动物营养学报    2022, Vol. 34 Issue (10): 6152-6159    PDF    
饲料霉菌毒素的生物降解研究进展
王晓璐 , 罗会颖 , 姚斌     
中国农业科学院北京畜牧兽医研究所,动物营养学国家重点实验室,北京 100193
摘要: 霉菌毒素是由真菌合成的具有高毒性的次级代谢产物,广泛存在于饲料和饲料原料中。霉菌毒素在给畜牧业造成巨大经济损失的同时,其在畜产品中的残留也严重威胁着人体的健康。传统的物理法和化学法是利用吸附剂、射线照射或化学反应来吸附或破坏毒素的分子结构,实现对霉菌毒素的脱毒。但该类技术存在去除率低以及可能会造成辐射污染和饲料中的营养成分流失等缺陷。而且,化学物质残留还会影响饲料品质。生物降解方法因绿色、高效等优势逐渐成为霉菌毒素脱毒研究中的重要方向。本文总结了污染饲料的霉菌毒素种类,并综述了近年来国内外霉菌毒素的生物降解研究进展,可为饲料霉菌毒素的生物脱毒技术研究和应用提供参考。
关键词: 饲料    霉菌毒素    生物降解    
Advances in Research on Biodegradation of Mycotoxins in Feed
WANG Xiaolu , LUO Huiying , YAO Bin     
State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
Abstract: Mycotoxins are highly toxic secondary metabolite synthesized by fungi, it widely exists in feed and feed raw materials. Mycotoxins not only cause an economic loss on animal husbandry but threaten the health of humans by residues in livestock products. Traditional physical and chemical strategies include mycotoxins removal by adsorbent materials, irradiation or chemical reactions which are able to bind and destroy the molecular structures. However, there are some defects in these methods, such as low removal efficiency, leading to radiation pollution and the loss of nutrients in feed. Furthermore, residual chemicals may affect feed quality. For the advantages of non-polluting and efficiency, biological detoxification is increasingly regarded as an attractive method to control mycotoxin contamination. We summarize the type of mycotoxins in feed and the advances in research on biodegradation of feed mycotoxins at home and abroad in this paper. This will provide a reference for the study and practical application of biological detoxification technology.
Key words: feed    mycotoxin    biodegradation    

霉菌毒素又称真菌毒素,是镰刀菌属(Fusarium)、曲霉属(Aspergillus)等真菌的次级代谢产物,具有致癌、致畸和诱变等毒性。霉菌毒素污染在世界各地的饲料和饲料原料中广泛存在,不仅对直接摄入受污染饲料的动物具有毒害作用,还会随动物产品(如肉、蛋、奶等)进入人体,进而危害人体健康[1]。开发能够消除饲料中霉菌毒素污染的高效、无污染技术是饲料工业和禽畜养殖行业的迫切需求。本文总结了污染饲料的主要霉菌毒素种类,在此基础上综述了利用生物法降解霉菌毒素的研究进展,为未来饲料中霉菌毒素的生物脱毒相关研究及应用提供理论和实践依据。

1 饲料中的主要霉菌毒素

污染饲料和饲料原料的霉菌毒素主要包括黄曲霉毒素B1(aflatoxin B1,AFB1)、玉米赤霉烯酮(zearalenone,ZEN)、单端孢霉烯族毒素(trichothecenes,TCT)、伏马菌素(fumonisins,FBs)和赭曲霉毒素A(ochratoxin A,OTA)等[2]。饲料在实际加工和储存过程中常会受到多种毒素的共污染,毒素之间的相互作用可导致更严重的毒性效应[3]

1.1 AFB1

黄曲霉毒素是曲霉属真菌的次级代谢产物,主要污染谷物、玉米麸和杂粕等[4]。黄曲霉毒素发挥毒性作用的主要部位是分子末端的呋喃环、香豆素结构和内酯环[5]。目前,超过75%的饲料污染均是由毒性最大的AFB1引起的[6]。研究表明,AFB1在动物体内的代谢能够破坏基因和细胞结构并影响代谢。国际癌症研究机构(International Agency for Research on Cancer,IARC)已将AFB1列为Ⅰ类致癌物[7]

1.2 ZEN

ZEN是由禾谷镰刀菌产生的具有雌激素作用的次级代谢物,主要污染玉米、大麦和高粱[8]。ZEN及其代谢产物具有与17-β雌二醇相似的结构,可竞争性地结合生殖器官中的雌激素受体,进而干扰雌激素在性腺中的表达和功能,导致动物生殖障碍。此外,ZEN还具有遗传毒性、肝脏毒性、血液毒性,已被IARC列为Ⅲ类致癌物[9]

1.3 TCT

TCT是由镰刀菌等产生的倍半萜霉菌毒素家族,其分子是由环己烯、四氢吡喃和环戊基部分组成的三环状结构[10]。呕吐毒素(deoxynivalenol,DON)和T-2毒素是饲料中污染最严重的2种TCT。DON属于B类TCT,存在于玉米、豆粕等饲料原料及动物全价饲料中[11]。环氧结构以及C3、C7和C15位的羟基都是其毒性基团[12]。猪对DON最敏感,鸡、鸭以及成年反刍动物次之。人和动物摄入DON超标的食物会出现一系列中毒症状,甚至导致死亡[13-14]。T-2毒素属于A型TCT,也是毒性最高的一种,可损伤动物的肠道、肾脏等多个器官系统[15]

1.4 FBs

FBs是由串珠镰刀菌等产生的霉菌毒素,是由不同的多氢醇和丙三羧酸组成的双酯化合物。FBs主要污染玉米、大豆等饲料原料和全价饲料,FB1和FB2是这其中污染最严重、毒性最大的2种[16]。IARC已将FBs列为ⅡB类致癌物[17]

1.5 OTA

OTA是曲霉属等真菌的次生代谢物,存在于饲料和饲料原料中[18],其分子结构为二氢香豆素通过氨键与β-苯基丙氨酸残基相连。OTA在肾脏中积聚可导致动物出现体重下降等症状,已被IARC列为ⅡB类致癌物[19]

2 饲料霉菌毒素的生物降解方法

霉菌毒素对饲料和饲料原料的污染能够发生在田间及储存加工过程中。现阶段尚无有效方法避免饲料原料采收前的污染。因此,对饲料原料或饲料成品进行脱毒处理是保证饲料安全的重要步骤。传统的物理和化学方法,如吸附剂吸附、射线照射以及化学反应降解等,虽然能在一定程度上够消除霉菌毒素污染,但存在诸多缺陷[20]。目前,市面上的吸附剂种类繁多、效果各异。Mitchell等[21]研究表明,蒙脱石最高可以去除样品中97%的AFB1, 但对DON、ZEN等弱极性毒素的吸附能力较差。Ameer等[22]利用紫外线实现了对家禽饲料中OTA的降解。但紫外线对固体物质的穿透能力较弱,导致该方法在实际应用中的脱毒效率较低[23],且可能会造成紫外线污染。此外,碱处理法能够去除玉米中的FBs[24],但氢氧化钠等化学物质的残留势必会影响玉米的品质及食用安全性。基于此,研究人员将目光转移到了生物解毒方法上,即微生物降解法和酶降解法。

2.1 降解霉菌毒素的微生物

微生物在生长繁殖过程中能够通过代谢或分泌的酶将霉菌毒素分子中的毒性基团破坏,生成无毒的产物。许多微生物,如芽孢杆菌属(Bacillus)、乳杆菌属(Lactobacillus)和酵母菌属等细菌和真菌以及混合菌群均对霉菌毒素具有降解能力。

2.1.1 芽孢杆菌属

芽孢杆菌属是一类分布广且对恶劣环境具有较强的抗逆性的微生物,具有益生作用的芽孢杆菌属已被批准作为饲料添加剂[25]。在已被鉴定出具有霉菌毒素降解能力的微生物中,芽孢杆菌属占了1/2以上,且底物涵盖了大部分饲料霉菌毒素种类。

Chen等[26]发现解淀粉芽孢杆菌(Bacillus amyloliquefaciens)WF2020可有效降解浓度为1~8 mg/mL的AFB1。Watanakij等[27]研究发现,从非洲槐豆中分离的枯草芽孢杆菌(Bacillus subtilis)BCC 42005的胞外组分具有AFB1降解能力。除降解AFB1外,目前已有多种具有ZEN降解能力的芽孢杆菌被分离出来,且降解机制呈现出多样性。Zhu等[28]筛选获得的芽孢杆菌S62-W能在24 h内将200 μg/mL的ZEN完全转化为ZEN-14-磷酸。Zhai等[29]从动物肠道容物中筛选到一株可在厌氧条件下将ZEN转化为α-玉米赤霉烯醇(α-ZOL)和β-玉米赤霉烯醇(β-ZOL)的产芽孢梭状芽孢杆菌(Clostridium sporogenes)F39。

同时,对具有复杂结构的单端孢霉烯族类毒素,芽孢杆菌也表现出良好的降解效果。Ul Hassan等[30]筛选到了多株对T-2毒素表现出降解能力的蜡状芽孢杆菌(Bacillus cereus)和蜜梳状孢类芽孢杆菌(Paenibacillus favisporus)。在OTA降解方面,Zhang等[31]研究证明,贝莱斯芽孢杆菌(Bacillus velezensis)E2对OTA的去除能力可达96.1%以上,产物可能是毒性较低的赭曲霉毒素α(OTα)。

2.1.2 乳杆菌属

作为一类益生菌,乳杆菌属微生物具有调节肠道菌群、增强免疫力、促进消化等作用,已被世界粮农组织和世界卫生组织定义为“对宿主健康有益的微生物”[25]。目前,其对多种霉菌毒素的降解能力也逐渐受到关注,拓宽了乳杆菌属的应用范围。Zhang等[32]研究表明,瑞士乳杆菌(Lactobacillus helviticus)FAM22155能够在以麸皮为底物的固相发酵过程降解AFB1。Zƚoch等[33]研究发现,副干酪乳杆菌(Lactobacillus paracasei)能将ZEN转化为毒性减弱的β-ZOL。此外,乳杆菌属还表现出了对DON的脱毒能力。从人乳中分离的鼠李糖乳酸杆菌(Lactobacillus rhamnosus)能够将DON转化为3-epi-DON[34]

2.1.3 德沃斯氏菌属(Devosia)和类诺卡氏菌属(Nocardioides)

德沃斯氏菌属和类诺卡氏菌属微生物能够通过对DON的C3位的氧化和异构化将其转化为3-keto-DON和3-epi-DON,进而达到脱毒的效果[35]。因此,这2类菌属在DON解毒方面备受关注。Gao等[36]鉴定出的具有DON转化能力的德沃斯氏菌A6-243能在48 h内将100 mg/L的DON转化为3-epi-DON。本实验室从土壤样品中筛选到了具有DON降解能力的类诺卡氏菌ZHH-013,产物鉴定结果表明,DON被经由3-keto-DON转化为3-epi-DON。此外,该菌株还能进一步利用3-epi-DON,从而实现了对DON的彻底降解[37]

2.1.4 曲霉属

曲霉属真菌对多种霉菌毒素具有降解能力。Maxwell等[38]研究证明,不产毒素的黄曲霉(Aspergillus flavus)对AFB1的降解率可达44%以上。Ji等[39]获得了具有较高ZEN降解活性的黑曲霉(Aspergillus niger)ZEN-S-FS10,对AFB1的降解率稳定在95%以上。除天然菌株外,经紫外诱变后的黑曲霉获得了OTA降解能力,且产物的毒性得到了显著降低[40]

2.1.5 酵母属

酵母属真菌在食品、医疗、畜牧等产业中均有广泛应用。多种具有霉菌毒素降解能力的酵母属真菌也被鉴定出来。Li等[41]报道了多变假丝酵母(Candida versatilis)CGMCC 3790对AFB1的降解效果。Pan等[42]对近平滑假丝酵母(Candida parapsilosis)ATCC 7330降解ZEN的能力进行了试验研究,结果表明,该菌对ZEN的降解率可达97%,产物为β-ZOL。此外,解脂耶氏酵母(Yarrowia lipolytica)Y-2对OTA的降解率也可达97.2%[43]

2.1.6 微生物菌群

除单一菌种外,微生物菌群能通过菌株间的协同效应实现对霉菌毒素的降解。Wang等[44]从含有发霉玉米芯和玉米秆的农业堆肥中鉴定出了可降解ZEN及其同源物的微生物菌群NZDC-6。微生物菌群C20能将DON高效转化为3-keto-DON[45]。Zhao等[46]从蘑菇废渣中分离出了能将FB1转化为毒性较低的产物的微生物菌群SAAS79。此外,微生物菌群也表现出了广谱霉菌毒素降解能力,为解决多种霉菌毒素的共污染问题开辟了新途径。Wang等[47]报道了具有AFB1和ZEN降解能力的微生物菌群TADC7。

2.1.7 其他降解菌株

除上述菌属外,多种能够特异性降解霉菌毒素的菌株也得到了鉴定。大肠杆菌(Escherichia coli)CG1061[48]具有AFB1降解能力。邓桃等[49]筛选到的醋酸钙不动杆菌(Acinetobacter calcoaceticus)对薏苡仁中ZEN的降解率达54.8%。多种微生物表现出了对DON的降解能力。He等[50]从麦田土壤中分离到了在好氧和厌氧条件下均能对DON进行脱环氧的脱亚硫酸杆菌(Desulfitobacterium sp.)PGC-3-9。此外,Keawmanee等[51]研究表明,黏质沙雷菌(Serratia marcescens)329-2能够降解FB1

2.2 霉菌毒素降解酶

微生物脱毒的本质也是利用酶对霉菌毒素进行降解。与微生物法相比,酶降解法因具有易于操作、可重复和高效等优点而受到重视[52]。特别是随着现代分子生物学技术及基因工程手段的发展,利用酶进行霉菌毒素脱毒成为研究热点。目前已被鉴定出的霉菌毒素降解酶类主要包括氧化还原酶、水解酶、转移酶及特异性降解酶等。

2.2.1 氧化还原酶

氧化还原酶是催化电子从供体转移到受体的酶的总称。该类酶具有底物谱广、催化活性高等优点[53]。目前,利用氧化还原酶进行霉菌毒素降解的研究已经逐渐成为该领域的前沿方向。Xiong等[54]研究表明,解淀粉芽胞杆菌(Bacillus amyloliquefaciens)B10来源的漆酶对AFB1的降解率可达79.3%。Yamada等[55]发现人源细胞色素P450酶家族成员3A4(CYP3A4)对AFB1的降解率可达98%。除对AFB1具有降解能力外,氧化还原酶对DON和FB1也表现出了降解活性。He等[56]从德沃斯氏菌中挖掘到的DON脱氢酶可将DON氧化为3-keto-DON。Telmer等[57]报道了一个黑曲霉来源的能够氧化FBs的氨氧化酶。

基于其较宽的底物谱,氧化还原酶具有作为广谱霉菌毒素降解酶高效降解多种霉菌毒素的应用潜力。Loi等[58]研究表明,刺芹侧耳(Pleurotus eryngii)来源漆酶在介体的协助下能够降解AFB1、ZEN、T-2毒素、FB1及OTA。本实验室在利用木质素氧化还原酶和多铜氧化酶高效降解多种霉菌毒素方面的研究也已经取得进展。Wang等[59]研究证明,降解AFB1、ZEN、DON和FB1的能力是锰过氧化物酶的共性。枯草芽孢杆菌来源的染料脱色过氧化物酶BsDyP[60]和嗜热一氧化碳链霉菌(Streptomyces thermocarboxydus)来源多铜氧化酶StMCO[61]均具有降解AFB1和ZEN等不同类型霉菌毒素的能力。

2.2.2 转移酶

转移酶是催化一种底物上的官能团转移到另一种底物上的酶类,该类酶可通过对霉菌毒素进行修饰而实现脱毒。Poppenberger等[62]报道了阿拉伯芥(Arabidopsis thaliana)来源的糖基转移酶AtΜGT73C5能使DON C3位的羟基发生糖基化,从而消除其毒性。

2.2.3 水解酶

多种霉菌毒素分子均存在酯键、肽键等位点,利用水解酶破坏这些结构从而实现霉菌毒素的降解是一条可行的脱毒路径。Pereyra等[63]从能够降解AFB1的枯草芽孢杆菌中鉴定出了编码N-酰基高丝氨酸内酯酶的aiiA基因。Yang等[64]从黑曲霉的胞外酶中纯化出一种DON水解酶,其对DON的降解率可达70%以上。

自ZEN内酯水解酶ZHD101被首次报道以来[65],同类水解酶相继被发现。在此基础上,利用蛋白质工程手段对该类酶进行分子改良以满足实际应用要求的相关研究已见诸报道。Zhang等[66]通过对蛋白质的催化区域进行突变显著提高了粉红黏帚霉(Gliocladium roseum)来源内脂酶ZENG的耐热性。本实验室通过理性设计使美洲瓶霉(Phialophora americana)来源的内酯水解酶ZHD607的催化活性提高了3.4倍。这些研究不但增进了我们对该类酶的了解,也是其走向工业化的重要一步。

基于OTA分子内的肽键,Xu等[67]获得的枯草芽孢杆菌CW14来源羧肽酶对其降解率可达71.3%。Luo等[68]获得的微嗜酸寡养单胞菌(Stenotrophomonas acidaminiphila)来源的氨基水解酶ADH3能够完全降解OTA。

2.2.4 融合酶

通过将不同的特异性霉菌毒素降解酶进行融合来实现对多种霉菌毒素的降解也是一种解决霉菌毒素共污染问题的可行途径。Azam等[69]报道了具有ZEN和OTA降解能力的内酯水解酶和羧肽酶融合酶ZHDCP。此外,ZEN水解酶和锰过氧化物酶的融合蛋白对AFB1和ZEN的降解率分别可达64.1%和46.2%[70]

2.2.5 其他特异性霉菌毒素降解酶

除上述已被明确分类的酶种外,许多特异性霉菌毒素降解酶也被鉴定出来。Xie等[71]从泛菌(Pantoea sp.)T6的上清液中分离出一种AFB1降解酶,该酶能够去除花生中48.5%的AFB1。Tang等[72]从不动杆菌(Acinetobacter sp.)SM04中获得了ZEN降解酶。这些酶的挖掘不但丰富了霉菌毒素降解酶的种类,也为新型霉菌毒素降解酶的挖掘工作提供了思路。

3 小结

开发能够消除饲料中的霉菌毒素污染的高效、无污染技术是饲料工业和禽畜养殖行业的迫切需求。在已有的霉菌毒素解毒技术中,生物降解方法是饲料霉菌毒素脱毒应用中最具潜力的技术手段之一。目前已有多种具有霉菌毒素脱毒或减毒能力的微生物被鉴定出来。特别是乳杆菌等潜在的益生菌,在作为饲料添加剂方面有一定的应用前景。但霉菌毒素微生物降解技术仍处于研究的早期阶段,如何提高微生物对应用环境的适应性以及微生物的添加对饲料品质影响的评估都是亟待解决的问题。微生物对霉菌毒素的降解本质上是酶在发挥作用。由于蛋白质稳定性差、异源表达难等问题,已筛选到的霉菌毒素降解酶大多未实现产业化应用。针对目前的困境,有必要结合蛋白质工程技术对酶分子进行改良以增加酶对应用场景的适应性。于此同时,开发霉菌毒素降解酶高效表达系统并完善酶法脱毒效果及机制的研究评价体系,将促进霉菌毒素降解酶的商业应用。

饲料中的霉菌毒素污染多为几种毒素的共同作用。不同毒素间的相互作用所造成的危害远大于单一霉菌毒素的叠加毒性。因此,具有广谱毒素降解能力的微生物(如芽孢杆菌)或微生物菌群以及氧化还原酶等更具饲料工业应用潜力。通过筛选广谱霉菌毒素降解菌并对其中的解毒酶基因进行挖掘和异源表达也是霉菌毒素生物降解研究领域重要的发展方向。

参考文献
[1]
TWARUŻEK M, SKRZYDLEWSKI P, KOSICKI R, et al. Mycotoxins survey in feed materials and feedingstuffs in years 2015—2020[J]. Toxicon, 2021, 202: 27-39. DOI:10.1016/j.toxicon.2021.09.005
[2]
GRUBER-DORNINGER C, JENKINS T, SCHATZMAYR G. Global mycotoxin occurrence in feed: a ten-year survey[J]. Toxins, 2019, 11(7): 375. DOI:10.3390/toxins11070375
[3]
LIU W C, PUSHPARAJ K, MEYYAZHAGAN A, et al. Ochratoxin A as an alarming health threat for livestock and human: a review on molecular interactions, mechanism of toxicity, detection, detoxification, and dietary prophylaxis[J]. Toxicon, 2022, 213: 59-75. DOI:10.1016/j.toxicon.2022.04.012
[4]
JALLOW A, XIE H L, TANG X Q, et al. Worldwide aflatoxin contamination of agricultural products and foods: from occurrence to control[J]. Comprehensive Reviews in Food Science and Food Safety, 2021, 20(3): 2332-2381. DOI:10.1111/1541-4337.12734
[5]
CHAWANTHAYATHAM S, VALENTINE C C 3RD, FEDELES B I, et al. Mutational spectra of aflatoxin B1 in vivo establish biomarkers of exposure for human hepatocellular carcinoma[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(15): E3101-E3109.
[6]
GUO Y P, ZHAO L H, MA Q G, et al. Novel strategies for degradation of aflatoxins in food and feed: a review[J]. Food Research International, 2021, 140: 109878. DOI:10.1016/j.foodres.2020.109878
[7]
OSTRY V, MALIR F, TOMAN J, et al. Mycotoxins as human carcinogens-the IARC monographs classification[J]. Mycotoxin Research, 2017, 33(1): 65-73. DOI:10.1007/s12550-016-0265-7
[8]
WU K T, REN C X, GONG Y F, et al. The insensitive mechanism of poultry to zearalenone: a review[J]. Animal Nutrition, 2021, 7(3): 587-594. DOI:10.1016/j.aninu.2021.01.002
[9]
CHANG H, KIM W, PARK J H, et al. The occurrence of zearalenone in South Korean feedstuffs between 2009 and 2016[J]. Toxins, 2017, 9(7): 223. DOI:10.3390/toxins9070223
[10]
FOROUD N A, SHANK R A, KISS D, et al. Solvent and water mediated structural variations in deoxynivalenol and their potential implications on the disruption of ribosomal function[J]. Frontiers in Microbiology, 2016, 7: 1239.
[11]
UL HASSAN Z, AL THANI R, BALMAS V, et al. Prevalence of Fusarium fungi and their toxins in marketed feed[J]. Food Control, 2019, 104: 224-230. DOI:10.1016/j.foodcont.2019.04.045
[12]
SUNDSTØL ERIKSEN G, PETTERSSON H, LUNDH T. Comparative cytotoxicity of deoxynivalenol, nivalenol, their acetylated derivatives and de-epoxy metabolites[J]. Food and Chemical Toxicology, 2004, 42(4): 619-624. DOI:10.1016/j.fct.2003.11.006
[13]
HOOFT J M, BUREAUAB D P. Deoxynivalenol: mechanisms of action and its effects on various terrestrial and aquatic species[J]. Food and Chemical Toxicology, 2021, 157: 112616. DOI:10.1016/j.fct.2021.112616
[14]
VIDAL A, MENGELERS M, YANG S P, et al. Mycotoxin biomarkers of exposure: a comprehensive review[J]. Comprehensive Reviews in Food Science and Food Safety, 2018, 17(5): 1127-1155. DOI:10.1111/1541-4337.12367
[15]
NAYAKWADI S, RAMU R, KUMAR SHARMA A, et al. Toxicopathological studies on the effects of T-2 mycotoxin and their interaction in juvenile goats[J]. PLoS One, 2020, 15(3): e0229463. DOI:10.1371/journal.pone.0229463
[16]
CHEN J, LI Z M, CHENG Y, et al. Sphinganine-analog mycotoxins (SAMs): chemical structures, bioactivities, and genetic controls[J]. Journal of Fungi, 2020, 6(4): 312. DOI:10.3390/jof6040312
[17]
EZDINI K, BEN SALAH-ABBÈS J, BELGACEM H, et al. The ameliorative effect of Lactobacillus paracasei BEJ01 against FB1 induced spermatogenesis disturbance, testicular oxidative stress and histopathological damage[J/OL]. Toxicology Mechanisms and Methods: 1-10[2022-07-15]. https://doi.org/10.1080/15376516.2022.2087049. DOI: 10.1080/15376516.2022.2087049.
[18]
KUMAR P, MAHATO D K, SHARMA B, et al. Ochratoxins in food and feed: occurrence and its impact on human health and management strategies[J]. Toxicon, 2020, 187: 151-162. DOI:10.1016/j.toxicon.2020.08.031
[19]
VLACHOU M, PEXARA A, SOLOMAKOS N, et al. Ochratoxin A in slaughtered pigs and pork products[J]. Toxins, 2022, 14(2): 67. DOI:10.3390/toxins14020067
[20]
MIR S A, DAR B N, SHAH M A, et al. Application of new technologies in decontamination of mycotoxins in cereal grains: challenges, and perspectives[J]. Food and Chemical Toxicology, 2021, 148: 111976. DOI:10.1016/j.fct.2021.111976
[21]
MITCHELL N J, XUE K S, LIN S H, et al. Calcium montmorillonite clay reduces AFB1 and FB1 biomarkers in rats exposed to single and co-exposures of aflatoxin and fumonisin[J]. Journal of Applied Toxicology, 2014, 34(7): 795-804. DOI:10.1002/jat.2942
[22]
AMEER SUMBAL G, HUSSAIN SHAR Z, HUSSAIN SHERAZI S T, et al. Decontamination of poultry feed from ochratoxin A by UV and sunlight radiations[J]. Journal of the Science of Food and Agriculture, 2016, 96(8): 2668-2673. DOI:10.1002/jsfa.7384
[23]
FAN X T, HUANG R Z, CHEN H Q. Application of ultraviolet C technology for surface decontamination of fresh produce[J]. Trends in Food Science & Technology, 2017, 70: 9-19.
[24]
ODUKOYA J O, DE SAEGER S, DE BOEVRE M, et al. Effect of selected cooking ingredients for nixtamalization on the reduction of Fusarium mycotoxins in maize and sorghum[J]. Toxins, 2021, 13(1): 27. DOI:10.3390/toxins13010027
[25]
JIA R, CAO L R, LIU W B, et al. Detoxification of deoxynivalenol by Bacillus subtilis ASAG 216 and characterization the degradation process[J]. European Food Research and Technology, 2021, 247(1): 67-76. DOI:10.1007/s00217-020-03607-8
[26]
CHEN G J, FANG Q A, LIAO Z L, et al. Detoxification of aflatoxin B1 by a potential probiotic Bacillus amyloliquefaciens WF2020[J]. Frontiers in Microbiology, 2022, 13: 891091. DOI:10.3389/fmicb.2022.891091
[27]
WATANAKIJ N, VISESSANGUAN W, PETCHKONGKAEW A. Aflatoxin B1-degrading activity from Bacillus subtilis BCC 42005 isolated from fermented cereal products[J]. Food Additives & Contaminants.Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment, 2020, 37(9): 1579-1589.
[28]
ZHU Y, DROUIN P, LEPP D, et al. A novel microbial zearalenone transformation through phosphorylation[J]. Toxins, 2021, 13(5): 294. DOI:10.3390/toxins13050294
[29]
ZHAI C N, YU Y G, HAN J, et al. Isolation, characterization, and application of Clostridium sporogenes F39 to degrade zearalenone under anaerobic conditions[J]. Foods, 2022, 11(9): 1194. DOI:10.3390/foods11091194
[30]
UL HASSAN Z, AL THANI R, ALSAFRAN M, et al. Selection of Bacillus spp. with decontamination potential on multiple Fusarium mycotoxins[J]. Food Control, 2021, 127: 108119. DOI:10.1016/j.foodcont.2021.108119
[31]
ZHANG Y M, LI Z C, LU Y N, et al. Characterization of Bacillus velezensis E2 with abilities to degrade ochratoxin A and biocontrol against Aspergillus westerdijkiae fc-1[J]. Toxicon, 2022, 216: 125-131. DOI:10.1016/j.toxicon.2022.07.006
[32]
ZHANG Y C, WANG P, KONG Q, et al. Biotransformation of aflatoxin B1 by Lactobacillus helviticus FAM22155 in wheat bran by solid-state fermentation[J]. Food Chemistry, 2021, 341(Pt 1): 128180.
[33]
ZŁOCH M, ROGOWSKA A, POMASTOWSKI P, et al. Use of Lactobacillus paracasei strain for zearalenone binding and metabolization[J]. Toxicon, 2020, 181: 9-18. DOI:10.1016/j.toxicon.2020.03.011
[34]
QU R, JIANG C M, WU W Q, et al. Conversion of DON to 3-epi-DON in vitro and toxicity reduction of DON in vivo by Lactobacillus rhamnosus[J]. Food & Function, 2019, 10(5): 2785-2796.
[35]
HE J W, HASSAN Y I, PERILLA N, et al. Bacterial epimerization as a route for deoxynivalenol detoxification: the influence of growth and environmental conditions[J]. Frontiers in Microbiology, 2016, 7: 572.
[36]
GAO H, NIU J F, YANG H, et al. Epimerization of deoxynivalenol by the Devosia strain A6-243 assisted by pyrroloquinoline quinone[J]. Toxins, 2021, 14(1): 16. DOI:10.3390/toxins14010016
[37]
ZHANG H H, ZHANG H, QIN X, et al. Biodegradation of deoxynivalenol by Nocardioides sp. ZHH-013:3-keto-deoxynivalenol and 3-epi-deoxynivalenol as intermediate products[J]. Frontiers in Microbiology, 2021, 12: 658421. DOI:10.3389/fmicb.2021.658421
[38]
MAXWELL L A, CALLICOTT K A, BANDYOPADHYAY R, et al. Degradation of aflatoxins B1 by atoxigenic Aspergillus flavus biocontrol agents[J]. Plant Disease, 2021, 105(9): 2343-2350. DOI:10.1094/PDIS-01-21-0066-RE
[39]
JI J, YU J, YANG Y, et al. Exploration on the enhancement of detoxification ability of zearalenone and its degradation products of Aspergillus niger FS10 under directional stress of zearalenone[J]. Toxins, 2021, 13(10): 720. DOI:10.3390/toxins13100720
[40]
ZOU D, JI J, YE Y L, et al. Degradation of ochratoxin A by a UV-mutated Aspergillus niger strain[J]. Toxins, 2022, 14(5): 343. DOI:10.3390/toxins14050343
[41]
LI J L, HUANG J, JIN Y, et al. Mechanism and kinetics of degrading aflatoxin B1 by salt tolerant Candida versatilis CGMCC 3790[J]. Journal of Hazardous Materials, 2018, 359: 382-387. DOI:10.1016/j.jhazmat.2018.05.053
[42]
PAN Y Y, LIU C D, YANG J G, et al. Conversion of zearalenone to β-zearalenol and zearalenone-14, 16-diglucoside by Candida parapsilosis ATCC 7330[J]. Food Control, 2022, 131: 108429. DOI:10.1016/j.foodcont.2021.108429
[43]
ZHANG X, YANG H, APALIYA M T, et al. The mechanisms involved in ochratoxin A elimination by Yarrowia lipolytica Y-2[J]. Annals of Applied Biology, 2018, 173(2): 164-174. DOI:10.1111/aab.12452
[44]
WANG Y, ZHAO C X, ZHANG D D, et al. Microbial degradation of zearalenone by a novel microbial consortium, NZDC-6, and its application on contaminated corncob by semisolid fermentation[J]. Journal of Agricultural and Food Chemistry, 2020, 68(6): 1634-1644. DOI:10.1021/acs.jafc.9b05343
[45]
WANG Y X, WANG G, DAI Y J, et al. Biodegradation of deoxynivalenol by a novel microbial consortium[J]. Frontiers in Microbiology, 2020, 10: 2964. DOI:10.3389/fmicb.2019.02964
[46]
ZHAO Z Y, ZHANG Y M, GONG A D, et al. Biodegradation of mycotoxin fumonisin B1 by a novel bacterial consortium SAAS79[J]. Applied Microbiology and Biotechnology, 2019, 103(17): 7129-7140. DOI:10.1007/s00253-019-09979-6
[47]
WANG Y, ZHAO C X, ZHANG D D, et al. Simultaneous degradation of aflatoxin B1 and zearalenone by a microbial consortium[J]. Toxicon, 2018, 146: 69-76. DOI:10.1016/j.toxicon.2018.04.007
[48]
WANG L L, WU J, LIU Z W, et al. Aflatoxin B1 degradation and detoxification by Escherichia coli CG1061 isolated from chicken cecum[J]. Frontiers in Pharmacology, 2019, 9: 1548. DOI:10.3389/fphar.2018.01548
[49]
邓桃, 袁青松, 周涛, 等. 一株玉米赤霉烯酮高效降解细菌的筛选与降解条件研究[J]. 中国中药杂志, 2021, 46(20): 5240-5246.
DENG T, YUAN Q S, ZHOU T, et al. Screening of zearalenone-degrading bacteria and analysis of degradation conditions[J]. China Journal of Chinese Materia Medica, 2021, 46(20): 5240-5246 (in Chinese). DOI:10.19540/j.cnki.cjcmm.20210716.101
[50]
HE W J, SHI M M, YANG P, et al. Novel soil bacterium strain Desulfitobacterium sp. PGC-3-9 detoxifies trichothecene mycotoxins in wheat via de-epoxidation under aerobic and anaerobic conditions[J]. Toxins,, 2020, 12(6): 363. DOI:10.3390/toxins12060363
[51]
KEAWMANEE P, RATTANAKREETAKUL C, PONGPISUTTA R. Microbial reduction of fumonisin B1 by the new isolate Serratia marcescens 329-2[J]. Toxins, 2021, 13(9): 638. DOI:10.3390/toxins13090638
[52]
LOI M, FANELLI F, LIUZZI V C, et al. Mycotoxin biotransformation by native and commercial enzymes: present and future perspectives[J]. Toxins, 2017, 9(4): 111. DOI:10.3390/toxins9040111
[53]
SAI PREETHI P, HARIHARAN N M, VICKRAM S, et al. Advances in bioremediation of emerging contaminants from industrial wastewater by oxidoreductase enzymes[J]. Bioresource Technology, 2022, 359: 127444. DOI:10.1016/j.biortech.2022.127444
[54]
XIONG D W, WEN J, LU G, et al. Isolation, purification, and characterization of a laccase-degrading aflatoxin B1 from Bacillus amyloliquefaciens B10[J]. Toxins, 2022, 14(4): 250. DOI:10.3390/toxins14040250
[55]
YAMADA M, HATSUTA K, NⅡKAWA M, et al. Detoxification of aflatoxin B1 contaminated maize using human CYP3A4[J]. Journal of Microbiology and Biotechnology, 2020, 30(8): 1207-1213. DOI:10.4014/jmb.2003.03032
[56]
HE W J, SHI M M, YANG P, et al. A quinone-dependent dehydrogenase and two NADPH-dependent aldo/keto reductases detoxify deoxynivalenol in wheat via epimerization in a Devosia strain[J]. Food Chemistry, 2020, 321: 126703. DOI:10.1016/j.foodchem.2020.126703
[57]
TELMER P G, KELMAN M J, RENAUD J B, et al. Application of Aspergillus niger fumonisin amine oxidase (AnFAO) to detoxify fumonisin-contaminated maize[J]. Toxins, 2022, 14(8): 544. DOI:10.3390/toxins14080544
[58]
LOI M, FANELLI F, CIMMARUSTI M T, et al. In vitro single and combined mycotoxins degradation by Ery4 laccase from Pleurotus eryngii and redox mediators[J]. Food Control, 2018, 90: 401-406. DOI:10.1016/j.foodcont.2018.02.032
[59]
WANG X L, QIN X, HAO Z Z, et al. Degradation of four major mycotoxins by eight manganese peroxidases in presence of a dicarboxylic acid[J]. Toxins, 2019, 11(10): 566. DOI:10.3390/toxins11100566
[60]
QIN X, SU X Y, TU T, et al. Enzymatic degradation of multiple major mycotoxins by dye-decolorizing peroxidase from Bacillus subtilis[J]. Toxins, 2021, 13(6): 429. DOI:10.3390/toxins13060429
[61]
QIN X, XIN Y Z, ZOU J H, et al. Efficient degradation of aflatoxin B1 and zearalenone by laccase-like multicopper oxidase from Streptomyces thermocarboxydus in the presence of mediators[J]. Toxins, 2021, 13(11): 754. DOI:10.3390/toxins13110754
[62]
POPPENBERGER B, BERTHILLER F, LUCYSHYN D, et al. Detoxification of the Fusarium mycotoxin deoxynivalenol by a UDP-glucosyltransferase from Arabidopsis thaliana[J]. Journal of Biological Chemistry, 2003, 278(48): 47905-47914. DOI:10.1074/jbc.M307552200
[63]
PEREYRA M L, MARTÍNEZ M P, CAVAGLIERI L R. Presence of aiiA homologue genes encoding for n-acyl homoserine lactone-degrading enzyme in aflatoxin B1-decontaminating Bacillus strains with potential use as feed additives[J]. Food and Chemical Toxicology, 2019, 124: 316-323. DOI:10.1016/j.fct.2018.12.016
[64]
YANG S H, WU Y, YANG J, et al. Isolation and identification of an extracellular enzyme from Aspergillus niger with deoxynivalenol biotransformation capability[J]. Emirates Journal of Food and Agriculture, 2017, 29(10): 742-750.
[65]
TAKAHASHI-ANDO N, KIMURA M, KAKEYA H, et al. A novel lactonohydrolase responsible for the detoxification of zearalenone: enzyme purification and gene cloning[J]. Biochemical Journal, 2002, 365(Pt.1): 1-6.
[66]
ZHANG Z X, XU W, WU H, et al. Identification of a potent enzyme for the detoxification of zearalenone[J]. Journal of Agricultural and Food Chemistry, 2020, 68(1): 376-383. DOI:10.1021/acs.jafc.9b06223
[67]
XU X G, PANG M, LIU J W, et al. Genome mining reveals the genes of carboxypeptidase for OTA-detoxification in Bacillus subtilis CW14[J]. International Journal of Biological Macromolecules, 2021, 186: 800-810. DOI:10.1016/j.ijbiomac.2021.07.085
[68]
LUO H, WANG G, CHEN N, et al. A superefficient ochratoxin A hydrolase with promising potential for industrial applications[J]. Applied and Environmental Microbiology, 2022, 88(2): e0196421. DOI:10.1128/AEM.01964-21
[69]
AZAM M S, YU D Z, LIU N, et al. Degrading ochratoxin A and zearalenone mycotoxins using a multifunctional recombinant enzyme[J]. Toxins, 2019, 11(5): 301. DOI:10.3390/toxins11050301
[70]
XIA Y, WU Z F, HE R, et al. Simultaneous degradation of two mycotoxins enabled by a fusion enzyme in food-grade recombinant Kluyveromyces lactis[J]. Bioresources and Bioprocessing, 2021, 8(1): 62. DOI:10.1186/s40643-021-00395-1
[71]
XIE Y L, WANG W, ZHANG S J. Purification and identification of an aflatoxin B1 degradation enzyme from Pantoea sp. T6[J]. Toxicon, 2019, 157: 35-42. DOI:10.1016/j.toxicon.2018.11.290
[72]
TANG Y Q, LIU C D, YANG J G, et al. A novel enzyme synthesized by Acinetobacter sp. SM04 is responsible for zearalenone biodegradation[J]. Bioscience, Biotechnology, and Biochemistry, 2022, 86(2): 209-216. DOI:10.1093/bbb/zbab204