动物营养学报    2021, Vol. 33 Issue (12): 6690-6698    PDF    
乳酸菌抑菌作用机制的研究进展
胡爱心1 , 刘金松2 , 许英蕾1 , 吴艳萍1     
1. 浙江农林大学动物科技学院·动物医学院, 杭州 311300;
2. 浙江惠嘉生物科技股份有限公司, 湖州 313300
摘要: 乳酸菌作为重要的饲用益生菌已广泛应用于畜牧生产中,其具有提高动物生长性能、改善肠道环境、增强免疫力和维持动物健康等作用。乳酸菌发挥益生功能的重要机理之一是抑制肠道病原菌。本文从抑菌物质、竞争黏附位点、调控肠道菌群平衡及激活宿主免疫等方面总结了近年来有关乳酸菌抑菌分子机制的研究进展,以及对畜禽主要病原菌的抑制效果,以期为乳酸菌替代抗生素应用于防治病原菌感染提供参考依据。
关键词: 乳酸菌    抑菌分子机制    肠道病原菌    畜禽健康    
Research Progress in Antibacterial Mechanism of Lactic Acid Bacteria
HU Aixin1 , LIU Jinson2 , XU Yinglei1 , WU Yanping1     
1. College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China;
2. Zhejiang Huijia Bio-Technology Co., Ltd., Huzhou 313300, China
Abstract: As an important probiotic for feeding, lactic acid bacteria have been widely used in animal husbandry, which can improve animal growth performance, improve intestinal environment, enhance immunity and maintain animal health. Inhibition of intestinal pathogens is one of the important mechanisms of lactic acid bacteria exerting probiotic function. In this paper, the research progress on the molecular mechanism of lactic acid bacteria in recent years was summarized from the aspects of antimicrobial substances, competitive adhesion sites, regulation of intestinal flora balance and activation of host immunity, as well as the inhibitory effect on main pathogenic bacteria of livestock and poultry, in order to provide a reference for the application of lactic acid bacteria as an alternative to antibiotics in the prevention and treatment of pathogenic bacteria infection.
Key words: lactic acid bacteria    antibacterial molecular mechanism    intestinal pathogens    livestock and poultry health    

动物生产过程中,抗生素滥用导致的细菌耐药性和药物残留给动物、环境及人类健康带来严重危害[1]。为此,我国农业农村部发布的第194号公告规定“2020年7月1日起,饲料生产企业停止生产含有促生长类药物饲料添加剂(中草药除外)的商品饲料”[2]。随着“饲料禁抗”“养殖减抗”和“产品无抗”时代的到来,绿色安全的益生菌制剂作为重要的抗生素替代品倍受行业关注。乳酸菌(lactic acid bacteria,LAB)是最主要的饲用益生菌之一[3],其为革兰氏阳性、过氧化氢酶阴性菌[4],主要包括乳杆菌属、乳球菌属、双歧杆菌属、链球菌属和肠球菌属等[5]。LAB对减少抗生素使用和动物生态健康养殖具有重要意义。大量研究表明,饲粮添加LAB可显著提高饲料转化率、促进畜禽生长、增强免疫功能以及减轻腹泻和肠炎等疾病,从而维持动物健康和提高生产性能。LAB的主要益生作用是抑制肠道病原菌[6],因此,对其抗菌机理的探究也已成为研究热点。本文综述了近年来LAB的抑菌分子机制研究进展以及对畜禽主要病原菌的抑制效果,以期为LAB替代抗生素应用于防治病原菌感染提供理论参考。

1 LAB抑菌作用的分子机制 1.1 产生抗菌物质,直接抑制病原菌生长 1.1.1 有机酸

LAB在发酵过程中可分泌大量有机酸,包括柠檬酸、甲酸和乳酸等,研究已证实其可显著抑制畜禽致病菌[7]。据报道,LAB抑制致病菌的能力取决于菌株产生特定有机酸能力,并且其产酸具有菌株特异性。例如,植物乳杆菌UM55的培养上清中含有乳酸、苯乳酸(PLA)、羟基苯乳酸和吲哚乳酸;而布氏乳杆菌UTAD104无细胞上清液中含有乙酸、乳酸和PLA[8]。有机酸发挥抑菌功能主要有2种方式:一方面,其通过作用于细菌的细胞壁、细胞质膜,干扰病原微生物的特定代谢功能(如复制、蛋白质合成),降低细胞内的pH并抑制过量的内部质子的主动运输,从而导致细菌死亡[9];另一方面,有机酸还可通过改变微生物群体的组成,保护动物免受pH敏感病原体的侵害,进一步增强动物胃肠道的形态和生理功能以及免疫系统[10]。体内试验表明,饲喂含LAB和有机酸的饲粮显著降低了动物肠道、粪便中的病原菌数量及胴体中的葡萄球菌及大肠杆菌数量[11]

1.1.2 细菌素

细菌素是LAB分泌的一类由核糖体合成、具有广谱抑菌活性的蛋白质类抑菌物质,分为含羊毛硫氨基酸细菌素和不含羊毛硫氨基酸细菌素,其中主要由LAB分泌的包括植物乳杆菌素、乳杆菌唾液素和乳酸素等[12]。细菌素通过作用于细胞膜、细胞壁和细胞周期而发挥抗菌作用。首先,细菌素在靶细菌细胞膜上形成孔洞,增加细胞膜通透性及靶细胞膜质子动力势的耗散,破坏细胞膜的完整性,使细胞内容物流出,导致细胞死亡[13]。研究表明,植物乳杆菌素K25通过渗透蜡样芽孢杆菌细胞质膜形成孔洞抑制其生长[14];双歧杆菌素A通过增加大肠杆菌细胞膜质子动力势的耗散和膜的通透性、形成细胞膜孔,导致其无机磷酸盐的泄漏及细胞跨膜电位和pH梯度的崩溃,最终使细菌完全解体[15]。其次,细菌素还可作用于细胞壁,使其形成孔洞导致细菌死亡,例如,植物乳杆菌素DL3通过渗透和破坏细胞膜和细胞壁,使蛋白质泄露起到杀菌作用[16]。最后,LAB的细菌素还可作用于细胞周期,研究表明,乳杆菌MN047产生的细菌素BM1029[15]及BM1300[17]通过阻滞细胞周期、影响细胞周期分布,对大肠杆菌和金黄色葡萄球菌表现出较高的杀菌活性。

1.1.3 短链脂肪酸(short-chain fatty acids,SCFAs)

SCFAs主要包括乙酸、丙酸和丁酸等[18],由肠道微生物通过发酵食物纤维产生并为其所利用[19]。作为肠道细菌的代谢物,其主要作用之一是维持肠道内有利于共生细菌的环境并控制病原体的生长。研究表明,SCFAs能通过激活哺乳动物雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)及信号转导与转录激活因子3促进肠上皮细胞产生胰岛再生源蛋白Ⅲγ和β防御素,维持肠道稳态[20];还能通过稳定转录因子——缺氧诱导因子,维持结肠的生理性缺氧,有利于肠道厌氧微生物群生存和控制沙门氏菌等病原体生长[21]。此外,SCFAs盐如甲酸盐、乙酸盐、丁酸盐等也作为重要抗菌剂添加到饲粮中。据报道,丁酸盐通过调节细胞白细胞介素(interleukin,IL)-10受体、闭合蛋白(occludin)等增强上皮细胞间的紧密连接,增强其屏障功能[22];丁酸钠在适宜浓度下可通过提高黏蛋白2的水平,显著改善上皮细胞屏障功能[23]

1.1.4 过氧化氢(H2O2)

H2O2是在有氧条件下,LAB通过烟酰胺腺嘌呤二核苷酸(NADH)氧化酶、超氧化物歧化酶等酶的作用下分泌的物质。H2O2可以降低病原菌毒力、减少病原菌对上皮细胞的侵袭并杀死在肠道上皮细胞内扩散的病原菌,从而起到保护肠道的作用[24]。研究表明,乳酸和H2O2对病原菌具有协同增强的杀灭活性。低浓度乳酸和H2O2可以杀灭革兰氏阴性菌和革兰氏阳性菌,甚至杀灭真菌病原体。乳酸和H2O2可以依靠细胞内的铁离子产生羟基自由基,使经处理后的细胞基因组DNA断裂分散造成病原菌的死亡[25]。此外,H2O2通过改变膜的通透性致使致病菌内容物泄露最终死亡[26]

1.2 与病原菌竞争定植位点

LAB抑菌的另一重要机制是与病原体竞争黏附受体及营养物质。在动物肠道内,病原体感染宿主的第1步是通过定植黏附于肠上皮。如沙门氏菌通过多种菌毛黏附素使其菌毛穿过肠道黏液层,黏附并侵入宿主的上皮细胞诱发感染。而LAB则通过细胞表面的脂磷壁酸与动物细胞蛋白结构受体位点之间键合黏附上皮细胞,这种黏附机制对于肠上皮细胞的破坏性较小,可通过黏液结合蛋白及S层蛋白与病原体竞争宿主黏膜界面相同的附着位点[27],以此排除黏附的病原菌及对可用营养物进行竞争[28],防止病原体附着并保护肠道免受肠道感染。研究表明,乳酸杆菌和双歧杆菌可抑制并取代黏附在肠上皮细胞的致病性猪霍乱沙门氏菌,并通过竞争排斥机制阻止鼠伤寒沙门氏菌在鸡肠道定植,促进其他有益菌的快速生长,抑制致病菌的生长[29]

1.3 调控肠道菌群平衡

肠道菌群的平衡可以抑制病原菌的生长,提高动物的免疫能力,保持机体健康。当肠道菌群失调时,致病菌更易黏附在肠道上皮细胞,引起各类疾病以及其他器官的病变。LAB能刺激胃肠道中有益菌群的快速生长,防止致病菌定植,恢复并维持肠道微生物平衡[30]。研究表明,植物乳杆菌L15菌株对大肠杆菌具有一定的抗黏附作用,可通过竞争、抑制和替代作用维持肠道平衡[31]。LAB还能调节肠道环境,抑制或杀死胃肠道中的病原体,改善肠道微生物平衡,调节肠道黏膜免疫,维持肠道屏障功能,从而有利于畜禽的健康[32]。据报道,植物乳杆菌L15通过竞争、抑制对大肠杆菌具有抗黏附作用,减少肠道内大肠杆菌的数量[31];约氏乳杆菌BS15通过增加肠道内乳酸杆菌和约氏乳杆菌的数量,减少肠杆菌科数量使肠道菌群平衡[33];饲粮中添加嗜酸乳杆菌LAC0201、发酵乳杆菌LFE0302和弯曲乳杆菌LCU0401可以减少动物肠道中的肠球菌和肠杆菌数量,增加乳杆菌的数量[34]

1.4 抑制病原菌群体感应

群体感应是细菌间普遍存在的一种通信系统[35],细菌分泌的自诱导信号分子(autoinducer,AI)介导协调大多数病原菌的群体行为,能调控毒力因子表达、生物膜和菌毛形成、抗生素合成、质粒结合转移和次生代谢物的产生等生理过程[36]。研究表明,群体感应系统对病原菌致病力的发挥和感染宿主至关重要,其分为3类:由AI-1介导的Ⅰ型、LuxS/AI-2介导的Ⅱ型和AI-3/肾上腺素(epinephrine,Epi)/去甲肾上腺素(norepinephrine,NE)介导的Ⅲ型系统,这3类系统主要参与病原菌菌毛和鞭毛合成、毒力因子表达、增强细菌黏附定植能力、侵染宿主和抵御补体杀伤等[37]。近年来已有研究发现,益生菌分泌的代谢产物可通过阻断病原菌群体感应信号发挥抗菌作用。据报道,乳酸片球菌产生的有机酸可抑制由铜绿假单胞菌群体感应系统调节的的细菌运动性以及弹性蛋白酶、细菌素和生物被膜的合成[38];芽孢杆菌产生的脂肽类物质丰原素可显著抑制金黄色葡萄球菌的群体感应信号而降低感染率[30];此外,植物乳杆菌WCFS1能够感应铜绿假单胞菌中革兰氏阴性病原体群体感应分子,并可以通过启动自身的多个群体感应系统来响应其感应分子的存在,抑制病原菌的生长[39]

1.5 调控肠道细胞免疫功能,抑制炎症反应

肠道免疫系统调控有益的微生物群组成,控制特定细菌的过度生长,同时对致病菌或分子作出反应。LAB不仅可以直接与致病菌相互作用,还可以间接刺激并调控免疫系统与致病菌相互作用。当免疫系统在对共生菌(无害)、互利菌(有益)和条件菌(致病)的耐受性之间建立起适当的平衡时,就会维持肠道内稳态[40]。病原体感染肠道后,免疫细胞被激活并释放大量的促炎因子,如肿瘤坏死因子-α(tumor necrosis factor-α,TNF-α)、IL-1等引起动物机体肠道功能、免疫功能受损及炎症性肠道疾病等,并伴随有进一步的潜在并发症,影响机体健康[41]。LAB可通过调节细胞的TNF-α、IL-10等炎症因子,从而调节细胞免疫功能, 改善炎症引起的不良反应。研究发现,鼠李糖乳杆菌GR-1通过减少大肠杆菌对牛乳腺上皮细胞的黏附,改善大肠杆菌对细胞形态及超微结构的破坏,并通过促进Toll样受体(Toll-like receptor,TLR)2和含核苷酸结合寡聚化结构域的蛋白质1的协同作用,抑制NOD样受体家族包含pyrin结构域蛋白3(NLRP3)炎症小体的激活,降低有害的炎症反应[42];在体外试验中,LAB代谢物可以增加细胞中IL-1βIL-18和CD80 mRNA表达,降低CD206 mRNA表达,促进巨噬细胞M1表型[43],从而达到提高肠道细胞的免疫功能的目的;罗伊氏乳杆菌通过聚酮合成酶簇激活芳香烃受体,促进了IL-22的产生并通过诱导产生抗菌肽(再生胰岛衍生的3型蛋白凝集素)来增强先天免疫应答,从而对抗肠道病原体并保护肠道组织[44]

1.6 通过激活宿主细胞自噬途径发挥抗菌作用

自噬是一种发生在多种应激条件下的细胞内降解过程,通过清除蛋白质聚集物和受损的细胞器,在细胞的生存、发育和稳态中发挥重要作用[45]。自噬大致可分为:巨自噬、微自噬、分子伴侣介导的自噬以及选择性自噬。其中选择性自噬中的异源自噬是细胞识别并清除病原体的主要方式,也是上皮细胞抗沙门氏菌主要方式。细胞通过半乳糖凝集素-8、参与自噬的蛋白复合体及溶酶体等对入侵细胞的病原体做出反应;自噬小体通过泛素化识别把部分逃逸到细胞质中的沙门氏菌包裹,与溶酶体融合形成自噬溶酶体,从而将病原菌降解;此外还可利用泛素化接头蛋白如p62、核点蛋白52(NDP52)和视神经蛋白(OPTN),将整个受损的含病原体液泡定位至自噬小体而降解[46]。自噬功能的缺失将导致肠上皮细胞抗菌物质分泌受阻和病原菌清除能力下降。据报道,将肠上皮细胞的自噬基因——自噬相关16样1(Atg16L1)和自噬相关5(Atg5)敲除后,沙门氏菌感染显著增加,病原菌大量繁殖[37]。近年来研究表明,不同种类的LAB可以通过调节不同信号通路调节细胞自噬,如唾液乳杆菌AR809可通过调节TLR/磷脂酰肌醇3-激酶(PI3K)/蛋白激酶B(Akt)/mTOR和TLR/PI3K/Akt/核转录因子-κB抑制蛋白(IκB)/核转录因子-κB(NF-κB)通路活性来预防金黄色葡萄球菌诱导的咽部炎症反应[47];鼠李糖乳杆菌则可通过PI3K/Akt/mTOR通路减轻致病菌感染引起的炎症反应,并能有效恢复受损的自噬通量[48];短链乳杆菌BGZLS10-17产生的上清液可诱导CD4+和CD8+ T淋巴细胞、自然杀伤细胞、自然杀伤T细胞以及抗原提呈细胞发生自噬[49]

2 LAB对畜禽主要病原菌的抑制效果 2.1 肠沙门氏菌

沙门氏菌病是一种重要的人畜共患病,主要由肠沙门氏菌感染引起。肠沙门氏菌包含至少2 500种血清型,其中引发畜禽感染的主要有鼠伤寒沙门氏菌、鸡白痢沙门氏菌、肠炎沙门氏菌和猪霍乱沙门氏菌等[50]。大量研究表明,鸡感染肠沙门氏菌可引起鸡下白痢、肝炎、胃肠道炎症、禽伤寒和输卵管感染等疾病,严重影响鸡肉和鸡蛋品质;猪感染后会导致仔猪顽固性下痢、败血症、肺炎和坏死性肠炎等,影响猪的正常生长甚至导致死亡;当人食入肠沙门氏菌污染的畜产品后会引发肠胃炎、菌血症和腹泻等胃肠道疾病,严重危害人类健康[51-52]。因此,在畜禽养殖过程中控制沙门氏菌感染及细菌耐药性的意义重大。

近些年研究表明,LAB可通过不同机理作用于沙门氏菌,从而阻止病原菌对上皮细胞的黏附和侵袭,增强免疫应答[53]。据报道,植物乳杆菌可减少沙门氏菌的定植,抑制病原菌对HCT-116细胞的黏附和渗透,从而保护宿主免受沙门氏菌诱导的肠道屏障破坏[54];嗜酸乳杆菌ATCC4356可以缓解并改善沙门氏菌感染引起的结肠炎[55];在沙门氏菌感染的畜禽模型中,饲喂唾液乳杆菌、屎肠球菌和罗伊氏乳杆菌能显著降低鸡肠道中沙门氏菌的定植和复制[56]。此外,LAB的代谢产物共轭亚油酸可以竞争性地排除肠道中的沙门氏菌且显著改变沙门氏菌的理化性质、生物膜形成能力以及与宿主细胞的相互作用,并触发宿主细胞的抗炎活性[57]

2.2 大肠杆菌

大肠杆菌是畜禽养殖中的一类重要病原菌,主要包括致病性大肠杆菌(EPEC)、肠毒素大肠杆菌(ETEC)和弥漫性黏附性大肠杆菌(DAEC)[58]。其中,ETEC是造成猪腹泻的主要原因,尤其会对仔猪和断奶仔猪造成由腹泻引起的终末期败血症,对世界范围内的养猪业造成巨大的经济损失。ETEC由定植因子介导,在黏附素级附属定植因子的协调作用下附着于小肠上皮细胞,通过Ⅱ型分泌系统和耐药外膜蛋白TolC介导产生并输送热敏毒素或热稳定毒素到小肠中,激活细胞囊性纤维化跨膜调节的氯离子通道,使水通过渗透作用进入肠腔导致腹泻[59]。LAB可抑制ETEC生长,抑制其黏附于肠道黏膜,并激活先天免疫应答,其胞外多糖在适当浓度下使用时,会抑制ETEC生物膜的形成。研究发现,在饲粮中添加植物乳杆菌B1可促进大肠杆菌K88攻毒肉鸡生长性能的提高,降低盲肠ETEC数量,提高肠黏膜免疫[49],还可通过增加SCFAs含量和减轻ETEC对仔猪肠道的损害,改善肠道健康[60];罗伊氏乳杆菌HCM2具有减弱ETEC对感染小鼠结肠微生物群影响的潜力[61]

2.3 金黄色葡萄球菌和产气荚膜梭菌

金黄色葡萄球菌是一种革兰氏阳性兼性厌氧菌,其所产生的中毒性休克毒素-1、凝集因子A、表皮剥脱素及肠毒素等可以引起机体强烈的免疫应答并对肠道造成伤害。金黄色葡萄球菌使仔猪感染全身性或局部性皮肤病如油猪病或渗出性表皮炎[62];并导致山羊脉络膜炎、疥疮、传染性脓疱性皮炎和牛乳房炎[63];由金黄色葡萄球菌引起的食源性疾病可引起腹部绞痛、恶心、呕吐和腹泻。研究表明,短乳杆菌gp104对致病性菌株如大肠杆菌、铜绿假单胞菌、鼠伤寒沙门氏菌和金黄色葡萄球菌具有抗菌作用,能够竞争、抑制和取代金黄色葡萄球菌对Caco-2细胞的黏附[64];LAB发酵上清液对金黄色葡萄球菌具有抑制作用,且随着发酵液浓度增大其抑制作用也增强[65];乳酸链球菌L16可以改善并预防小鼠由金黄色葡萄球菌引起的肠道紊乱及其他病症,维持肠道菌群平衡[66]

产气荚膜梭菌是革兰氏阳性厌氧细菌,能够引起动物坏死性肠炎、人类食物中毒和创伤性气性坏疽[67],已知可分泌20种强毒性毒素,其中坏死性肠炎毒素B可引起鸡、火鸡小肠和盲肠黏膜损伤,导致肉鸡坏死性肠炎[68]。近年来已有研究表明,LAB可缓解由产气荚膜梭菌感染引起的鸡坏死性肠炎。研究表明,饲粮中添加嗜酸乳杆菌可改善肉鸡肠道健康,降低肉鸡坏死性肠炎死亡率并有助于恢复产气荚膜梭菌感染所破坏的微生物群落[69];LAB通过抑制产气荚膜梭菌的生长,缓解由其组织引发的病理学损伤,使肉鸡具有抵抗感染的能力[70];植物乳杆菌产生的有机酸可以穿透细菌细胞膜抑制产气荚膜梭菌的生长[71]

3 小结与展望

尽管LAB益生功能众多,作为抗生素替代物应用于畜禽生产具有很好的前景,但其抗逆性能较差、不耐热、不易保存且在胃酸和胆盐环境中存活率不高,这制约了其作用效果以及应用推广。未来可从动物内源微生物中内筛选出有效且抗逆性强的LAB或使用基因工程技术增强其抗逆性。此外,近年来研究发现,LAB可能也存在潜在的安全性问题,其可通过转化、转导和偶联转移方式等诱导内源性微生物产生致病基因并在肠道内累积。因此,利用先进技术分离提取其菌体和发酵产物中的有效成分,可有效解决安全性以及不耐贮存等问题,而探究这些成分对动物的作用效果和分子机制也有望成为未来的研究热点[72]

参考文献
[1]
GU Y R, SHEN S Z, HAN B J, et al. Family livestock waste: an ignored pollutant resource of antibiotic resistance genes[J]. Ecotoxicology and Environmental Safety, 2020, 197: 110567. DOI:10.1016/j.ecoenv.2020.110567
[2]
中华人民共和国农业农村部. 中华人民共和国农业农村部公告第194号[A/OL]. (2019-07-10)[2021-04-21]. http://www.xmsyj.moa.gov.cn/zcjd/201907/t20190710_6320678.htm.
Ministry of Agriculture and Rural Affairs of the People's Republic of China. Announcement No. 194 of the Ministry of Agriculture and Rural Affairs of the People's Republic of China[A/OL]. (2019-07-10)[2021-04-21]. http://www.xmsyj.moa.gov.cn/zcjd/201907/t20190710_6320678.htm. (in Chinese)
[3]
COEURET V, DUBERNET S, BERNARDEAU M, et al. Isolation, characterization and identification of Lactobacilli focusing mainly on cheeses and other dairy products[J]. Dairy Science & Technology, 2003, 83(4): 269-306.
[4]
HAYEK S A, IBRAHIM S A. Current limitations and challenges with lactic acid bacteria: a review[J]. Food and Nutrition Sciences, 2013, 4(11A): 73-87.
[5]
POT B, LUDWIG W, KERSTERS K, et al. Taxonomy of lactic acid bacteria[M]//VUYST L D, VANDAMME E J. Bacteriocins of lactic acid bacteria. Boston, MA: Springer, 1994: 13-90.
[6]
PENG M F, TABASHSUM Z, PATEL P, et al. Prevention of enteric bacterial infections and modulation of gut microbiota with conjugated linoleic acids producing Lactobacillus in mice[J]. Gut Microbes, 2020, 11(3): 433-452. DOI:10.1080/19490976.2019.1638724
[7]
NURYANA I, ANDRIANI A, LISDIYANTI P, et al. Analysis of organic acids produced by lactic acid bacteria[C]//IOP conference series: earth and environmental science. Tangerang, Indonesia: IOP Publishing Ltd: 2019: 012054.
[8]
GUIMARÃES A, VENANCIO A, ABRUNHOSA L. Antifungal effect of organic acids from lactic acid bacteria on Penicillium nordicum[J]. Food Additives and Contaminants: Part A, Chemistry, Analysis, Control, Exposure and Risk Assessment, 2018, 35(9): 1803-1818.
[9]
ZHITNITSKY D, ROSE J, LEWINSON O. The highly synergistic, broad spectrum, antibacterial activity of organic acids and transition metals[J]. Scientific Reports, 2017, 7: 44554. DOI:10.1038/srep44554
[10]
DITTOE D K, RICKE S C, KIESS A S. Organic acids and potential for modifying the avian gastrointestinal tract and reducing pathogens and disease[J]. Frontiers in Veterinary Science, 2018, 5: 216. DOI:10.3389/fvets.2018.00216
[11]
YOUSSEF I M I, MOSTAFA A S, ABDEL-WAHAB M A. Effects of dietary inclusion of probiotics and organic acids on performance, intestinal microbiology, serum biochemistry and carcass traits of broiler chickens[J]. Journal of World Poultry Research, 2017, 7(2): 57-71.
[12]
BALI V, PANESAR P S, BERA M B, et al. Bacteriocins: recent trends and potential applications[J]. Critical Reviews in Food Science and Nutrition, 2016, 56(5): 817-834. DOI:10.1080/10408398.2012.729231
[13]
XU C, FU Y Y, LIU F, et al. Purification and antimicrobial mechanism of a novel bacteriocin produced by Lactobacillus rhamnosus 1.0320[J]. LWT, 2021, 137: 110338. DOI:10.1016/j.lwt.2020.110338
[14]
LIU G R, SONG Z Q, YANG X L, et al. Antibacterial mechanism of bifidocin A, a novel broad-spectrum bacteriocin produced by Bifidobacterium animalis BB04[J]. Food Control, 2016, 62: 309-316. DOI:10.1016/j.foodcont.2015.10.033
[15]
YAN H, AIZHAN R, LU Y Y, et al. A novel bacteriocin BM1029:physicochemical characterization, antibacterial modes and application[J]. Journal of Applied Microbiology, 2021, 130(3): 755-768. DOI:10.1111/jam.14809
[16]
LV X R, LIN Y, JIE Y, et al. Purification, characterization, and action mechanism of plantaricin DL3, a novel bacteriocin against Pseudomonas aeruginosa produced by Lactobacillus plantarum DL3 from Chinese Suan-Tsai[J]. European Food Research & Technology, 2018, 244(2): 323-331.
[17]
LU Y Y, AIZHAN R, YAN H, et al. Characterization, modes of action, and application of a novel broad-spectrum bacteriocin BM1300 produced by Lactobacillus crustorum MN047[J]. Brazilian Journal of Microbiology, 2020, 51(4): 2033-2048. DOI:10.1007/s42770-020-00311-3
[18]
HAMER H M, JONKERS D M A E, RENES I B, et al. Butyrate enemas do not affect human colonic MUC2 and TFF3 expression[J]. European Journal of Gastroenterology & Hepatology, 2010, 22(9): 1134-1140.
[19]
MARKOWIAK-KOPEĆ P, ŚLIŻEWSKA K. The effect of probiotics on the production of short-chain fatty acids by human intestinal microbiome[J]. Nutrients, 2020, 12(4): 1107. DOI:10.3390/nu12041107
[20]
ZHAO Y, CHEN F D, WU W, et al. GPR43 mediates microbiota metabolite SCFA regulation of antimicrobial peptide expression in intestinal epithelial cells via activation of mTOR and STAT3[J]. Mucosal Immunology, 2018, 11(3): 752-762. DOI:10.1038/mi.2017.118
[21]
LITVAK Y, BYNDLOSS M X, TSOLIS R M, et al. Dysbiotic proteobacteria expansion: a microbial signature of epithelial dysfunction[J]. Current Opinion in Microbiology, 2017, 39: 1-6. DOI:10.1016/j.mib.2017.07.003
[22]
ZHENG L, KELLY C J, BATTISTA K D, et al. Microbial-derived butyrate promotes epithelial barrier function through IL-10 receptor-dependent repression of claudin-2[J]. Journal of Immunology, 2017, 199(8): 2976-2984. DOI:10.4049/jimmunol.1700105
[23]
WU W, SUN M, CHEN F, et al. Microbiota metabolite short-chain fatty acid acetate promotes intestinal IgA response to microbiota which is mediated by GPR43[J]. Mucosal Immunology, 2017, 10(4): 946-956. DOI:10.1038/mi.2016.114
[24]
KNAUS U G, HERTZBERGER R, PIRCALABIORU G G, et al. Pathogen control at the intestinal mucosa-H2O2 to the rescue[J]. Gut Microbes, 2017, 8(1): 67-74. DOI:10.1080/19490976.2017.1279378
[25]
ATASSI F, SERVIN A L. Individual and co-operative roles of lactic acid and hydrogen peroxide in the killing activity of enteric strain Lactobacillus johnsonii NCC933 and vaginal strain Lactobacillus gasseri KS120.1 against enteric, uropathogenic and vaginosis-associated pathogens[J]. FEMS Microbiology Letters, 2010, 304(1): 29-38. DOI:10.1111/j.1574-6968.2009.01887.x
[26]
ZHANG C C, ZHANG S S, LIU W, et al. Potential application and bactericidal mechanism of lactic acid-hydrogen peroxide consortium[J]. Applied Biochemistry and Biotechnology, 2019, 189(3): 822-833. DOI:10.1007/s12010-019-03031-z
[27]
TERRAF M C L, TOMÁS M S J, RAULT L, et al. In vitro effect of vaginal Lactobacilli on the growth and adhesion abilities of uropathogenic Escherichia coli[J]. Archives of Microbiology, 2017, 199(5): 767-774. DOI:10.1007/s00203-016-1336-z
[28]
MATHIPA M G, THANTSHA M S. Probiotic engineering: towards development of robust probiotic strains with enhanced functional properties and for targeted control of enteric pathogens[J]. Gut Pathogens, 2017, 9: 28. DOI:10.1186/s13099-017-0178-9
[29]
PAN D, YU Z T. Intestinal microbiome of poultry and its interaction with host and diet[J]. Gut Microbes, 2014, 5(1): 108-119. DOI:10.4161/gmic.26945
[30]
PIEWNGAM P, ZHENG Y, NGUYEN T H, et al. Pathogen elimination by probiotic Bacillus via signalling interference[J]. Nature, 2018, 562(7728): 532-537. DOI:10.1038/s41586-018-0616-y
[31]
BEHBAHANI B A, NOSHAD M, FALAH F. Inhibition of Escherichia coli adhesion to human intestinal Caco-2 cells by probiotic candidate Lactobacillus plantarum strain L15[J]. Microbial Pathogenesis, 2019, 136: 103677. DOI:10.1016/j.micpath.2019.103677
[32]
YANG F J, HOU C L, ZENG X F, et al. The use of lactic acid bacteria as a probiotic in swine diets[J]. Pathogens, 2015, 4(1): 34-45. DOI:10.3390/pathogens4010034
[33]
WANG H S, SUN Y, XIN J G, et al. Lactobacillus johnsonii BS15 prevents psychological stress-induced memory dysfunction in mice by modulating the gut-brain axis[J]. Frontiers in Microbiology, 2020, 11: 1941. DOI:10.3389/fmicb.2020.01941
[34]
YANG D, YU X M, WU Y P, et al. Enhancing flora balance in the gastrointestinal tract of mice by lactic acid bacteria from Chinese sourdough and enzyme activities indicative of metabolism of protein, fat, and carbohydrate by the flora[J]. Journal of Dairy Science, 2016, 99(10): 7809-7820. DOI:10.3168/jds.2016-11467
[35]
WU S B, LIU J H, LIU C J, et al. Quorum sensing for population-level control of bacteria and potential therapeutic applications[J]. Cellular & Molecular Life Sciences, 2020, 77(7): 1319-1343. DOI:10.1007/s00018-019-03326-8?utm_source=xmol
[36]
ABISADO R G, BENOMAR S, KLAUS J R, et al. Bacterial quorum sensing and microbial community interactions[J]. mBio, 2018, 9(3): e02331-17.
[37]
LAROCK D L, CHAUDHARY A, MILLER S I. Salmonellae interactions with host processes[J]. Nature Reviews Microbiology, 2015, 13(4): 191-205. DOI:10.1038/nrmicro3420
[38]
KIYMACI M E, ALTANLAR N, GUMUSTAS M, et al. Quorum sensing signals and related virulence inhibition of Pseudomonas aeruginosa by a potential probiotic strain's organic acid[J]. Microbial Pathogenesis, 2018, 121: 190-197. DOI:10.1016/j.micpath.2018.05.042
[39]
SPANGLER J R, DEAN S N, LEARY D H, et al. Response of Lactobacillus plantarum WCFS1 to the gram-negative pathogen-associated quorum sensing molecule N-3-oxododecanoyl homoserine lactone[J]. Frontiers in Microbiology, 2019, 10: 715. DOI:10.3389/fmicb.2019.00715
[40]
POWELL N, WALKER M M, TALLEY N J. The mucosal immune system: master regulator of bidirectional gut-brain communications[J]. Nature Reviews: Gastroenterology & Hepatology, 2017, 14(3): 143-159.
[41]
CHEN Y J, WU H, WU S D, et al. Parasutterella, in association with irritable bowel syndrome and intestinal chronic inflammation[J]. Journal of Gastroenterology and Hepatology, 2018, 33(11): 1844-1852. DOI:10.1111/jgh.14281
[42]
WU Q, LIU M C, YANG J, et al. Lactobacillus rhamnosus GR-1 ameliorates Escherichia coli-induced inflammation and cell damage via attenuation of ASC-independent NLRP3 inflammasome activation[J]. Applied and Environmental Microbiology, 2016, 82(4): 1173-1182. DOI:10.1128/AEM.03044-15
[43]
DAVIES T S, PLUMMER S F, JACK AA, et al. Lactobacillus and Bifidobacterium promote antibacterial and antiviral immune response in human macrophages[J]. Journal of Probiotics & Health, 2018, 6(1): 195.
[44]
WANG H Y, ZHOU C L, HUANG J X, et al. The potential therapeutic role of Lactobacillus reuteri for treatment of inflammatory bowel disease[J]. American Journal of Translational Research, 2020, 12(5): 1569-1583.
[45]
YANG Z F, KLIONSKY D J. Eaten alive: a history of macroautophagy[J]. Nature Cell Biology, 2010, 12(9): 814-822. DOI:10.1038/ncb0910-814
[46]
WU Y P, TANG L, WANG B K, et al. The role of autophagy in maintaining intestinal mucosal barrier[J]. Journal of Cellular Physiology, 2019, 234(11): 19406-19419. DOI:10.1002/jcp.28722
[47]
JIA G C, LIU X F, CHE N, et al. Human-origin Lactobacillus salivarius AR809 protects against immunosuppression in S. aureus-induced pharyngitis via Akt-mediated NF-κB and autophagy signaling pathways[J]. Food & Function, 2020, 11(1): 270-284.
[48]
DUAN C H, TANG X L, WANG W J, et al. Lactobacillus rhamnosus attenuates intestinal inflammation induced by Fusobacterium nucleatum infection by restoring the autophagic flux[J]. International journal of molecular medicine, 2021, 47(1): 125-136.
[49]
DINIĆ M, LUKIĆ J, DJOKIĆ J, et al. Lactobacillus fermentum postbiotic-induced autophagy as potential approach for treatment of acetaminophen hepatotoxicity[J]. Frontiers in Microbiology, 2017, 8: 594.
[50]
ROKANA N, MALLAPPA R H, BATISH V K, et al. Interaction between putative probiotic Lactobacillus strains of Indian gut origin and Salmonella: impact on intestinal barrier function[J]. LWT: Food Science and Technology, 2017, 84: 851-860. DOI:10.1016/j.lwt.2016.08.021
[51]
阚刘刚, 赵丽杰, 李秀业, 等. 鸡沙门氏菌病的生物预防和控制研究进展[J]. 动物营养学报, 2018, 30(9): 3432-3443.
KAN L G, ZHAO L J, LI X Y, et al. Progress on biological prevention and control strategies in avian salmonellosis[J]. Chinese Journal of Animal Nutrition, 2018, 30(9): 3432-3443 (in Chinese). DOI:10.3969/j.issn.1006-267x.2018.09.012
[52]
ENG S K, PUSPARAJAH P, MUTALIB N S A, et al. Salmonella: a review on pathogenesis, epidemiology and antibiotic resistance[J]. Frontiers in Life Science, 2015, 8(3): 284-293. DOI:10.1080/21553769.2015.1051243
[53]
LIU J S, HU D G, CHEN Y Q, et al. Strain-specific properties of Lactobacillus plantarum for prevention of Salmonella infection[J]. Food & Function, 2018, 9(7): 3673-3682.
[54]
WANG L H, LI L, LV Y, et al. Lactobacillus plantarum restores intestinal permeability disrupted by Salmonella infection in newly-hatched chicks[J]. Scientific Reports, 2018, 8: 2229. DOI:10.1038/s41598-018-20752-z
[55]
WU H Q, YE L L, LU X X, et al. Lactobacillus acidophilus alleviated Salmonella-induced goblet cells loss and colitis by Notch pathway[J]. Molecular Nutrition & Food Research, 2018, 62(22): e1800552.
[56]
NAKPHAICHIT M, SOBANBUA S, SIEMUANG S, et al. Protective effect of Lactobacillus reuteri KUB-AC5 against Salmonella enteritidis challenge in chickens[J]. Beneficial Microbes, 2019, 10(1): 43-54. DOI:10.3920/BM2018.0034
[57]
PENG M F, TABASHSUM Z, PATEL P, et al. Linoleic acids overproducing Lactobacillus casei limits growth, survival, and virulence of Salmonella typhimurium and enterohaemorrhagic Escherichia coli[J]. Frontiers in Microbiology, 2018, 9: 2663. DOI:10.3389/fmicb.2018.02663
[58]
CROXEN M A, FINLAY B B. Molecular mechanisms of Escherichia coli pathogenicity[J]. Nature Reviews Microbiology, 2010, 8(1): 26-38. DOI:10.1038/nrmicro2265
[59]
SICARD J F, BIHAN G L, VOGELEER P, et al. Interactions of intestinal bacteria with components of the intestinal mucus[J]. Frontiers in Cellular and Infection Microbiology, 2017, 7: 387. DOI:10.3389/fcimb.2017.00387
[60]
DING S J, WANG Y W, YAN W X, et al. Effects of Lactobacillus plantarum 15-1 and fructooligosaccharides on the response of broilers to pathogenic Escherichia coli O78 challenge[J]. PLoS One, 2019, 14(6): e0212079. DOI:10.1371/journal.pone.0212079
[61]
WANG T W, TENG K L, LIU G, et al. Lactobacillus reuteri HCM2 protects mice against enterotoxigenic Escherichia coli through modulation of gut microbiota[J]. Scientific Reports, 2018, 8: 17485. DOI:10.1038/s41598-018-35702-y
[62]
VAILLANCOURT K, LEBEL G, YI L, et al. In vitro antibacterial activity of plant essential oils against Staphylococcus hyicus and Staphylococcus aureus, the causative agents of exudative epidermitis in pigs[J]. Archives of Microbiology, 2018, 200(7): 1001-1007. DOI:10.1007/s00203-018-1512-4
[63]
FOSTER A P. Staphylococcal skin disease in livestock[J]. Veterinary Dermatology, 2012, 23(4): 342-351. DOI:10.1111/j.1365-3164.2012.01093.x
[64]
HOJJATI M, BEHABAHANI B A, FALAH F. Aggregation, adherence, anti-adhesion and antagonistic activity properties relating to surface charge of probiotic Lactobacillus brevis gp104 against Staphylococcus aureus[J]. Microbial Pathogenesis, 2020, 147: 104420. DOI:10.1016/j.micpath.2020.104420
[65]
于翠芳, 王鹏, 朱英莲. 乳酸菌发酵液对金黄色葡萄球菌的抑菌效果[J]. 生物加工过程, 2019, 17(6): 662-666.
YU C F, WANG P, ZHU Y L. Bacteriostatic effect of Lactobacillus fermented broth on Staphylococcus aureus[J]. Chinese Journal of Bioprocess Engineering, 2019, 17(6): 662-666 (in Chinese).
[66]
任大勇, 宫圣洁, 朱剑威, 等. 乳酸链球菌L16对感染金黄色葡萄球菌小鼠肠道菌群的调节作用[J]. 中国食品学报, 2020, 20(4): 81-86.
REN D Y, GONG S J, ZHU J W, et al. Regulatory effects of Streptococcus lactis l16 on intestinal flora in mice infected by Staphylococcus aureus[J]. Journal of Chinese Institute of Food Science and Technology, 2020, 20(4): 81-86 (in Chinese).
[67]
张辉, 包红朵. 产气荚膜梭菌耐药及防控研究进展[J]. 食品安全质量检测学报, 2020, 11(6): 1846-1851.
ZHANG H, BAO H D. Research progress of antimicrobial resistance and bio-control of Clostridium perfringens[J]. Journal of Food Safety & Quality, 2020, 11(6): 1846-1851 (in Chinese).
[68]
FASINA Y O, LILLEHOJ H S. Characterization of intestinal immune response to Clostridium perfringens infection in broiler chickens[J]. Poultry Science, 2019, 98(1): 188-198. DOI:10.3382/ps/pey390
[69]
LI Z, WANG W W, LIU D, et al. Effects of Lactobacillus acidophilus on the growth performance and intestinal health of broilers challenged with Clostridium perfringens[J]. Journal of Animal Science and Biotechnology, 2018, 9: 25. DOI:10.1186/s40104-018-0243-3
[70]
VILLAGRÁN-DE LA MORA Z, NUÑO K, VÁZQUEZ-PAULINO O, et al. Effect of a synbiotic mix on intestinal structural changes, and Salmonella typhimurium and Clostridium perfringens colonization in broiler chickens[J]. Animals, 2019, 9(10): 777. DOI:10.3390/ani9100777
[71]
张欢, 李沛军, 田兴垒, 等. 乳酸菌和木糖葡萄球菌对产气荚膜梭菌抑制能力分析[J]. 食品科学, 2020, 41(6): 86-92.
ZHANG H, LI P J, TIAN X L, et al. Antimicrobial activities of lactic acid bacteria and Staphylococcus xylosus against Clostridium perfringens[J]. Food Science, 2020, 41(6): 86-92 (in Chinese).
[72]
IMPERIAL I C V J, IBANA J A. Addressing the antibiotic resistance problem with probiotics: reducing the risk of its double-edged sword effect[J]. Frontiers in Microbiology, 2016, 7: 1983.