性和NEFA含量降低,说明添加山楂和黄芪可保护奶牛的肝脏功能并且缓解产后奶牛的NEB。由此可见,在奶牛饲粮中添加植物提取物可有效防治由于NEB产生的炎症反应和免疫功能紊乱。酮病是奶牛产犊后发生NEB后导致的一种营养代谢性疾病,当发生NEB后血液中NEFA含量升高,NEFA随血液转运至肝脏进行氧化代谢,部分NEFA可被完全氧化为CO2和H2O进行供能,但因肝脏代谢功能有限,部分NEFA无法完全氧化生成BHBA和丙酮等酮体,肝脏中NEFA越多也就导致BHBA等酮体含量过高,最终引发不同程度的酮病[46]。近年来,植物提取物在奶牛预防或治疗酮病的发生与发展也得到了广泛研究。胡俊菁[47]通过给泌乳早期奶牛饲粮添加葡萄籽原花青素后测定奶牛抗氧化状况和酮病等指标发现,添加葡萄籽原花青素(GSPE)可提髙泌乳早期奶牛血浆中葡萄糖含量,同时还提高乳汁中GSH-Px的活性,表明GSPE可及时调控奶牛机体抗氧化能力预防酮病的发生。宿孝奇[48]在添加原花青素对泌乳早期奶牛酮病、氧化应激研究中也发现,添加原花青素的试验组与未添加的对照组相比,血浆CAT活性、丙二醛(MDA)、一氧化氮及酮体含量极显著下降,添加初始NEFA含量也显著下降,由此说明添加原花青素可有效提高奶牛机体抗氧化能力,降低血浆氧化代谢产物和酮体水平。还有研究表明,饲粮中添加茶、菊苣、龙胆草、香茅和甘草等植物的提取物使得围产期奶牛体内的丙酮、NEFA和BHBA含量从第7天开始下降,第14天开始明显降低,谷氨酸脱氢酶活性显著增高,说明这些植物提取物对改善奶牛的酮病均有较好的效果[49]。在奶牛围产期阶段,诱导肝脏内质网应激有关的炎症会促进脂肪肝综合征和酮病的发生,但对奶牛补充由绿茶(95%)和富含多酚的姜黄提取物(5%)组成的植物产品,可以减轻肝脏的炎症和内质网应激,并在产后1~3周奶牛肝脏中的甘油三酯和胆固醇含量较低,提示植物多酚的补充可能对提高奶牛的酮病和预防脂肪肝综合征有作用[50]。产后奶牛体脂动员产生了大量NEFA,进而导致酮体含量升高,而添加山楂和黄芪可降低产后酮体含量[45]。综上所述,为避免奶牛NEB和酮病的发生,可以采用在围产期奶牛饲粮中添加植物提取物的方式帮助改善奶牛的健康状况,改善牧场的盈利能力。

2.2 糖、脂代谢

奶牛由于营养代谢发生改变所以促使代谢作用发生协调变化,以满足对葡萄糖、氨基酸和脂肪酸等物质的需求。奶牛发生葡萄糖缺乏时会引起脂肪动员,导致血液中脂肪酸含量增加,但高含量脂肪酸会干扰胰岛素的信号传导降低敏感性,发生胰岛素抵抗[51]。机体发生胰岛素抵抗又会加剧体脂动员的发生使脂肪酸含量增加,从而在奶牛体内发生恶性循环[52],最终引起奶牛营养代谢疾病的发生如脂肪肝等。大量的研究结果表明,植物提取物在改善奶牛糖、脂代谢过程中具有重要作用。Stoldt等[53]研究发现,从产犊前3周开始持续6周,十二指肠瘘管奶牛每天服用0.9%的氯化钠溶液溶解的100 mg/kg槲皮素二水合物,结果表明,槲皮素可抑制血清中AST和谷氨酸脱氢酶的活性,因谷氨酸脱氢酶的活性升高,指示肝细胞死亡或亚致死性损伤[54],由此可见,槲皮素可保护肝脏免受损伤。此外,研究发现单宁可以与自由基组合以形成共振稳定的苯氧基自由基[55],具有较高的清除活性氧自由基的能力。Liu等[56]在围产期奶牛饲粮中添加板栗单宁,结果发现显著降低了脂质过氧化产物之一——MDA的含量,并增加奶牛血浆和肝脏中抗氧化酶活性,改善了围产期奶牛的抗氧化状态和降低肝脏疾病的发生率。此外,据报道人参皂苷Rb1作为一种很有前途的天然降血糖药物,通过清除自由基,抑制蛋白质非酶糖基化可有效调控体内的糖代谢[57]。有研究表明,菠菜衍生物可淬灭ROS降低氧化损伤,抑制NF-κB的激活,同时有可能改善代谢综合征的组成部分,使菠菜成分通过诱导饱腹性激素、胰岛素增敏活性以及与脂肪和碳水化合物消化酶之间发生相互作用进而发挥调节机体代谢作用[58]。Gessner等[59]发现,饲喂富含黄酮类化合物的植物提取物葡萄籽和葡萄渣粉提取物(GSGME)可减轻奶牛肝脏的炎症和内质网应激。在奶牛饲粮中添加石榴籽浆(PSP),在产前和产后均提高了血浆中T-AOC,降低了甘油三酯、游离脂肪酸(FFA)和BHBA含量,说明PSP可以改善抗氧化状态,与脂质氧化(FFA和BHBA)的下降以及葡萄糖利用的增强有关[60]。所以,富含抗氧化剂的植物提取物可改善糖、脂代谢异常产生的肝脏疾病等且可应对由于氧化应激而产生的过量自由基,平衡围产期奶牛的营养调控。

2.3 SARA

在奶牛分娩后,由于高能量需求,高产奶牛接受高精料的饮食,导致奶牛采食精料后在瘤胃发酵产生大量挥发性脂肪酸(VFA),瘤胃pH降低,引起奶牛SARA的发生[61]。据报道,单宁可有效地抑制瘤胃中微生物的生长,尤其是对瘤胃蛋白降解菌的作用最为明显,其可与细菌的细胞壁和细胞膜形成复合物导致细菌的细胞壁被破坏,以此达到抑制细菌生长的效果[62],说明植物提取物单宁对于保持瘤胃健康有积极作用。Balcells等[63]研究发现,给小母牛饲喂植物类黄酮提取物可改善瘤胃发酵并减少SARA的发生率,这种作用可通过瘤胃中消耗乳酸的微生物——埃尔斯登氏疟原虫数量的增加来解释。Humer等[64]发现,在奶牛的高精料饲粮中加入主要来源于薄荷和百里香的植物提取物,可以显著降低瘤胃液中LPS和组胺的含量以及血浆代谢组的不良变化,减弱炎症反应,缓解SARA带来的不良影响。在奶牛的高精料饲粮中添加100 g/d富含黄酮类植物精油可以降低瘤胃液中LPS含量,同时降低血液中SAA、Hp和LPB的含量,进而减弱炎性反应[65]。Drong等[66]研究发现,在围产期奶牛的高精料饲粮中添加含有百里酚、丁香酚和香草酚等的混合植物精油会降低瘤胃液中LPS含量,且Hp含量与对照组相比也有所降低。植物提取物可以缓解高精料饲粮条件下反刍动物发生SARA的症状,降低LPS的产生和炎症反应,增强对肠道和肝脏等器官的保护作用,提高机体免疫功能。

3 小结

奶牛由于代谢旺盛发生各种疾病,疾病的发生往往伴随着氧化应激的产生,氧化应激又会导致促炎因子IL-1、IL-6和TNF-α的产生, 进一步导致炎症和免疫抑制的发生,机体抵抗力下降又会诱发其他疾病的风险,奶牛体内发生恶性循环导致奶牛机体健康受损。所以,了解奶牛体内氧化应激、炎症与免疫失衡的三方联动效应及其与代谢性疾病的关系具有重要意义。植物提取物作为一种来源广泛的生物活性物质,参与细胞炎症和细胞凋亡有关的信号通路,对缓解奶牛氧化应激、炎症和增强免疫能力等方面具有广阔的应用前景,有望作为奶牛的一种重要饲粮添加剂而对奶牛产生氧化应激和慢性炎症时起到预防和治疗作用。

参考文献
[1]
马燕芬, 宝华, 张春华, 等. 番茄红素摄入与围产期奶牛氧化应激和炎症的关系[J]. 饲料工业, 2021, 42(1): 59-64.
MA Y F, BAO H, ZHANG C H, et al. Relationship among lycopene intake and oxidative stress and inflammation in perinatal dairy cows[J]. Feed Industry, 2021, 42(1): 59-64 (in Chinese).
[2]
SURAI P F, KOCHISH I I, FISININ V I, et al. Antioxidant defence systems and oxidative stress in poultry biology: an update[J]. Antioxidants, 2019, 8(7): 235. DOI:10.3390/antiox8070235
[3]
LIU T F, XIAO B W, XIANG F, et al. Ultrasmall copper-based nanoparticles for reactive oxygen species scavenging and alleviation of inflammation related diseases[J]. Nature Communications, 2020, 11(1): 2788. DOI:10.1038/s41467-020-16544-7
[4]
KHADRAWY O, GEBREMEDHN S, SALILEW-WONDIM D, et al. Endogenous and exogenous modulation of Nrf2 mediated oxidative stress response in bovine granulosa cells: potential implication for ovarian function[J]. International Journal of Molecular Sciences, 2019, 20(7): 1635. DOI:10.3390/ijms20071635
[5]
LINGAPPAN K. NF-κB in oxidative stress[J]. Current Opinion in Toxicology, 2018, 7: 81-86. DOI:10.1016/j.cotox.2017.11.002
[6]
徐琪翔, 曹文豪, 罗双贵, 等. 复合植物提取物对湘东黑山羊生长性能和肌肉脂肪酸组成的影响[J]. 动物营养学报, 2021, 33(4): 2146-2157.
XU Q X, CAO W H, LUO S G, et al. Effects of compound plant extracts on growth performance and fatty acid composition of muscle of goats[J]. Chinese Journal of Animal Nutrition, 2021, 33(4): 2146-2157 (in Chinese). DOI:10.3969/j.issn.1006-267x.2021.04.034
[7]
EATON P. Protein thiol oxidation in health and disease: techniques for measuring disulfides and related modifications in complex protein mixtures[J]. Free Radical Biology & Medicine, 2006, 40(11): 1889-1899.
[8]
卢德勋. 动物营养学科发展在战略方向上的重大突破: 构建动物健康营养理论和技术体系及其实际应用[J]. 动物营养学报, 2021, 33(1): 1-12.
LU D X. A major breakthrough in development of animal nutrition in strategic direction: building an animal health and nutrition theory and technology system and its application[J]. Chinese Journal of Animal Nutrition, 2021, 33(1): 1-12 (in Chinese). DOI:10.3969/j.issn.1006-267x.2021.01.001
[9]
宝华, 宋利文, 张春华, 等. 围产期奶牛氧化应激、抗氧化防御系统及其与机体炎症反应的关系[J]. 畜牧与饲料科学, 2019, 40(6): 53-57.
BAO H, SONG L W, ZHANG C H, et al. Research progress on oxidative stress and antioxidant defense system and their relationship with inflammatory response in perinatal dairy cows[J]. Animal Husbandry and Feed Science, 2019, 40(6): 53-57 (in Chinese).
[10]
BLOKHINA O, VIROLAINEN E, FAGERSTEDT K V. Antioxidants, oxidative damage and oxygen deprivation stress: a review[J]. Annals of Botany, 2003, 91(2): 179-194. DOI:10.1093/aob/mcf118
[11]
SUN X D, TANG Y, JIANG C H, et al. Oxidative stress, NF-κB signaling, NLRP3 inflammasome, and caspase apoptotic pathways are activated in mammary gland of ketotic Holstein cows[J]. Journal of Dairy Science, 2021, 104(1): 849-861. DOI:10.3168/jds.2020-18788
[12]
宝华, 宋利文, 张航, 等. 围产后期亚临床酮病对奶牛氧化应激、免疫功能和生产性能的影响[J]. 饲料工业, 2019, 40(15): 49-56.
BAO H, SONG L W, ZHANG H, et al. Effects of subclinical ketosis on oxidative stress, immune function and production performance of dairy cows in postpartum[J]. Feed Industry, 2019, 40(15): 49-56 (in Chinese).
[13]
JIN L, YAN S, SHI B, et al. Effects of retinoic acid on the synthesis of selenoprotein and the antioxidative indices of bovine mammary epithelial cells in vitro[J]. Czech Journal of Animal Science, 2016, 61(4): 194-202. DOI:10.17221/8851-CJAS
[14]
MA Y F, WU Z H, GAO M, et al. Nuclear factor erythroid 2-related factor 2 antioxidant response element pathways protect bovine mammary epithelial cells against H2O2-induced oxidative damage in vitro[J]. Journal of Dairy Science, 2018, 101(6): 5329-5344. DOI:10.3168/jds.2017-14128
[15]
MA Y F, WU Z H, GAO M, et al. Nuclear factor erythroid 2-related factor 2-antioxidant activation through the action of ataxia telangiectasia-mutated serine/threonine kinase is essential to counteract oxidative stress in bovine mammary epithelial cells[J]. Journal of Dairy Science, 2018, 101(6): 5317-5328. DOI:10.3168/jds.2017-13954
[16]
MAVANGIRA V, SORDILLO L M. Role of lipid mediators in the regulation of oxidative stress and inflammatory responses in dairy cattle[J]. Research in Veterinary Science, 2018, 116: 4-14. DOI:10.1016/j.rvsc.2017.08.002
[17]
CARGNELLO M, ROUX P P. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases[J]. Microbiology and Molecular Biology Reviews, 2011, 75(1): 50-83.
[18]
MA Q. Role of Nrf2 in oxidative stress and toxicity[J]. Annual Review of Pharmacology and Toxicology, 2013, 53: 401-426. DOI:10.1146/annurev-pharmtox-011112-140320
[19]
LIU C M, SUN Y Z, SUN J M, et al. Protective role of quercetin against lead-induced inflammatory response in rat kidney through the ROS-mediated MAPKs and NF-κB pathway[J]. Biochimica et Biophysica Acta, 2012, 1820(10): 1693-1703. DOI:10.1016/j.bbagen.2012.06.011
[20]
魏小林, 谢敏. NALP3炎性复合体与MAPK、NF-κB及ROS信号通路之间的关系[J]. 国际呼吸杂志, 2015, 35(6): 476-480.
WEI X L, XIE M. Relationship between NALP3 inflammasome and MAPK, NF-κB, ROS signal pathway[J]. International Journal of Respiration, 2015, 35(6): 476-480 (in Chinese). DOI:10.3760/cma.j.issn.1673-436X.2015.06.017
[21]
陆灿强, 舒邓群, 臧一天. 热应激诱导畜禽氧化应激、热休克反应与免疫和炎症反应的机制及营养调控措施[J]. 动物营养学报, 2021, 33(6): 3115-3124.
LU C Q, SHU D Q, ZANG Y T. Mechanism and nutritional regulation of oxidative stress, heat shock response, immunity and inflammation induced by heat stress in livestock and poultry[J]. Chinese Journal of Animal Nutrition, 2021, 33(6): 3115-3124 (in Chinese). DOI:10.3969/j.issn.1006-267x.2021.06.014
[22]
SHIMABUKURO M, WANG M Y, ZHOU Y T, et al. Protection against lipoapoptosis of beta cells through leptin-dependent maintenance of Bcl-2 expression[J]. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(16): 9558-9561. DOI:10.1073/pnas.95.16.9558
[23]
KANG S, LEE J S, LEE H C, et al. Phytoncide extracted from pinecone decreases LPS-induced inflammatory responses in bovine mammary epithelial cells[J]. Journal of Microbiology and Biotechnology, 2016, 26(3): 579-587. DOI:10.4014/jmb.1510.10070
[24]
WIDŁAK P, GRAMATYKA M, KIMMEL M. Crosstalk between stress-induced NF-κB, p53 and HSF1 signaling pathways-review[J]. IFAC Proceedings Volumes, 2014, 47(3): 11518-11523. DOI:10.3182/20140824-6-ZA-1003.01054
[25]
高婷, 王子旭, 陈祝茗, 等. ROS介导的氧化应激与自噬[J]. 中国畜牧兽医, 2018, 45(3): 656-662.
GAO T, WANG Z X, CHEN Z M, et al. Oxidative stress and autophagy mediated by reactive oxygen species[J]. China Animal Husbandry & Veterinary Medicine, 2018, 45(3): 656-662 (in Chinese).
[26]
SALZANO S, CHECCONI P, HANSCHMANN E M, et al. Linkage of inflammation and oxidative stress via release of glutathionylated peroxiredoxin-2, which acts as a danger signal[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(33): 12157-12162. DOI:10.1073/pnas.1401712111
[27]
卢德勋. 健康养殖的营养技术策略的系统观[J]. 饲料工业, 2019, 40(2): 1-5.
LU D X. The systemic concept on a nutritional strategy for healthy animal production[J]. Feed Industry, 2019, 40(2): 1-5 (in Chinese).
[28]
NAWAB A, AN L L, WU J, et al. Chicken Toll-like receptors and their significance in immune response and disease resistance[J]. International Reviews of Immunology, 2019, 38(6): 284-306. DOI:10.1080/08830185.2019.1659258
[29]
LING T, HERNANDEZ-JOVER M, SORDILLO L M, et al. Maternal late-gestation metabolic stress is associated with changes in immune and metabolic responses of dairy calves[J]. Journal of Dairy Science, 2018, 101(7): 6568-6580. DOI:10.3168/jds.2017-14038
[30]
管若溦, 刘建新. 围生期奶牛易感疾病的原因及常见病患的早期监测[J]. 浙江大学学报(农业与生命科学版), 2019, 45(5): 519-525.
GUAN R W, LIU J X. Causes of susceptibility to diseases and early monitoring of common diseases in perinatal dairy cows[J]. Journal of Zhejiang University(Agriculture & Life Sciences), 2019, 45(5): 519-525 (in Chinese).
[31]
WANG X X, FANG H, XU G, et al. Resveratrol prevents cognitive impairment in type 2 diabetic mice by upregulating Nrf2 expression and transcriptional level[J]. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 2020, 13: 1061-1075. DOI:10.2147/DMSO.S243560
[32]
SUN X D, JIA H D, XU Q S, et al. Lycopene alleviates H2O2-induced oxidative stress, inflammation and apoptosis in bovine mammary epithelial cells via the NFE2L2 signaling pathway[J]. Food & Function, 2019, 10(10): 6276-6285.
[33]
OSORIO J S, TREVISI E, JI P, et al. Biomarkers of inflammation, metabolism, and oxidative stress in blood, liver, and milk reveal a better immunometabolic status in peripartal cows supplemented with Smartamine M or MetaSmart[J]. Journal of Dairy Science, 2014, 97(12): 7437-7450. DOI:10.3168/jds.2013-7679
[34]
MAYASARI N, CHEN J, FERRARI A, et al. Effects of dry period length and dietary energy source on inflammatory biomarkers and oxidative stress in dairy cows[J]. Journal of Dairy Science, 2017, 100(6): 4961-4975. DOI:10.3168/jds.2016-11857
[35]
MCFADDEN J W. Review: lipid biology in the periparturient dairy cow: contemporary perspectives[J]. Animal, 2020, 14(Suppl.1): s165-s175.
[36]
汤利民, 王文丹, 苏衍菁, 等. 预防亚急性瘤胃酸中毒的营养调控措施[J]. 中国奶牛, 2019(4): 9-13.
TANG L M, WANG W D, SU Y J, et al. Nutritional regulation measures for preventing subacute rumen acidosis[J]. China Dairy Cattle, 2019(4): 9-13 (in Chinese).
[37]
WANG Y R, LI C M, ALI I, et al. N-acetylcysteine modulates non-esterified fatty acid-induced pyroptosis and inflammation in granulosa cells[J]. Molecular Immunology, 2020, 127: 157-163. DOI:10.1016/j.molimm.2020.09.011
[38]
孙光野, 张翠羽, 杨威, 等. 围产期奶牛氧化应激初步预警体系的建立[J]. 中国兽医学报, 2019, 39(3): 529-534, 540.
SUN G Y, ZHANG C Y, YANG W, et al. Establishment of early warning system for oxidative stress in perinatal mums[J]. Chinese Journal of Veterinary Science, 2019, 39(3): 529-534, 540 (in Chinese).
[39]
DEEPA P M, DIMRI U, JHAMBH R, et al. Alteration in clinico-biochemical profile and oxidative stress indices associated with hyperglycaemia with special reference to diabetes in cattle-a pilot study[J]. Tropical Animal Health and Production, 2015, 47(1): 103-109. DOI:10.1007/s11250-014-0691-5
[40]
ZHANG R Y, ZHU W Y, MAO S Y. High-concentrate feeding upregulates the expression of inflammation-related genes in the ruminal epithelium of dairy cattle[J]. Journal of Animal Science and Biotechnology, 2016, 7: 42. DOI:10.1186/s40104-016-0100-1
[41]
WANG Y, XU L, LIU J H, et al. A high grain diet dynamically shifted the composition of mucosa-assocated microbiota and induced mucosal injuries in the colon of sheep[J]. Frontiers in Microbiology, 2017, 8: 2080. DOI:10.3389/fmicb.2017.02080
[42]
薛俊欣, 缪德年, 黄克和, 等. 亚临床酮病对围产期奶牛免疫功能的影响[J]. 上海交通大学学报(农业科学版), 2011, 29(1): 48-53.
XUE J X, MIAO D N, HUANG K H, et al. Influence of sub-clinical ketosis on immunological function of dairy cows during peripartum[J]. Journal of Shanghai Jiaotong University(Agricultural Science), 2011, 29(1): 48-53 (in Chinese). DOI:10.3969/J.ISSN.1671-9964.2011.01.009
[43]
BECK M R, GARRETT K, OLEJAR K J, et al. Negative effects of energy supplementation at peak lactation of sheep can be offset by the addition of Lactobacillus-fermented plant extracts[J]. Journal of Animal Science, 2021, 99(5): skab069. DOI:10.1093/jas/skab069
[44]
韩瑞阳. 生山楂饮对糖耐量异常大鼠血脂及血液流变学影响研究[D]. 硕士学位论文. 成都: 成都中医药大学, 2018.
HAN R Y. Effect of Shengshanzha decoction on blood lipid and hemorrheology in rats with impaired glucose tolerance impact study[D]. Master's Thesis. Chengdu: Chengdu University of Traditional Chinese Medicine, 2018. (in Chinese)
[45]
刘国林, 陶金忠, 白玲荣, 等. 山楂和黄芪对围产期奶牛血液生化指标和免疫指标的影响[J]. 河南农业科学, 2020, 49(2): 150-158.
LIU G L, TAO J Z, BAI L R, et al. Effects of hawthorn and Astragalus on blood biochemical and immunological indexes of dairy cows during perinatal period[J]. Journal of Henan Agricultural Sciences, 2020, 49(2): 150-158 (in Chinese).
[46]
赵善江, 郝海生, 刘云祥, 等. 疾病对奶牛繁殖性能的影响及其研究进展Ⅲ: 营养代谢性疾病[J]. 中国畜牧兽医, 2020, 47(11): 3618-3625.
ZHAO S J, HAO H S, LIU Y X, et al. Effects of diseases on reproductive performance in dairy cattle Ⅲ: nutritional metabolic diseases[J]. China Animal Husbandry & Veterinary Medicine, 2020, 47(11): 3618-3625 (in Chinese).
[47]
胡俊菁. 葡萄籽原花青素对奶牛抗氧化状况和酮病等指标的影响[D]. 硕士学位论文. 南宁: 广西大学, 2017.
HU J J. Effects of feeding grape seed procyanidins on antioxidant status and ketosis-related indicators in dairy cows[D]. Master's Thesis. Nanning: Guangxi University, 2017. (in Chinese)
[48]
宿孝奇. 酮病奶牛氧化应激特征及原花青素对奶牛氧化应激的影响[D]. 硕士学位论文. 南宁: 广西大学, 2015.
SU X Q. Characetristics of oxidative stress in cows with ketosis and the effect of adding procyanidins on oxidative stress in cows[D]. Master's Thesis. Nanning: Guangxi University, 2015. (in Chinese)
[49]
DURRER M, MEVISSEN M, HOLINGER M, et al. Effects of a multicomponent herbal extract on the course of subclinical ketosis in dairy cows-a blinded placebo-controlled field-study[J]. Planta Medica, 2020, 86(18): 1375-1388. DOI:10.1055/a-1260-3148
[50]
WINKLER A, GESSNER D K, KOCH C, et al. Effects of a plant product consisting of green tea and curcuma extract on milk production and the expression of hepatic genes involved in endoplasmic stress response and inflammation in dairy cows[J]. Archives of Animal Nutrition, 2015, 69(6): 425-441. DOI:10.1080/1745039X.2015.1093873
[51]
GAO W W, DU X L, LEI L, et al. NEFA-induced ROS impaired insulin signalling through the JNK and p38MAPK pathways in non-alcoholic steatohepatitis[J]. Journal of Cellular and Molecular Medicine, 2018, 22(7): 3408-3422. DOI:10.1111/jcmm.13617
[52]
DE KOSTER J, HOSTENS M, VAN EETVELDE M, et al. Insulin response of the glucose and fatty acid metabolism in dry dairy cows across a range of body condition scores[J]. Journal of Dairy Science, 2015, 98(7): 4580-4592. DOI:10.3168/jds.2015-9341
[53]
STOLDT A K, DERNO M, NVRNBERG G, et al. Effects of a 6-wk intraduodenal supplementation with quercetin on energy metabolism and indicators of liver damage in periparturient dairy cows[J]. Journal of Dairy Science, 2015, 98(7): 4509-4520. DOI:10.3168/jds.2014-9053
[54]
OK M, ŞEN Ī, GÜZELBEKTEŞ H, et al. The importance of concentrations of sorbitol dehydrogenase and glutamate dehydrogenase and b-mode ultrasonographic examination in the diagnosis of hepatic lipidosis in dairy cows[J]. Kafkas Vniversitesi Veteriner Fakültesi Dergisi, 2013, 19(Suppl-A): A117-A123.
[55]
RICE-EVANS C A, MILLER N J, PAGANGA G. Structure-antioxidant activity relationships of flavonoids and phenolic acids[J]. Free Radical Biology and Medicine, 1996, 20(7): 933-956. DOI:10.1016/0891-5849(95)02227-9
[56]
LIU H W, ZHOU D W, LI K. Effects of chestnut tannins on performance and antioxidative status of transition dairy cows[J]. Journal of Dairy Science, 2013, 96(9): 5901-5907. DOI:10.3168/jds.2013-6904
[57]
ZHOU P, XIE W J, HE S B, et al. Ginsenoside Rb1 as an anti-diabetic agent and its underlying mechanism analysis[J]. Cells, 2019, 8(3): 204. DOI:10.3390/cells8030204
[58]
ROBERTS J L, MOREAU R. Functional properties of spinach (Spinacia oleracea L.) phytochemicals and bioactives[J]. Food & Function, 2016, 7(8): 3337-3353.
[59]
GESSNER D K, KOCH C, ROMBERG F J, et al. The effect of grape seed and grape marc meal extract on milk performance and the expression of genes of endoplasmic reticulum stress and inflammation in the liver of dairy cows in early lactation[J]. Journal of Dairy Science, 2015, 98(12): 8856-8868. DOI:10.3168/jds.2015-9478
[60]
SAFARI M, GHASEMI E, ALIKHANI M, et al. Supplementation effects of pomegranate by-products on oxidative status, metabolic profile, and performance in transition dairy cows[J]. Journal of Dairy Science, 2018, 101(12): 11297-11309. DOI:10.3168/jds.2018-14506
[61]
STEELE M A, PENNER G B, CHAUCHEYRAS-DURAND F, et al. Development and physiology of the rumen and the lower gut: targets for improving gut health[J]. Journal of Dairy Science, 2016, 99(6): 4955-4966. DOI:10.3168/jds.2015-10351
[62]
贾淼, 鲁琳, 李艳玲. 植物提取物对反刍动物瘤胃发酵和甲烷产量的影响[J]. 中国草食动物科学, 2015, 35(4): 59-63, 72.
JIA M, LU L, LI Y L. Effects of plant extracts on ruminant fermentation and methane production[J]. China Herbivore Science, 2015, 35(4): 59-63, 72 (in Chinese). DOI:10.3969/j.issn.2095-3887.2015.04.019
[63]
BALCELLS J, ARIS A, SERRANO A, et al. Effects of an extract of plant flavonoids (Bioflavex) on rumen fermentation and performance in heifers fed high-concentrate diets[J]. Journal of Animal Science, 2012, 90(13): 4975-4984. DOI:10.2527/jas.2011-4955
[64]
HUMER E, KRÖGER I, NEUBAUER V, et al. Supplementing phytogenic compounds or autolyzed yeast modulates ruminal biogenic amines and plasma metabolome in dry cows experiencing subacute ruminal acidosis[J]. Journal of Dairy Science, 2018, 101(10): 9559-9574. DOI:10.3168/jds.2018-14744
[65]
DE NARDI R, MARCHESINI G, PLAIZIER J C, et al. Use of dicarboxylic acids and polyphenols to attenuate reticular pH drop and acute phase response in dairy heifers fed a high grain diet[J]. BMC Veterinary Research, 2014, 10: 277. DOI:10.1186/s12917-014-0277-5
[66]
DRONG C, BVHLER S, FRAHM J, et al. Effects of body condition, monensin, and essential oils on ruminal lipopolysaccharide concentration, inflammatory markers, and endoplasmatic reticulum stress of transition dairy cows[J]. Journal of Dairy Science, 2017, 100(4): 2751-2764. DOI:10.3168/jds.2016-11819