近些年,中国饲料业迅速发展,产能稳步上升,2021年中国饲料产量达到2.93亿t。饲料主要以大豆、玉米等粮食作物加工而成,我国粮食年产量约6.83亿t,而我国粮食年需求量约8.5亿t(其中约1/3为人的口粮,2/3用于养殖业),存在1.65亿t粮食缺口,导致饲料资源短缺。目前,缺口部分依赖进口,其中大豆进口约0.97亿t,其他粮食进口0.68亿t,而过度依赖进口易受国际形势影响,导致价格攀升或无法稳定供应,严重制约我国饲料业和养殖业的健康、稳定发展。蔬菜富含植物性蛋白质、不饱和脂肪酸、多酚等对人体生长发育和机体健康有益的营养物质,是人类饮食结构中不可缺少的一部分[1]。近5年,全球和中国的蔬菜总产量持续增加,中国在2021年达到7.67亿t,占全球总产量60%以上。伴随产量的增加,蔬菜的浪费和损失不可避免的出现,产生了大量的尾菜。据联合国粮食及农业组织的数据显示,仅在收获时期,蔬菜的损失即可达到21.6%。在收获后至未到消费者手中这段时期内,全世界范围内约有1/3的蔬菜被丢弃。据统计,我国未被有效利用的副产品产量高达23亿t,其中蔬菜加工副产物占比9%,约为2.07亿t。然而,由于缺乏有效的处理手段,大部分尾菜被直接运往垃圾场填埋,这种不合理的处理方式不仅浪费了资源,还污染了环境[2]。因此,以尾菜为基础开发非粮型饲料资源可能是缓解我国饲料资源不足、保障国家粮食安全、促进饲料业和畜牧业可持续健康发展的一项措施。
1 尾菜的营养特性尾菜中水分含量较高,但如果以干物质为基础计算,粗蛋白质、粗脂肪和可溶性碳水化合物等有机物占比较高。例如,白色卷心菜、红色卷心菜、大白菜和莴苣尾菜中水分含量为94.8%~98.0%,但干物质中粗蛋白质和可溶性碳水化合物的含量分别为20.6%~22.8%和8.4%~21.7%[3]。因为尾菜通常为蔬菜的不可食用或口感较差部位,其营养物质组成与完整蔬菜略有不同。例如,与完整白菜的汁液相比,白菜外叶的汁液中蛋白质和磷含量更高,而还原性糖含量较少[4];芹菜叶具有比根部和茎部更高的干物质、总溶解性固体和硝酸盐含量及更低的单糖和双糖含量[5]。尾菜中同样富含多酚、类黄酮和多肽等生物活性物质,可改善机体生理功能[6]。如胡萝卜尾菜的浸提液中含有二氢查尔酮、肉桂酸和黄酮醇等有机化合物,且多不饱和脂肪酸在总脂肪酸中占比高达70.51%[7];花椰菜尾菜中可分离出具有抗氧化能力和血管紧张素转化酶抑制活性的生物活性多肽[8]。然而,尾菜也同样含有结构性碳水化合物和硫代葡萄糖苷等抗营养因子,易对动物肠道造成损伤,影响营养物质的消化吸收,导致生长抑制[9-10]。此外,需要注意的是,由于蔬菜种植的地理区域不同,且品种繁多,也使尾菜的营养组成不同。例如,不同品种芹菜叶水提物中总黄酮含量和总酚含量分别为168.38~261.71 mg/L和128.56~182.49 mg/L,且其中紫芹和青梗芹菜的生物活性物质含量较高,更具备利用价值[11]。因此,对尾菜的营养组成进行系统性的评价,可提高尾菜饲料化的规范性,为尾菜饲料化提供理论依据。
2 尾菜资源饲料化技术水分过高、不易储运等特点限制了尾菜的广泛饲料化应用,而利用机械烘干或晾晒等方式降低水分含量,成本过高且易受环境和场地因素影响。目前,关于尾菜的饲料化技术研究主要集中于厌氧固态发酵、有氧固态发酵和液态深层发酵等方式。通过将尾菜与麦麸、秸秆等干性饲料原料混合达到适宜水分后进行厌氧固态发酵可使尾菜长期保存,且成本低、养分损失少、易于运输[12]。有氧固态发酵可提高尾菜的营养价值,但原料需经干燥和灭菌,才能保证产品品质[13]。液态深层发酵可利用尾菜生产单细胞蛋白、有机酸和酶制剂等,从而提高尾菜的产品附加值[14]。因此,可根据不同的目的和实际生产条件选择适宜的尾菜饲料化处理方式。
2.1 厌氧固态发酵厌氧固态发酵主要是利用乳酸菌在厌氧环境下,快速降低原料的pH,以达到长期保存的目的。将尾菜与干性原料以合适的比例混合进行厌氧固态发酵,可减少蛋白质降解,增加可溶性糖、有机物的保存,并提升有机酸产量和乳酸菌数量[3]。例如,分别使用胡萝卜和南瓜与玉米混合,可使乳酸产量提高10.42%,总挥发性脂肪酸产量提高29.9%~57.1%,并显著增加乳杆菌相对丰度[15]。此外,引入适宜的发酵添加剂,可进一步提升尾菜的厌氧发酵效率,延长保存时间。例如,将植物乳杆菌与布氏乳杆菌加入到玉米秸秆与白菜尾菜混合发酵底物中,可加速发酵速度,减少氨态氮的形成,并且在发酵170 d后,可仍然保持良好品质[16];向玉米秸秆与白菜尾菜混合发酵底物中加入0.3%的纤维素酶,可以有效地提高底物可利用性,降低pH、氨态氮浓度及结构性碳水化合物含量[17]。除了益生菌剂和酶制剂,以有机酸为基础的化学添加剂可抑制有害菌的繁殖,减少营养物质的损失。例如,向秸秆与白菜尾菜混合发酵系统中加入甲酸和乙酸,可以快速降低pH,使乳酸菌快速成为优势菌群,提高干物质、可溶性糖与真蛋白含量[18];以大白菜尾菜和小麦麸混合发酵体系为基础,当添加质量比为1.11%的柠檬酸时,可有效地降低发酵过程中营养物质的损耗,促进有机酸生成,并提高有氧稳定性[12]。
季节变化和地理位置不同导致的温度波动会对尾菜的厌氧发酵性能产生影响。例如,在玉米秸秆和卷心菜尾菜混合厌氧发酵中,低温(-3 ℃)会导致乳酸菌产酸能力下降,高温(34 ℃)会使微生物增殖加强,增大营养物质消耗,而在18 ℃时,厌氧发酵饲料的营养物质保存较为完好[19];在花椰菜尾菜的厌氧发酵中,35 ℃时发酵的花椰菜尾菜品质最佳,pH、乳酸含量和氨态氮总氮含量分别为4.08、185 g/kg(干物质基础)和37.6 g/kg(干物质基础)[20]。因此,确定温度对尾菜厌氧发酵的影响对于尾菜全年饲料化具有重要意义,并且抵消其负面影响也是推广应用所面临的重要问题。
2.2 有氧固态发酵尾菜的有氧固态发酵主要是通过添加丝状真菌或酵母,将廉价的尾菜转化为高附加值的发酵产品[21]。Dantroliya等[22]采用有氧固态发酵技术对尾菜实施饲料化处理,发酵产物的微生物安全性和化学安全性等各项参数均在允许范围内,可以作为动物饲料使用。此外,有氧固态发酵在适当的条件下还可以富集蛋白质及提高蛋白质品质和可利用性[23-24]。例如,将晒干的尾菜与大豆粉、小麦粉、花生油饼、芝麻饼以4 ∶ 3 ∶ 2 ∶ 1比例混合后高压高温灭菌,随后通过添加黑曲霉进行有氧固态发酵6~9 d,可使粗蛋白质含量增加29.07%~37.63%[13](基础饲粮粗蛋白质含量:18.26%;发酵后第9天粗蛋白质含量:28.29%)。需要注意的是,微生物在生长过程中产生的代谢物及自身组成成分的变化,可能会对有氧固态发酵饲料的品质造成负面影响。Ibarruri等[25]将果蔬废弃物烘干且灭菌制备成发酵底物,通过有氧固态发酵使粗蛋白质含量提升15.7%,但发酵过程中其真菌细胞壁含量也不断增加,使中性洗涤不溶蛋白含量增加247.37%,导致有机物体外消化率降低27.34%;有氧固态发酵虽然可以提高尾菜的粗蛋白质和必需氨基酸含量,释放多酚类物质,提高抗氧化活性,但是也会降低多不饱和脂肪酸比例[26]。
2.3 液态深层发酵液态深层发酵是一种将底物液化或浸没在水中的发酵方式,虽然通过液态深层发酵可以提高尾菜的保存时间,但尾菜通常作为培养基或培养基补充物,生产单细胞蛋白、有机酸和饲用酶等在畜牧业中常用的产品[27]。尾菜经过匀浆、过滤、离心和高温灭菌等操作步骤即制得尾菜液态培养基,接种酵母,可生产微生物蛋白[28]。除匀浆,利用水可在24 h内提取尾菜中65%~70%的有机物,并且通过液态深层发酵技术,在96 h内便可实现富硒酵母生物质的生物转化[14]。在尾菜液体培养基制备阶段,预处理也是影响发酵性能的一个重要因素,如对洋葱皮采用物理或化学的预处理,可减少其色素和结晶度,使果胶酶的产量提高18.81%~45.07%[29]。然而,需要注意的是,尾菜液体培养基在高温灭菌过程中,将灭菌程序设定从90 ℃保持10 min增加至121 ℃保持15 min,会使酵母生物质产量减少9.97%~44.22%[4]。因此,尾菜液态深层发酵培养基的制备方式、方法及无菌化处理,可能是通过深层发酵实现尾菜价态化的重要节点。
虽然尾菜可为微生物的生长提供营养物质,但是在高密度的发酵环境条件下,菌株性能、底物营养物质组成不均衡、产物的反馈抑制和发酵环境条件则成为了限制生物质生物转化的重要因素。例如,树干毕赤酵母可以利用白菜尾菜制备的液体培养基,产生更多的细胞生物质和总蛋白质[4];在白菜尾菜液体培养基中,补充蔗糖、酵母提取物、大豆蛋白胨和赤贝粉,可通过增加营养物质及缓解低pH的抑制,使乳酸菌密度增加1倍[30]。同时,也有部分研究表明,由于尾菜中存在环蒜氨酸和多酚等具备抗菌能力的物质以及碳水化合物的可利用性低,会降低液态深层发酵中漆酶和柠檬酸的产量[31-34]。
3 尾菜饲料在畜牧生产中的应用在生猪饲粮中补充一定量的新鲜蔬菜,可提高妊娠母猪的健康状况,且对于生长育肥猪的生长性能、胴体性状和肉品质具有积极作用[35-38]。在肉鸡饲粮中补充蔬菜,可提高采食量和日增重,改善肠道形态和肠道菌群组成,并降低肝脏的脂肪生成,提高抗氧化能力,改善产品品质[39-40]。然而,尾菜通常是适口性较差的部位,纤维含量较高,导致消化能和代谢能较低,且氨基酸消化率也较低[41-42]。因此,结合这些特点和高水分含量,使尾菜很难以饲料原料形式进行全价饲料配方的拟配[43]。
目前,在畜牧生产中,尾菜以干燥粉末形式替代全价饲料、饲料原料或添加剂形式补充较为常见。例如,烘干的蔬菜废弃物以25%~100%的比例替代肉鸡商品全价饲料对于肌肉脂质过氧化及肉矿物质含量有正面的影响,但是会显著降低饲料转化率[44];利用干燥的番茄渣替代猪饲粮中15%的玉米,对猪的生长性能、背膘厚、肉色和肌肉的氧化稳定性没有显著影响,且可以提高猪肉中多不饱和脂肪酸和类视黄醇的含量,减少血红蛋白氧化[45];而Pieszka等[46]研究发现,在生长育肥猪饲粮中以8%~10%富含膳食纤维的胡萝卜渣为原料配制全价饲粮,会降低饲料转化率和增加背膘厚,但对背最长肌的脂肪酸组成和肉品质没有显著影响。虽然尾菜中含有大量的不可溶性膳食纤维,如果添加量过高会降低平均日增重、肉料比及营养成分的表观消化率,但是在此基础上补充适当的油脂,会缓解对生长性能的负面影响,且植物源油脂具有更好的效果[47-48]。此外,以补充形式将尾菜添加到饲粮中,对畜禽的负面影响较小。例如,在生猪育肥猪饲粮中补充形式添加干燥番茄渣,可以提高生长育肥猪平均日增重,改善胴体品质,改善猪肉色泽,并且还可以降低肌肉中脂质过氧化物的水平[49];在肉鸡饲粮中补充干燥的洋葱皮,可以提高肉鸡的日增重和胴体重,改善肠道微生物组成,提高机体的免疫和抗氧化能力,还可以增强鸡胸肉的氧化稳定性[50]。
经过微生物发酵,将尾菜制备成生物饲料是提高其饲喂价值的重要方式之一。在猪生产中,以花椰菜尾菜为原料进行全发酵,得到的发酵饲料可以提高保育猪平均日采食量和平均日增重,降低腹泻率和肠道食糜pH,改善肠道形态[51];利用青贮西兰花尾菜替代10%~30%的全价饲粮,可以提高仙居花猪杂交土猪的日增重,增加猪的肌间脂肪含量、背膘厚度及瘦肉率[52]。在肉鸡生产中,以益生菌厌氧发酵西蓝花替代饲粮中5%~10%的玉米和豆粕,可以降低肠道及颈部皮肤附着的有害微生物,并且可以提高胸大肌和腓肠肌的抗氧化能力[53];在肉鸡饲粮中补充25~70 g/kg的厌氧发酵西兰花,可以有效地缓解由细菌感染导致的生长性能下降,降低死亡率,提高体液免疫水平,且减少肠道内有害微生物的数量,降低肠道屏障渗透性,改善肠道功能[54]。因此,通过生物发酵技术改善尾菜的质构特征和营养组成,可能是实现尾菜饲料化的最佳途径。
4 小结与展望尾菜具有部分替代畜禽常规饲料的潜力,可保证或提高动物的生产性能和产品品质,如果科学、合理开发利用,可以促进畜牧业的健康、稳定发展,同时可解决尾菜处置不当导致的环境污染问题。然而,尾菜的高效加工方式和对动物生长发育的影响仍不明晰,且对于尾菜的营养价值评定鲜有报道。因此,未来应针对尾菜的物化加工、生物处理、营养价值评定和饲喂效果进行深入的研究,以为我国尾菜资源的饲料化应用提供重要的理论参考与实践依据。
[1] |
RAMOS-ANDRÉS M, AGUILERA-TORRE B, GARCÍA-SERNA J. Biorefinery of discarded carrot juice to produce carotenoids and fermentation products[J]. Journal of Cleaner Production, 2021, 323: 129139. DOI:10.1016/j.jclepro.2021.129139 |
[2] |
GANESH K S, SRIDHAR A, VISHALI S. Utilization of fruit and vegetable waste to produce value-added products: conventional utilization and emerging opportunities——a review[J]. Chemosphere, 2022, 287: 132221. DOI:10.1016/j.chemosphere.2021.132221 |
[3] |
CAO Y, CAI Y, TAKAHASHI T, et al. Effect of lactic acid bacteria inoculant and beet pulp addition on fermentation characteristics and in vitro ruminal digestion of vegetable residue silage[J]. Journal of Dairy Science, 2011, 94(8): 3902-3912. DOI:10.3168/jds.2010-3623 |
[4] |
CHOI M H, PARK Y H. Production of yeast biomass using waste Chinese cabbage[J]. Biomass and Bioenergy, 2003, 25(2): 221-226. DOI:10.1016/S0961-9534(02)00194-0 |
[5] |
GOLUBKINA N A, KHARCHENKO V A, MOLDOVAN A I, et al. Yield, growth, quality, biochemical characteristics and elemental composition of plant parts of celery leafy, stalk and root types grown in the northern hemisphere[J]. Plants, 2020, 9(4): 484. DOI:10.3390/plants9040484 |
[6] |
COMAN V, TELEKY B E, MITREA L, et al. Bioactive potential of fruit and vegetable wastes[J]. Advances in Food and Nutrition Research, 2020, 91: 91157-91225. |
[7] |
VODNAR D C, CǍLINOIU L F, DULF F V, et al. Identification of the bioactive compounds and antioxidant, antimutagenic and antimicrobial activities of thermally processed agro-industrial waste[J]. Food Chemistry, 2017, 231: 131-140. DOI:10.1016/j.foodchem.2017.03.131 |
[8] |
MONTONE C M, CAPRIOTTI A L, CAVALIERE C, et al. Characterization of antioxidant and angiotensin-converting enzyme inhibitory peptides derived from cauliflower by-products by multidimensional liquid chromatography and bioinformatics[J]. Journal of Functional Foods, 2018, 44: 40-47. DOI:10.1016/j.jff.2018.02.022 |
[9] |
ČOLOVIĆ D, RAKITA S, BANJAC V, et al. Plant food by-products as feed: characteristics, possibilities, environmental benefits, and negative sides[J]. Food Reviews International, 2019, 35(4): 363-389. DOI:10.1080/87559129.2019.1573431 |
[10] |
HAN H, KWON H. Estimated dietary intake of thiocyanate from Brassicaceae family in Korean diet[J]. Journal of Toxicology and Environmental Health Part a, 2009, 72(21/22): 1380-1387. |
[11] |
李有媛, 赵愉涵, 陈庆敏, 等. 四种芹菜不同部位营养成分和抗氧化能力的分析比较[J]. 食品与发酵工业, 2021, 47(14): 76-81. LI Y Y, ZHAO Y H, CHEN Q M, et al. Analysis and comparison of nutritional components and antioxidant capacity in different parts of four kinds of celery[J]. Food and Fermentation Industries, 2021, 47(14): 76-81 (in Chinese). DOI:10.13995/j.cnki.11-1802/ts.026081 |
[12] |
LI J W, MENG Q W, XING J X, et al. Citric acid enhances clean recycling of Chinese cabbage waste by anaerobic fermentation[J]. Journal of Cleaner Production, 2022, 348: 131366. DOI:10.1016/j.jclepro.2022.131366 |
[13] |
RAJESH N, IMELDA-JOSEPH I, PAUL RAJ R. Value addition of vegetable wastes by solid-state fermentation using Aspergillus niger for use in aquafeed industry[J]. Waste Management, 2010, 30(11): 2223-2227. DOI:10.1016/j.wasman.2009.12.017 |
[14] |
STABNIKOVA O, WANG J Y, DING H B, et al. Biotransformation of vegetable and fruit processing wastes into yeast biomass enriched with selenium[J]. Bioresource Technology, 2005, 96(6): 747-751. DOI:10.1016/j.biortech.2004.06.022 |
[15] |
HOOKER K, FORWOOD D L, CARO E, et al. Microbial characterization and fermentative characteristics of crop maize ensiled with unsalable vegetables[J]. Scientific Reports, 2019, 9(1): 13183. DOI:10.1038/s41598-019-49608-w |
[16] |
任海伟, 王聪, 马延琴, 等. 接种不同乳酸菌对干玉米秸秆与白菜废弃物混贮品质的影响[J]. 应用与环境生物学报, 2018, 24(3): 547-556. REN H W, WANG C, MA Y Q, et al. Effects of inoculating different lactic acid bacteria on the mixed storage quality of dry maize straw and cabbage waste[J]. Chinese Journal of Applied & Environmental Biology, 2018, 24(3): 547-556 (in Chinese). DOI:10.19675/j.cnki.1006-687x.2017.06033 |
[17] |
REN H W, WANG L, ZHAO Q L, et al. Enhancing the co-ensiling performance of corn stover and cabbage waste via the addition of cellulase[J]. BioResources, 2021, 16(3): 6342-6362. DOI:10.15376/biores.16.3.6342-6362 |
[18] |
REN H W, WANG C, FAN W G, et al. Effects of formic or acetic acid on the storage quality of mixed air-dried corn stover and cabbage waste, and microbial community analysis[J]. Food Technology and Biotechnology, 2018, 56(1): 71-82. |
[19] |
REN H W, FENG Y P, LIU T, et al. Effects of different simulated seasonal temperatures on the fermentation characteristics and microbial community diversities of the maize straw and cabbage waste co-ensiling system[J]. Science of the Total Environment, 2020, 708: 135113. DOI:10.1016/j.scitotenv.2019.135113 |
[20] |
REN H W, FENG Y P, PEI J W, et al. Effects of Lactobacillus plantarum additive and temperature on the ensiling quality and microbial community dynamics of cauliflower leaf silages[J]. Bioresource Technology, 2020, 307: 123238. DOI:10.1016/j.biortech.2020.123238 |
[21] |
LINDSAY M A, GRANUCCI N, GREENWOOD D R, et al. Identification of new natural sources of flavour and aroma metabolites from solid-state fermentation of agro-industrial by-products[J]. Metabolites, 2022, 12(2): 157. DOI:10.3390/metabo12020157 |
[22] |
DANTROLIYA S, JOSHI C, MOHAPATRA A, et al. Creating wealth from waste: an approach for converting organic waste in to value-added products using microbial consortia[J]. Environmental Technology & Innovation, 2022, 25: 102092. |
[23] |
SHI C Y, ZHANG Y, LU Z Q, et al. Solid-state fermentation of corn-soybean meal mixed feed with Bacillus subtilis and Enterococcus faecium for degrading antinutritional factors and enhancing nutritional value[J]. Journal of Animal Science and Biotechnology, 2017, 8: 50. DOI:10.1186/s40104-017-0184-2 |
[24] |
MORALES E M, DOMINGOS R N, ANGELIS D F. Improvement of protein bioavailability by solid-state fermentation of babassu mesocarp flour and cassava leaves[J]. Waste and Biomass Valorization, 2018, 9(4): 581-590. DOI:10.1007/s12649-016-9759-y |
[25] |
IBARRURI J, GOIRI I, CEBRIÁN M, et al. Solid state fermentation as a tool to stabilize and improve nutritive value of fruit and vegetable discards: effect on nutritional composition, in vitro ruminal fermentation and organic matter digestibility[J]. Animals, 2021, 11(6): 1653. DOI:10.3390/ani11061653 |
[26] |
IBARRURI J, CEBRIÁN M, HERNÁNDEZ I. Valorisation of fruit and vegetable discards by fungal submerged and solid-state fermentation for alternative feed ingredients production[J]. Journal of Environmental Management, 2021, 281: 111901. DOI:10.1016/j.jenvman.2020.111901 |
[27] |
MISCI C, TASKIN E, DALL'ASTA M, et al. Fermentation as a tool for increasing food security and nutritional quality of indigenous African leafy vegetables: the case of Cucurbita sp[J]. Food Microbiology, 2021, 99: 103820. DOI:10.1016/j.fm.2021.103820 |
[28] |
CHOI M H, JI G E, KOH K H, et al. Use of waste Chinese cabbage as a substrate for yeast biomass production[J]. Bioresource Technology, 2002, 83(3): 251-253. DOI:10.1016/S0960-8524(01)00232-2 |
[29] |
ISMAIL A M S, ABO-ELMAGD H I, HOUSSEINY M M. A safe potential juice clarifying pectinase from Trichoderma viride EF-8 utilizing Egyptian onion skins[J]. Journal of Genetic Engineering and Biotechnology, 2016, 14(1): 153-159. DOI:10.1016/j.jgeb.2016.05.001 |
[30] |
JEONG E J, MOON D W, OH J S, et al. Development of cabbage juice medium for industrial production of Leuconostoc mesenteroides starter[J]. Journal of Microbiology and Biotechnology, 2017, 27(12): 2112-2118. DOI:10.4014/jmb.1708.08050 |
[31] |
YAZICI S O, SAHIN S, BIYIK H H, et al. Optimization of fermentation parameters for high-activity inulinase production and purification from Rhizopus oryzae by Plackett-Burman and Box-Behnken[J]. Journal of Food Science and Technology, 2021, 58(2): 739-751. DOI:10.1007/s13197-020-04591-3 |
[32] |
SHARMA A, GUPTA V, KHAN M, et al. Flavonoid-rich agro-industrial residues for enhanced bacterial laccase production by submerged and solid-state fermentation[J]. 3 Biotech, 2017, 7(3): 200. DOI:10.1007/s13205-017-0836-0 |
[33] |
DHILLON G S, BANSAL S, OBEROI H S. Cauliflower waste incorporation into cane molasses improves ethanol production using Saccharomyces cerevisiae MTCC 178[J]. Indian Journal of Microbiology, 2007, 47(4): 353-357. DOI:10.1007/s12088-007-0063-1 |
[34] |
YALCIN S K. Enhancing citric acid production of Yarrowia lipolytica by mutagenesis and using natural media containing carrot juice and celery byproducts[J]. Food Science and Biotechnology, 2012, 21(3): 867-874. DOI:10.1007/s10068-012-0112-3 |
[35] |
梁龙华, 陈颋, 颜勇, 等. 鲜南瓜对肥育猪生长性能及肉品质的影响[J]. 饲料研究, 2016(8): 29-31. LIANG L H, CHEN T, YAN Y X, et al. Effects of fresh pumpkin on the growth performance and meat quality of finishing pigs[J]. Feed Research, 2016(8): 29-31 (in Chinese). |
[36] |
连慧香, 程丰, 朱凤霞, 等. 饲喂鲜胡萝卜对豫南黑猪产后母猪健康状况及血清免疫和抗氧化指标的影响[J]. 河南农业科学, 2015, 44(7): 128-131. LIAN H X, CHENG F, ZHU F X, et al. Effects of feeding fresh carrots on health status and serum immunity, antioxidant indexes in postpartum sows of Yu'nan black pigs[J]. Journal of Henan Agricultural Sciences, 2015, 44(7): 128-131 (in Chinese). DOI:10.15933/j.cnki.1004-3268.2015.07.029 |
[37] |
田宗祥, 张玲清, 关红民, 等. 饲料用去籽辣椒粕对育肥猪胴体品质及风味的影响[J]. 国外畜牧学(猪与禽), 2012, 32(2): 63-64. TIAN Z X, ZHANG L Q, GUAN H M, et al. Effects of deseeded capsicum meal as feed on carcass quality and flavor of meat of finishing pigs[J]. Animal Science Abroad(Pigs and Poultry), 2012, 32(2): 63-64 (in Chinese). DOI:10.3969/j.issn.1001-0769.2012.02.035 |
[38] |
REZAR V, PAJK T, LEVART A, et al. Relevance of meat fat content and fruit and vegetable intake for the oxidative status of pigs[J]. Annals of Nutrition and Metabolism, 2006, 50(1): 74-80. DOI:10.1159/000089690 |
[39] |
杨建平, 李新锋, 张艳平, 等. 卷心菜浆液对肉鸡肠道发育和盲肠菌群的影响[J]. 西北农林科技大学学报(自然科学版), 2019, 47(7): 6-14. YANG J P, LI X F, ZHANG Y P, et al. Effect of cabbage slurry on intestinal development and cecum microflora of broilers[J]. Journal of Northwest A&F University(Natural Science Edition), 2019, 47(7): 6-14 (in Chinese). |
[40] |
AHMADIPOUR B, HASSANPOUR H, KHAJALI F. Evaluation of hepatic lipogenesis and antioxidant status of broiler chickens fed mountain celery[J]. BMC Veterinary Research, 2018, 14(1): 234. DOI:10.1186/s12917-018-1561-6 |
[41] |
FUNG L, URRIOLA P E, SHURSON G C. Energy, amino acid, and phosphorus digestibility and energy prediction of thermally processed food waste sources for swine[J]. Translational Animal Science, 2019, 3(2): 676-691. DOI:10.1093/tas/txz028 |
[42] |
MUSTAFA A F, BAURHOO B. Effects of feeding dried broccoli floret residues on performance, ileal and total digestive tract nutrient digestibility, and selected microbial populations in broiler chickens[J]. Journal of Applied Poultry Research, 2016, 25(4): 561-570. DOI:10.3382/japr/pfw038 |
[43] |
FAUSTO-CASTRO L, RIVAS-GARCÍA P, GÓMEZ-NAFTE J A, et al. Selection of food waste with low moisture and high protein content from Mexican restaurants as a supplement to swine feed[J]. Journal of Cleaner Production, 2020, 256: 120137. DOI:10.1016/j.jclepro.2020.120137 |
[44] |
RAZA A, HUSSAIN J, HUSSNAIN F, et al. Vegetable waste inclusion in broiler diets and its effect on growth performance, blood metabolites, immunity, meat mineral content and lipid oxidation status[J]. Brazilian Journal of Poultry Science, 2019, 21(1): 1-8. |
[45] |
BIONDI L, LUCIANO G, CUTELLO D, et al. Meat quality from pigs fed tomato processing waste[J]. Meat Science, 2020, 159: 107940. DOI:10.1016/j.meatsci.2019.107940 |
[46] |
PIESZKA M, SZCZUREK P, BEDERSKA-ŁOJEWSKA D, et al. The effect of dietary supplementation with dried fruit and vegetable pomaces on production parameters and meat quality in fattening pigs[J]. Meat Science, 2017, 126: 1-10. DOI:10.1016/j.meatsci.2016.11.016 |
[47] |
YANG P, FAN Y F, ZHU M, et al. Energy content, nutrient digestibility coefficient, growth performance and serum parameters of pigs fed diets containing tomato pomace[J]. Journal of Applied Animal Research, 2018, 46(1): 1483-1489. DOI:10.1080/09712119.2018.1546181 |
[48] |
CORREIA C S, ALFAIA C M, MADEIRA M S, et al. Dietary inclusion of tomato pomace improves meat oxidative stability of young pigs[J]. Journal of Animal Physiology and Animal Nutrition, 2017, 101(6): 1215-1226. DOI:10.1111/jpn.12642 |
[49] |
李贝贝, 徐泽权, 李涛, 等. 饲粮中添加番茄渣对育肥猪生长性能、胴体性状、肉品质和抗氧化能力的影响[J]. 动物营养学报, 2017, 29(12): 4554-4561. LI B B, XU Z Q, LI T, et al. Effects of tomato pomace supplementation on growth performance, carcass traits, meat quality and antioxidant capacity of finishing pigs[J]. Chinese Journal of Animal Nutrition, 2017, 29(12): 4554-4561 (in Chinese). DOI:10.3969/j.issn.1006-267x.2017.12.037 |
[50] |
ADEYEMI K D, OSENI A I, ASOGWA T N. Onionskin waste versus synthetic additives in broiler diet: influence on production indices, oxidative status, caecal bacteria, immune indices, blood chemistry and meat quality[J]. Italian Journal of Animal Science, 2021, 20(1): 587-599. DOI:10.1080/1828051X.2021.1892545 |
[51] |
蓝婧婷, 任瑞, 周瑞, 等. 花椰菜尾菜发酵饲料对保育猪生长性能、血清生化指标、小肠组织形态及经济效益的影响[J]. 草业学报, 2021, 30(6): 180-189. LAN J T, REN R, ZHOU R, et al. Effects of feeding fermented cauliflower residue on growth performance, serum biochemical indices, intestinal tissue morphology and economic returns of nursery pigs[J]. Acta Prataculturae Sinica, 2021, 30(6): 180-189 (in Chinese). |
[52] |
褚晓红, 陈晓宇, 戴丽荷, 等. 青贮西兰花茎叶饲料对仙居花猪杂交土猪肉质的影响[J]. 浙江农业科学, 2022, 63(7): 1539-1541. CHU X H, CHEN X Y, DAI L H, et al. Effect of broccoli stem and leaf silages on meat quality of Xianjuhua pig[J]. Journal of Zhejiang Agricultural Sciences, 2022, 63(7): 1539-1541. |
[53] |
LIU N, DENG X J, LIANG C Y, et al. Fermented broccoli residue reduced harmful bacterial loads and improved meat antioxidation of free-range broilers[J]. Journal of Applied Poultry Research, 2018, 27(4): 590-596. |
[54] |
LIU N, DENG X, LIANG C, et al. Effect of broccoli residues fermented with probiotics on the growth performance and health status of broilers challenged with Clostridium perfringens[J]. Brazilian Journal of Poultry Science, 2018, 20(4): 625-631. |