2. 山东省畜牧协会, 济南 250100
2. Shandong Animal Husbandry Association, Jinan 250100, China
安哥拉兔是重要的毛兔品种,是产毛量最高的动物之一,在饲喂全价配合颗粒饲料时,年产毛量可达1.0~1.4 kg。我国是安哥拉兔毛的最大出口国,占全球总产量的92%[1]。安哥拉兔的产毛性能受遗传、营养和其他因素影响[2-4]。抗生素禁止作为促生长饲料添加剂使用后,在动物饲粮中添加天然绿色饲料添加剂来改善动物的生长性能、健康状况和产品品质引起了人们的广泛关注[5-6]。生姜(Zingiber officinale)是姜科的多年生草本植物,富含有益的生物活性化合物、植物精油和微量矿物质,具有保肝、抗氧化、抗菌、镇痛和抗炎等多种医药功能,长期以来被用在人类食品中增加香味等[7-9]。Zhang等[10]研究报道,饲粮中添加0.5 g/kg生姜粉可增加青山羊瘤胃丙酸产量,增加1.0 g/kg生姜粉可促进微生物蛋白合成。妊娠和泌乳期连续使用生姜粉,能够更大程度地改善母猪体况、产奶量和繁殖性能,并进而提高仔猪增重和断奶体重[11]。Ibtisham等[12]研究报道,饲粮中添加姜粉可提高蛋鸡的生产性能和抗氧化能力。然而,关于生姜粉在家兔饲粮中的研究资料较少。因此,本试验以安哥拉兔为研究对象,研究饲粮中生姜粉添加水平对安哥拉兔产毛性能以及血清激素、生化、免疫和抗氧化指标的影响,以期为生姜粉作为绿色饲料添加剂在毛兔生产上的应用提供理论参考。
1 材料与方法 1.1 试验设计试验选用8月龄左右、体重相近的中系安哥拉兔160只,统一剪毛后,随机分为4组,每组40只(公母各占1/2),每个重复1只。基础饲粮配方参考De Blas等[13],其组成及营养水平见表 1。在基础饲粮基础上分别添加0(对照组)、10、20、30 g/kg的生姜粉(食品级,由脱水姜片制成,水洗烘干姜,无沙子,干物质含量>90%,粉碎粒度为100目),制成全价颗粒饲料。试验兔在室外兔舍单笼饲养,饲喂上述试验饲粮1个养毛期(73 d)。试验期间,试验兔每天饲喂2次,全程自由采食和自由饮水。
![]() |
表 1 基础饲粮组成及营养水平(风干基础) Table 1 Composition and nutrient levels of the basal diet (air-dry basis) |
在试验结束时,所有试验兔单独剃毛,并称其产毛量。每组选择与该组平均体重相近的8只试验兔(4只公兔和4只母兔)从耳静脉采集血液,分离血清样品,在-20 ℃保存,用于血清生化、免疫、激素和抗氧化指标的测定;同时,采集背部正中皮肤样本(0.5 cm×0.5 cm),用4%多聚甲醛固定,制作石蜡切片,苏木精-伊红(hematoxylin and eosin,HE)染色后进行毛囊密度分析。
1.3 测定指标和方法 1.3.1 产毛性能指标的测定在试验开始和结束时对试验兔逐一称体重,统计试验期间每只的总采食量,并计算料毛比(feed/wool ratio,F/W)。用直尺分别测定试验兔背部、臀部、颈部和身体两侧处等不同部位的绒毛毛长,取平均值作为最终绒毛长度。在每只试验兔不同部位取100根绒毛,用纤维细度仪(YG002C,常州双谷敦达机电技术有限公司)和纤维投影仪(CYG-055DI,上海光学仪器研究所)测定绒毛细度,取平均值作为最终绒毛细度。毛囊密度测定及统计方法参考刘公言[14]报道的方法。4%多聚甲醛固定的皮肤样本依次进行酒精脱水、石蜡包埋、皮肤横切、HE染色后,使用显微镜(ECLIPSE 80i,Nikon,日本)普通光下拍照,利用Image-Pro Plus 6.0分析软件统计皮肤毛囊(包括初级毛囊和次级毛囊)密度。
1.3.2 血清激素指标的测定采用天津九鼎公司生产的放射性免疫分析试剂盒检测血清甲状腺素(thyroxine,T4)、胰岛素样生长因子-1(insulin-like growth factor-1, IGF-1)和褪黑素(melatonin, MTL)水平,在DFM-96-10试管中利用γ放射免疫计数器进行测定。
1.3.3 血清生化指标的测定采用全自动血清生化分析仪(Hitachi 7020,日本)分析血清总胆固醇(total cholesterol, TC)、甘油三酯(triglyceride, TG)、高密度脂蛋白(high-density lipoprotein, HDL)、低密度脂蛋白(low-density lipoprotein, LDL)含量以及碱性磷酸酶(alkaline phosphatase, ALP)、谷丙转氨酶(alanine aminotransferase, ALT)和谷草转氨酶(aspartate aminotransferase, AST)活性。
1.3.4 血清免疫指标的测定血清免疫球蛋白G(immunoglobulin G,IgG)、免疫球蛋白A(immunoglobulin A,IgA)、免疫球蛋白M(immunoglobulin M,IgM)含量使用酶联免疫吸附试验(enzyme-linked immunosorbent assays, ELISA)试剂盒(上海朗顿生物科技有限公司生产)测定。
1.3.5 血清抗氧化指标的测定血清超氧化物歧化酶(superoxide dismutase,SOD)活性、总抗氧化能力(total antioxidant capacity,T-AOC)和丙二醛(malondialdehyde, MDA)含量采用南京建城生物工程研究所生产的试剂盒,按照说明书在UV-2450紫外-可见分光光度计上检测。
1.4 数据处理与分析试验数据采用SPSS 17.0软件进行方差分析和Duncan氏法多重比较,以平均值±标准差表示,P < 0.05为差异显著水平,具有统计学意义。
2 结果与分析 2.1 饲粮中生姜粉添加水平对安哥拉兔产毛性能的影响由表 2可知,饲粮中生姜粉添加水平对安哥拉兔的终末体重、耗料量、毛囊密度和产毛量均有显著影响(P < 0.05)。随着生姜粉添加水平的升高,试验兔的终末体重、耗料量、毛囊密度和产毛量均有提高,生姜粉添加水平为20 g/kg时可达到提高产毛量的效果。饲粮中生姜粉添加水平对安哥拉兔的料毛比、绒毛长度和绒毛细度均无显著影响(P > 0.05)。
![]() |
表 2 饲粮中生姜粉添加水平对安哥拉兔产毛性能的影响 Table 2 Effects of dietary ginger powder supplemental level on wool production of Angora rabbits |
由表 3可知,饲粮中生姜粉添加水平对安哥拉兔血清中T4、IGF-1和MTL水平有显著影响(P < 0.05)。与对照组比较,各试验组血清中IGF-1和MTL水平均显著升高(P < 0.05);当生姜粉添加水平为30 g/kg时,血清中T4水平显著高于对照组(P < 0.05)。
![]() |
表 3 饲粮中生姜粉添加水平对安哥拉兔血清激素指标的影响 Table 3 Effects of dietary ginger powder supplemental level on serum hormone indices of Angora rabbits |
由表 4可知,饲粮中生姜粉添加水平对安哥拉兔血清中TC、HDL、LDL含量有显著影响(P < 0.05)。与对照组相比,添加20和30 g/kg生姜粉的试验组血清中TC、HDL、LDL含量显著降低(P < 0.05)。饲粮中生姜粉添加水平对安哥拉兔血清中TG含量以及ALP、ALT、AST活性无显著影响(P > 0.05)。
![]() |
表 4 饲粮中生姜粉添加水平对安哥拉兔血清生化指标的影响 Table 4 Effects of dietary ginger powder supplemental level on serum biochemical indices of Angora rabbits |
由表 5可知,饲粮中生姜粉添加水平对安哥拉兔血清中IgA含量有显著影响(P < 0.05)。与对照组相比,添加高水平(20和30 g/kg)生姜粉的试验组血清中IgA含量显著升高(P < 0.05)。饲粮中生姜粉添加水平对安哥拉兔血清中IgG和IgM含量无显著影响(P > 0.05)。
![]() |
表 5 饲粮中生姜粉添加水平对安哥拉兔血清免疫指标的影响 Table 5 Effects of dietary ginger powder supplemental level on serum immune indices of Angora rabbits |
由表 6可知,饲粮中生姜粉添加水平对安哥拉兔血清中SOD活性、T-AOC和MDA含量均有显著影响(P < 0.05)。与对照组相比,各试验组血清SOD活性均显著升高(P < 0.05),血清中MDA含量均显著降低(P < 0.05);此外,添加20和30 g/kg生姜粉的试验组血清中T-AOC显著升高(P < 0.05)。
![]() |
表 6 饲粮中生姜粉添加水平对安哥拉兔血清抗氧化指标的影响 Table 6 Effects of dietary ginger powder supplemental level on serum antioxidant indices of Angora rabbits |
在饲粮中添加适宜的生姜粉可以提高动物生产性能。宋振帅[15]研究表明,在饲粮中使用生姜粉可以改善商品猪生长性能和产肉性能。白建等[16]报道,在饲粮中添加1.0%生姜粉可提高罗曼蛋鸡的生产性能和蛋品质。另外,在肉牛饲粮中添加1.0 g/kg生姜粉,使瘤胃挥发性脂肪酸产量提高了5.25%,瘤胃微生物蛋白合成量增加了2.58%,乙酸与丙酸比例降低[17]。Ogbuewu等[18]报道,饲粮中添加15 g/kg生姜粉可以提高生长肉兔的生长速度。然而,Mancini等[19]报道,饲粮中添加生姜粉能够改善肉兔的肌肉品质,但对生长性能和屠宰性能无显著影响。毛囊是被毛生长的根基,毛用动物产毛量与毛囊发育密切相关。本研究中,在安哥拉毛兔饲粮中添加生姜粉,产毛性能得到了很大的提高,这与生姜粉提高了家兔毛囊密度密切相关。
垂体分泌的T4是调节动物出生后生长的主要激素,能够促进离体人皮肤损伤后的再上皮化和血管生成。MLT与动物被毛的季节性生长密切相关,植入MLT后,可促进毛皮的早期成熟[20-21]。黄冬维等[22]研究报道,MLT对长毛兔夏季产毛具有促进作用,40和55 mg MLT均可提高公兔夏季产毛量或抑制母兔产毛量的降低;MLT埋植可增加长毛兔公、母兔的粗毛长度,但对细毛长度和兔毛直径并无显著影响。已有研究表明,血液循环中IGF-1的水平对营养变化很敏感,血浆中IGF-1水平随着营养摄入量的增加而显著增加,IGF-1参与毛囊的周期性调控[23-25]。Saeid等[26]研究报道,给24周龄的公鸡连续20周服用5%~10%的生姜提取物,可改善睾丸重量、睾酮水平和精液品质。另外,在母鸡饲粮中添加5~10 g/kg的生姜粉,母鸡体内的黄体生成素(luteinizing hormone, LH)和卵泡刺激素(follicle stimulating hormone, FSH)水平明显增加[27]。Abd El-Hameed等[28]报道,生姜提取物能够提高公兔的精液品质,进而提高繁殖性能。本研究发现,饲粮中添加生姜粉后,安哥拉兔血清中T4、IGF-1、MTL水平均有不同程度升高,血清激素水平提高能够促进毛囊发育,增加毛囊密度,进而提高产毛量。
血清生化指标能够反映动物的营养状况,TC、TG、HDL和LDL是血液脂质的重要组成部分,其含量的高低反映了脂质代谢过程。大量研究表明,饲粮中添加生姜粉后动物血清中TC和HDL含量降低[29-31],这可能表明生姜粉具有降低机体脂质代谢的作用。Ogbuewu[32]研究表明,饲喂添加生姜粉饲粮的家兔腹部脂肪含量较少。本研究结果也证实了生姜粉具有降低动物血脂的功能,这与前人的研究结果一致。
T-AOC是反映机体酶促及非酶促体系总抗氧化水平高低的主要指标,它的大小能够反映机体自由基代谢的状态,SOD活性与机体清除自由基的能力成正比,而脂质过氧化反应链式终止阶段产生MDA,其含量可以间接反映机体组织细胞的脂质过氧化程度和自由基的产生情况,对综合评判机体抗氧化性能的具有重要意义。Zhang等[33]报道,用含5 g/kg生姜粉的饲粮饲喂肉鸡后血清中SOD和谷胱甘肽过氧化物酶(glutathione peroxidase, GSH-Px)活性增加,MDA含量降低。Ahmed等[34]报道,生姜能够通过维持小鼠体内抗氧化酶的活性来显著降低脂质过氧化反应。生姜的抗氧化作用归因于生姜中的生物活性物质对自由基攻击的保护作用,其中姜辣素在体内和体外均具有很强的抗氧化作用[35-37]。本研究发现,生姜粉能够提高安哥拉兔血清中SOD活性和T-AOC,降低血清中MDA含量,与上述研究结果一致。另外,本研究还发现添加生姜粉后,家兔血清IgA含量也显著升高,其具体作用机理有待于进一步研究。
4 结论生姜粉作为安哥拉兔的饲料添加剂,能够调节脂质代谢,提高血清激素水平和抗氧化能力,提高产毛量,其适宜用量为20 g/kg。
[1] |
SCHLINK A C, LIU S M. Angora rabbits: a potential new industry for Australia: a report for the rural industries research and development corporation[M]. Barton: RIRDC, 2003: 34.
|
[2] |
RAFAT S A, ALLAIN D, THÉBAULT R G, et al. Divergent selection for fleece weight in French Angora rabbits: non-genetic effects, genetic parameters and response to selection[J]. Livestock Science, 2007, 106(2/3): 169-175. |
[3] |
BAI L Y, JIANG W X, WANG W Z, et al. Optimum wool harvest interval of Angora rabbits under organised farm conditions in East China[J]. World Rabbit Science, 2019, 27(1): 57-63. DOI:10.4995/wrs.2019.10838 |
[4] |
LIU G Y, JIANG W X, SUN H T, et al. Effects of dietary supplementation with taurine on production performance of Angora rabbits[J]. World Rabbit Science, 2021, 29(1): 11-18. DOI:10.4995/wrs.2021.13133 |
[5] |
CARABAÑO R, BADIOLA I, CHAMORRO S, et al. Review.New trends in rabbit feeding: influence of nutrition on intestinal health[J]. Span Journal Agriculture Research, 2008, 6(Special Issue): 15-25. |
[6] |
ELWAN H A M, ELNESR S S, MOHANY M, et al. The effects of dietary tomato powder (Solanum lycopersicum L.) supplementation on the haematological, immunological, serum biochemical and antioxidant parameters of growing rabbits[J]. Journal of Animal Physiology and Animal Nutrition, 2019, 103(2): 534-546. DOI:10.1111/jpn.13054 |
[7] |
AKTER M, BITHI N, BILLAH M, et al. Evaluation of nutritional and mineral content of dehydrated ginger (Zingiber officinale)[J]. European Journal of Medical Plants, 2020, 31(17): 21-28. |
[8] |
OGBUEWU I P, JIWUBA P C, EZEOKEKE C T, et al. Evaluation of phytochemical and nutritional composition of ginger rhizome powder[J]. International Journal of Agriculture and Rural Devlopment, 2014, 17(1): 1663-1670. |
[9] |
GUAHK G H, HA S K, JUNG H S, et al. Zingiber officinale protects HaCaT cells and C57BL/6 mice from ultraviolet B-induced inflammation[J]. Journal of Medicinal Food, 2010, 13(3): 673-680. DOI:10.1089/jmf.2009.1239 |
[10] |
ZHANG T T, YANG Z B, YANG W R, et al. Effects of dose and adaptation time of ginger root (Zingiber officinale) on rumen fermentation[J]. Journal of Animal and Feed Sciences, 2011, 20(3): 461-471. DOI:10.22358/jafs/66200/2011 |
[11] |
郭艺璇. 姜粉对母猪和哺乳仔猪生产性能、血清生化及抗氧化性能影响的研究[D]. 硕士学位论文. 泰安: 山东农业大学, 2014. GUO Y X, YANG Z B, JIANG S Z, et al. Effects of feeding sows ginger powder on pro antioxidant status, serum biochemical and production performance of sows and nursing piglets[D]. Master's Thesis. Tai'an: Shandong Agricultural University, 2011. (in Chinese) |
[12] |
IBTISHAM F, NAWAB A, NIU Y F, et al. The effect of ginger powder and Chinese herbal medicine on production performance, serum metabolites and antioxidant status of laying hens under heat-stress condition[J]. Journal of Thermal Biology, 2019, 81(4): 20-24. |
[13] |
DE BLAS C, WISEMAN J. The nutrition of the rabbit[M]. New York: CABI Publishing, 1998: 297-308.
|
[14] |
刘公言. 维生素B6通过miRNA调控獭兔毛囊发育作用机制的研究[D]. 博士学位论文. 泰安: 山东农业大学, 2019. LIU G Y. Mechanism of vitamin B6 regulating Rex rabbit hair follicle development through miRNA[D]. Ph. D. Thesis. Tai'an: Shandong Agricultural University, 2019. (in Chinese) |
[15] |
宋振帅. 八角、丹参和生姜对生长育肥猪及其饲料作用效果研究[D]. 硕士学位论文. 泰安: 山东农业大学, 2014. SONG Z S. Effects of star anise, Salvia miltiorrhiza and ginger on growing and fattening pigs and their feed[D]. Master's Thesis. Tai'an: Shandong Agricultural University, 2014. (in Chinese) |
[16] |
白建, 杜京旗, 杨卫民. 饲粮添加生姜粉对蛋鸡生产性能和蛋品质的影响[J]. 饲料研究, 2019, 42(6): 49-51. BAI J, DU J Q, YANG W M. Effect of ginger powder supplementation on production performance and egg quality of layers[J]. Feed Research, 2019, 42(6): 49-51 (in Chinese). |
[17] |
刘明杰. 姜粉对肉牛营养物质消化吸收和机体抗氧化能力影响的研究[D]. 硕士学位论文. 泰安: 山东农业大学, 2011. LIU M J. Dietary ginger powder on digestion and absorption of nutrients and antioxidant status of beef cattle[D]. Master's Thesis. Tai'an: Shandong Agricultural University, 2011. (in Chinese) |
[18] |
OGBUEWU I P, MBAJIORGU C A. Supplementation and optimization of ginger (Zingiber officinale) rhizome powder in growing rabbit diets[J]. Indian Journal of Animal Health, 2020, 54(9): 1120-1124. |
[19] |
MANCINI S, SECCI G, PREZIUSO G, et al. Ginger (Zingiber officinale Roscoe) powder as dietary supplementation in rabbit: life performances, carcass characteristics and meat quality[J]. Italian Journal of Animal Science, 2018, 17(4): 867-872. DOI:10.1080/1828051X.2018.1427007 |
[20] |
IBRAHEEM M, GALBRAITH H, SCAIFE J, et al. Growth of secondary hair follicles of the Cashmere goat in vitro and their response to prolactin and melatonin[J]. Journal of Anatomy, 1994, 185(Pt 1): 135-142. |
[21] |
KVDERLING I, CEDRINI M C, FRASCHINI F, et al. Season-dependent effects of melatonin on testes and fur color in mountain hares (Lepus timidus L.)[J]. Experientia, 1984, 40(5): 501-502. DOI:10.1007/BF01952407 |
[22] |
黄冬维, 丁海生, 赵辉玲, 等. 褪黑激素对长毛兔产毛性能及兔毛品质的影响[J]. 中国草食动物科学, 2019, 39(2): 9-12. HUANG D W, DING H S, ZHAO H L, et al. The effect of melatonin on wool production performance and wool quality in Angora rabbit[J]. China Herbivore Science, 2019, 39(2): 9-12 (in Chinese). DOI:10.3969/j.issn.2095-3887.2019.02.003 |
[23] |
SMITH J M, VAN AMBURGH M E, DÍAZ M C, et al. Effect of nutrient intake on the development of the somatotropic axis and its responsiveness to GH in Holstein bull calves[J]. Journal of Animal Science, 2002, 80(6): 1528-1537. DOI:10.2527/2002.8061528x |
[24] |
刘公言, 白莉雅, 李福昌, 等. 毛囊发育与周期性生长的调控信号通路研究进展[J]. 畜牧与兽医, 2021, 53(1): 125-129. LIU G Y, BAI L Y, LI F C, et al. Progress in research on the regulatory signaling pathway of hair follicle development and periodic growth[J]. Animal Husbandry & Veterinary Medicine, 2021, 53(1): 125-129 (in Chinese). |
[25] |
罗新惠, 张立春, 刘艳光, 等. 绵羊IGF1基因表达、多态性与毛用性能相关分析[J]. 聊城大学学报(自然科学版), 2021, 34(2): 59-64. LUO X H, ZHANG L C, LIU Y G, et al. The IGF1 gene expression, polymorphism and correlation with wool traits analysis in sheep[J]. Journal of Liaocheng University(Natural Science Edition), 2021, 34(2): 59-64 (in Chinese). |
[26] |
SAEID J M, SHANOON A K, MARBUT M M. Effects of Zingiber officinale aqueous extract on semen characteristic and some blood plasma, semen plasma parameters in the broilers breeder male[J]. International Journal of Poultry Science, 2011, 10(8): 629-633. DOI:10.3923/ijps.2011.629.633 |
[27] |
SHANOON A K. Effects of Zingiber officinale powder on semen characteristic and blood serum sex hormones concentration in broilers breeder male[J]. International Journal of Poultry Science, 2011, 10(11): 863-866. DOI:10.3923/ijps.2011.863.866 |
[28] |
ABD EL-HAMEED N E, HESHMAT H A. Effect of ginger aqueous extract on some reproductive and antioxidant parameters in male rabbits[J]. Alexandria Journal of Veterinary Sciences, 2019, 60(2): 38-45. |
[29] |
SAEID J M, MOHAMED A B, AL-BADDY M A. Effect of aqueous extract of ginger (Zingiber officinale) on blood biochemistry parameters of broiler[J]. International Journal of Poultry Science, 2010, 9(10): 944-947. DOI:10.3923/ijps.2010.944.947 |
[30] |
MOHAMED A B, AL-RUBAEE M A M, JALIL A Q. Effect of ginger (Zingiber officinale) on performance and blood serum parameters of broiler[J]. International Journal of Poultry Science, 2012, 11(2): 143-146. DOI:10.3923/ijps.2012.143.146 |
[31] |
ZOMRAWI W B, ABDEL ATTI K A, DOUSA B M, et al. The effect of dietary ginger root powder (Zingiber officinale) on broiler chicks performance, carcass characteristic and serum constituents[J]. Journal of Animal Science Advances, 2013, 3: 42-47. DOI:10.5455/jasa.20130219031807 |
[32] |
OGBUEWU I P. Studies on the physiological responses of rabbits to ginger rhizome powder[D]. Ph. D. Thesis. Curiti: Federal University of Technology, Owerri, Nigeria, 2013.
|
[33] |
ZHANG G F, YANG Z B, WANG Y, et al. Effects of ginger root (Zingiber officinale) processed to different particle sizes on growth performance, antioxidant status, and serum metabolites of broiler chickens[J]. Poultry Science, 2009, 88(10): 2159-2166. DOI:10.3382/ps.2009-00165 |
[34] |
AHMED R S, SETH V, BANERJEE B D. Influence of dietary ginger (Zingiber officinales Rosc) on antioxidant defense system in rat: comparison with ascorbic acid[J]. Indian Journal of Experimental Biology, 2000, 38(6): 604-606. |
[35] |
JAGETIA G C, BALIGA M S, VENKATESH P, et al. Influence of ginger rhizome (Zingiber officinale Rosc) on survival, glutathione and lipid peroxidation in mice after whole-body exposure to gamma radiation[J]. Radiation Research, 2003, 160(5): 584-592. DOI:10.1667/RR3057 |
[36] |
HAKSAR A, SHARMA A, CHAWLA R, et al. Zingiber officinale exhibits behavioral radioprotection against radiation-induced CTA in a gender-specific manner[J]. Pharmacology Biochemistry and Behavior, 2006, 84(2): 179-188. DOI:10.1016/j.pbb.2006.04.008 |
[37] |
KIM J K, KIM Y, NA K M, et al. [6]-gingerol prevents UVB-induced ROS production and COX-2 expression in vitro and in vivo[J]. Free Radical Research, 2007, 41(5): 603-614. DOI:10.1080/10715760701209896 |