呕吐毒素(deoxynivalenol,DON),又称作脱氧雪腐镰刀菌烯醇,属于霉菌毒素中的B类单端孢霉烯类毒素,由镰刀菌产生。这种B类单端孢霉烯类毒素是黄色镰刀菌(F. culmorum)和禾谷镰刀菌(F. graminearum)的主要次生代谢产物[1]。呕吐毒素主要通过污染的饲料进入动物肠道,并对其造成不同程度的损伤。
肠道屏障可分为生物屏障、化学屏障、物理屏障和免疫屏障4个部分[2]。呕吐毒素被动物摄入后,肠道是其攻击的第1个靶器官,并对肠道屏障造成不同程度的破坏[3]。营养物质具有提供能量和参与机体生理功能的双重作用[4]。因此,通过营养物质调控,缓解呕吐毒素对肠道屏障功能的损伤是一种有效的途径。本文通过总结呕吐毒素对猪肠道生物屏障、化学屏障、物理屏障和化学屏障功能的损伤及植物提取物和不同营养物质对该损伤的缓解效果,以期为减少呕吐毒素对猪的危害、保护猪肠道健康、促进养殖业发展提供参考。
1 呕吐毒素污染现状植物是霉菌的良好宿主,霉菌的生长和毒素的产生是从田间开始的。霉菌及霉菌毒素污染谷物存在于收割、干燥、储存、运输和加工等各个过程。外界条件一旦得到满足,霉菌便可以对食物、饲料原料及饲料等造成污染。其中玉米和小麦在田间最容易受到镰刀菌属的污染,因此玉米和小麦常含有较高浓度的呕吐毒素[5-6]。
霉菌的存在范围广泛,全球的谷物及饲料原料都面临着霉菌及霉菌毒素的污染问题。Palacios等[7]对在阿根廷3个不同地方采集的84个小麦样品进行了呕吐毒素检测,结果显示,所有小麦样品呕吐毒素均为阳性,呕吐毒素最高浓度为9 480 μg/kg,平均浓度为1 750 μg/kg,超出欧盟对谷物类呕吐毒素浓度限量标准(500~1 750 μg/kg)[8]。Pleadin等[9]对306份克罗地亚地区未加工的玉米和大豆样品的呕吐毒素浓度进行了测定,结果显示,玉米呕吐毒素阳性率最高,达到了89%,大豆阳性率为32%。同样,我国呕吐毒素的污染也十分严重。丁燕玲等[10]报道,我国大部分地区存在霉菌毒素污染,其中华东地区最为严重;2015—2020年对谷物呕吐毒素浓度的检测结果,显示玉米检出率均高于80%,浓度在100~900 μg/kg,小麦检出率均高于90%,浓度均在800 μg/kg;2020年玉米呕吐毒素检出率达到100%,2017、2018、2020年小麦呕吐毒素检出率均为100%;相比玉米和小麦,豆粕的呕吐毒素检出率稍低,但是2018年也达到了70%,且浓度在3年中最高,在1 100 μg/kg左右,高出我国对谷物及其制品中呕吐毒素浓度的限量(1 000 μg/kg)[11]。综上所述,谷物及饲料原料中的呕吐毒素污染是全球性问题,是畜牧业领域需要重点解决的问题之一。
2 呕吐毒素对猪肠道屏障的影响 2.1 呕吐毒素对猪肠道生物屏障的影响猪肠道中的微生物分成有益菌、中性菌和有害菌三大类,前2类微生物构成了肠道的生物屏障[12]。肠道中有益微生物主要通过竞争抑制有害微生物、发酵产生有益代谢产物等途径发挥其屏障功能。研究表明,肠道微生物是呕吐毒素攻击目标之一[13]。呕吐毒素主要通过改变肠道微生物区系的丰度和组成,对动物机体造成危害。张聪[14]报道,仔猪采食添加呕吐毒素的饲粮后,其盲肠和结肠物生物区系的结构发生改变;其中,norank_f_Muribaculaceae和未分类的厚壁菌门(unclassified_p_Firmicutes)这2种菌的变化最为显著,添加呕吐毒素显著增加了其丰度;而这2种菌的丰度与血清中二胺氧化酶(DAO)的活性呈正相关,推测norank_f_Muribaculaceae和unclassified_p_Firmicutes丰度的增加可能介导了呕吐毒素感染对猪肠道通透性的增加。但是,仔猪采食呕吐毒素污染的饲粮后,对其盲肠和结肠微生物区系的丰度没有显著影响。Jia等[15]也有类似的结果,即呕吐毒素不改变猪肠道微生物区系的丰度,但影响其结构。另有文献显示,呕吐毒素能够显著降低仔猪盲肠未分类的毛螺菌科(unclassified_f_Lachnospiraceae)和考拉杆菌属(Phascolarctobacterium)的数量[16]。相关报道指出,毛螺菌科(Lachnospiraceae)的数量与动物的采食量成正比[17],Phascolarctobacterium与人的情绪相关,与患病个体相比,健康个体中这2种菌更丰富[18]。因此,推测呕吐毒素感染诱导的仔猪采食量下降可能与这2种菌的数量降低相关。另外,肠道微生物代谢产物对肠道生物屏障功能也有重要的保护作用。研究表明,短链脂肪酸具有为肠细胞提供能量、保护肠黏膜、参与肠道免疫等功能[19]。Zheng等[20]报道,呕吐毒素降低了猪结肠丙酸、丁酸、戊酸和总挥发性脂肪酸的浓度。综上所述,呕吐毒素通过调节肠道中微生物区系的组成和微生物代谢产物,影响猪肠道生物屏障。
2.2 呕吐毒素对猪肠道化学屏障的影响肠黏液层发挥化学屏障作用。肠黏液由水(90%~95%)、多种电解质类和蛋白质等物质组成,其中黏蛋白是肠黏液中的主要结构和功能成分[21]。肠黏液在肠道中发挥着多种重要的生理作用:一是保湿、润滑作用,肠黏液保护肠道上皮细胞在管腔内容物移动和肠蠕动过程中免受脱水和机械力损伤;二是表面清洁剂作用,肠黏液通过结合、收集并通过在肠道流动将残留物和细菌冲走;三是扩散作用,营养物质、矿物质元素、水等小分子物质通过肠黏液扩散到肠上皮细胞;四是免疫协同作用,这是肠黏液发挥肠道保护功能的主要原因,它可以有效地减少肠上皮细胞与抗原和细菌的接触,从而发挥其屏障功能[22]。
肠杯状细胞是肠黏液的主要分泌细胞,黏液中的主要功能物质是黏蛋白[23]。Bracarense等[24]报道,呕吐毒素感染(2.89 mg/kg饲粮)导致仔猪空肠中杯状细胞数量显著减少。然而,Lewczuk等[25]报道,仔猪采食呕吐毒素(12 μg/kg BW)污染饲粮,对十二指肠杯状细胞数量无显著影响,推测低剂量(12 μg/kg BW)呕吐毒素对仔猪十二指肠杯状细胞不造成负面影响。体外试验结果显示,呕吐毒素感染导致人类黏液分泌细胞系(HT29-16E)和猪空肠外植体黏蛋白mRNA和黏蛋白1、2、3的表达量降低[26]。综上所述,一定剂量的呕吐毒素感染能够通过破坏肠黏液层,诱导肠道黏液功能紊乱,影响猪肠道化学屏障。
2.3 呕吐毒素对猪肠道物理屏障的影响猪肠道物理屏障由肠道上皮细胞和细胞间的紧密连接共同组成[27]。紧密连接是由黏附分子、闭锁蛋白(occludin)、桥粒、闭合蛋白(claudins)和闭锁小带蛋白(zonula occludens,ZO)共同组成,通过调节细胞间水离子和大分子物质旁细胞通透性,阻止小分子有毒有害物质进入机体[28],因此肠道物理屏障功能的减弱或丧失往往伴随着紧密连接损伤。Liao等[29]报道,呕吐毒素感染仔猪肠道通透性显著增加,紧密连接蛋白ZO-1、claudin-1和claudin-3的表达量显著降低。Pinton等[30]报道,呕吐毒素通过调节claudins的表达,降低肠上皮的屏障功能。Kolf-Clauw等[31]发现,4~5周龄猪空肠外植体呕吐毒素感染4 h后,肠上皮细胞发生溶解现象。综上所述,呕吐毒素能够通过调节紧密连接蛋白的表达和破坏肠上皮细胞,损伤肠道物理屏障功能。
2.4 呕吐毒素对猪肠道免疫屏障的影响肠道上皮细胞中分布着丰富的免疫细胞,这些细胞共同构成肠道免疫系统,并发挥免疫屏障功能[32]。肠上皮细胞通过识别致病信号分子并调动肠道免疫反应,分泌具有重要免疫调节特性的白细胞介素(interleukins,IL)和生长因子等,以抑制感染和炎症的进一步扩散。Liao等[29]报道,呕吐毒素感染仔猪空肠和回肠时,IL-8、IL-1β和肿瘤坏死因子-α(tumor necrosis factor-α,TNF-α)等相关炎性细胞因子mRNA相对表达量上调,同时血清中IL-8、IL-1β和TNF-α等相关蛋白含量增加。抗炎细胞因子IL-6、IL-10、IL-11等的基因表达水平与哺乳动物雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)的蛋白表达水平呈正相关[33]。呕吐毒素能够抑制mTOR蛋白表达,下调肠道抗炎细胞因子IL-6、IL-10、IL-11等基因相对表达量,进而减弱肠道的免疫屏障功能[34]。
3 植物提取物和不同营养物质对呕吐毒素诱导的猪肠道损伤的调控作用饲料中的营养物质经过新陈代谢过程,被转化为可被机体直接利用的能量物质,为机体供能。同时,它们也是维持生命体的物质基础和生理机能不可缺少的要素,在呕吐毒素诱导猪肠道损伤的模型中,营养物质同样具有较好的缓解作用(表 1)。
![]() |
表 1 不同营养物质对呕吐毒素诱导的猪肠道损伤的调控作用 Table 1 Effects of different nutrients on intestinal injury induced by DON in pigs |
植物提取物是以植物为原料提取或加工而成的物质[35]。我国植物提取物的原料主要来源于中草药,因此国内的植物提取物在某种程度上也可以称为中药提取物。植物提取物的分类方法有很多种,其中根据其成分可分为甙类、酸类、多酚类、多糖类、萜类、黄酮类、生物碱类等[36]。由于植物提取物具有不引起细菌产生抗药性、在动物产品中无有害残留、无毒害作用等优点,被认为是抗生素最佳替代品之一[37]。Liao等[34]研究发现,饲粮中添加黄芩苷能够提高呕吐毒素感染仔猪的肠免疫力,对肠道免疫屏障功能有显著的改善作用;Tang等[38]报道,小蘖碱能够通过增加血清抗氧化酶和T细胞表面抗原的表达,减少小肠内细胞炎性因子的释放来抑制呕吐毒素诱导的肠损伤;Yang等[39]报道,白藜芦醇可以通过核因子E2相关因子2(nuclear factor E2 related factor 2,Nrf2)信号通路缓解呕吐毒素对IPEC-J2的损伤,保护猪肠道屏障功能。菜蓟叶提取物(cynara scolymus extract)洋蓟酸可以通过增加胆汁的分泌,改善猪的肠道屏障功能[40]。另外,甘草酸(甘草提取物)[41]、绿原酸(大豆、咖啡豆、蔬菜和葵花籽等提取物)[42]、落新妇苷(从紫金花和葡萄等提取的黄酮类化合物)[43]等,对肠道屏障功能的改善作用也已经得到了证实。综上所述,植物提取物能够通过不同的路径缓解呕吐毒素诱导的猪肠道屏障功能损伤。有报道表明,大豆异黄酮[44]、藻蓝素[45]等对肠道也有较好的保护功效,但是两者在缓解呕吐毒素诱导的猪肠道损伤模型中是否同样有效有待进一步研究。
3.2 脂肪酸根据碳链长度的不同脂肪酸分为短链脂肪酸、中链脂肪酸和长链脂肪酸。丁酸属于短链脂肪酸中的一种,主要作为肠上皮细胞的能量底物被利用[46-47]。同时,丁酸的药用价值也以得到证实。Wang等[48]报道,丝裂原活化蛋白激酶(MAPK)、Janus激酶/信号转换器和转录激活因子(JAK/STAT)是呕吐毒素细胞毒性的2个重要信号通路,而丁酸可以通过改善肠道屏障功能拮抗呕吐毒素毒性。Lin等[49]表明,鼠李糖乳杆菌GG(L. rhamnosus GG)通过促进小鼠肠道中丁酸的产生,提高黏蛋白2(mucin 2, MUC2)和ZO-1 mRNA在肠道的相对表达量,进而促进肠道屏障功能。虽然丁酸对呕吐毒素诱导的猪肠道屏障损伤模型的缓解作用未见相关报道,但是以丁酸为底物形成的丁酸盐对猪肠道的保护作用已得到证实。研究显示,丁酸钠能够通过调节断奶仔猪肠道通透性、微生物区系组成和降低腹泻率等,发挥肠道保护作用[50]。Wang等[51]报道,丁酸钠通过降低仔猪体内D-乳酸浓度和二胺氧化酶的活性,增加小肠occludin蛋白的相对表达量。此外,Zentek等[52]报道,单不饱和脂肪酸能够通过增加仔猪肠道中梭菌属(Clostridium)Ⅳ、ⅩⅣ和真菌数量,促进丁酸的产生,从而发挥对猪肠道的保护作用。类似的文献报道还有,n-3多不饱和脂肪酸可以通过提高肠道上皮跨膜电阻、降低FD4通量和改善紧密连接蛋白分布,抑制呕吐毒素诱导的IPEC-1坏死[53]。中链脂肪酸(己酸、辛酸、葵酸等)在增强肠道免疫功能方面的作用已经得到证实[54]。然而,中链脂肪酸对呕吐毒素感染仔猪肠道屏障功能的影响还未见报道。
3.3 微量元素微量元素在动物体内含量虽然极微小,但具有强大的生物学效用[55]。营养学意义的微量元素主要是铜、铁、锰、锌等。Wang等[56]报道,硒能够通过抑制猪脾淋巴细胞中细胞因子和免疫球蛋白mRNA和蛋白的表达,减弱呕吐毒素的作用等。最新研究报道,微量元素与有机物复合物对呕吐毒素感染诱导的猪肠道损伤具有较好的保护作用,例如,黄芩苷与锌的复合物——黄芩苷-锌能够缓解呕吐毒素诱导的仔猪肠道炎症反应,促进肠道营养物质吸收[57];黄芩苷与铜的复合物——黄芩苷-铜对呕吐毒素诱导的仔猪肠道损伤也有类似的保护效果[58]。虽然微量元素对肠道保护作用的相关文献有较多报道,但是它们对DON感染诱导猪肠道损伤是否同样具有缓解作用,有待进一步研究。
4 小结与展望综上所述,谷物及饲料原料的霉菌毒素污染给全球养殖业带来巨大的经济损失。畜禽中猪对呕吐毒素最为敏感,因此呕吐毒素污染对猪的影响一直是研究的重点方向之一。肠道是吸收营养物质和防御有毒有害物质的重要场所,肠道健康对动物生长发育非常重要。呕吐毒素被猪摄入后,通过破坏肠道的生物屏障、化学屏障、物理屏障和免疫屏障,对机体造成损害,进而影响生产效益。因此,通过营养物质调控增强机体自身耐受性,降低呕吐毒素对肠道屏障功能的损伤十分有必要。但是目前的研究中,营养素对呕吐毒素诱导的猪肠道屏障损伤模型仅报道了部分缓解作用,其对呕吐毒素诱导的肠道其他方面的损伤是否具有缓解作用需进一步研究。在“禁抗限矿”的背景下,对植物提取物的生理功能深入研究有着重要意义。
[1] |
MARIN S, RAMOS A J, CANO-SANCHO G, et al. Mycotoxins: occurrence, toxicology, and exposure assessment[J]. Food and Chemical Toxicology, 2013, 60: 218-237. DOI:10.1016/j.fct.2013.07.047 |
[2] |
刘阳, 张钊, 郭双双, 等. 葛根提取物对产气荚膜梭菌感染肉鸡生长性能和肠道屏障功能的影响[J]. 中国畜牧杂志, 2022, 58(6): 232-239. LIU Y, ZHANG Z, GUO S S, et al. Effect of pueraria extract on growth performance and intestinal barrier function in broilers challenged with Clostridium perfringens[J]. Chinese Journal of Animal Science, 2022, 58(6): 232-239 (in Chinese). DOI:10.19556/j.0258-7033.20210715-02 |
[3] |
杨俊, 赵小刚, 张桂红, 等. 呕吐毒素对畜禽肠道健康的影响及相关研究进展[J]. 中国饲料, 2021(9): 87-92. YANG J, ZHAO X G, ZHANG G H, et al. Effect and advances in research of deoxynivalenol on intestinal health of livestock and poultry[J]. China Feed, 2021(9): 87-92 (in Chinese). DOI:10.15906/j.cnki.cn11-2975/s.20210917 |
[4] |
刘晓娜, 孟小林, 李泽宇. 饲料中的营养物质对动物肠道功能和健康的调控作用[J]. 中国饲料, 2022(8): 9-12. LIU X N, MENG X L, LI Z N. Regulating function of dietary nutrients on intestinal function and health of animals[J]. China Feed, 2022(8): 9-12 (in Chinese). |
[5] |
NAKAGAWA H, HE X Y, MATSUO Y, et al. Analysis of the masked metabolite of deoxynivalenol and Fusarium resistance in CIMMYT wheat germplasm[J]. Toxins, 2017, 9(8): 238. DOI:10.3390/toxins9080238 |
[6] |
郑云飞. 不同储藏期稻谷品质、霉菌区系和真菌毒素的差异性研究[D]. 硕士学位论文. 南京: 南京财经大学, 2020. ZHENG Y F. Study on the difference of rice quality, fungal flora and mycotoxins in different storage periods[D]. Master's Thesis. Nanjing: Nanjing University of Finance & Economics, 2020. (in Chinese) |
[7] |
PALACIOS S A, ERAZO J G, CIASCA B, et al. Occurrence of deoxynivalenol and deoxynivalenol-3-glucoside in durum wheat from Argentina[J]. Food Chemistry, 2017, 230: 728-734. DOI:10.1016/j.foodchem.2017.03.085 |
[8] |
The Commission of the European Communities. Commission regulation (EC) No 1126/2007 of 28 September 2007 amending regulation (EC) No 1881/2006 setting maximum levels for certain contaminants in foodstuffs as regards Fusarium toxins in maize and maize products[J]. Official Journal of the European Union, 2007, L255: 14-17. |
[9] |
PLEADIN J, FRECE J, LEŠIĆ T, et al. Deoxynivalenol and zearalenone in unprocessed cereals and soybean from different cultivation regions in Croatia[J]. Food Additives & Contaminants-Part B: Surveillance, 2017, 10(4): 268-274. |
[10] |
丁燕玲, 李孟聪, 钟名琴, 等. 2015—2020年国内饲料霉菌毒素污染调查报告统计分析[J]. 中国动物检疫, 2021, 38(3): 29-36. DING Y L, LI M C, ZHONG M Q, et al. Statistical analysis on the investigation reports concerning mycotoxin contamination in animal feed in China during 2015 to 2020[J]. Chinese Journal of Animal Health Inspection, 2021, 38(3): 29-36 (in Chinese). |
[11] |
中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 饲料卫生标准: GB 13078—2017[S]. 北京: 中国标准出版社, 2017. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Hygienical standard for feeds: GB 13078—2017[S]. Beijing: Standards Press of China, 2017. (in Chinese) |
[12] |
SEEKATZ A M, SCHNIZLEIN M K, KOENIGSKNECHT M J, et al. Spatial and temporal analysis of the stomach and small-intestinal microbiota in fasted healthy humans[J]. mSphere, 2019, 4(2): e00126-19. |
[13] |
ROBERT H, PAYROS D, PINTON P, et al. Impact of mycotoxins on the intestine: are mucus and microbiota new targets?[J]. Journal of Toxicology and Environmental Health-Part B: Critical Reviews, 2017, 20(5): 249-275. DOI:10.1080/10937404.2017.1326071 |
[14] |
张聪. 丁酸钠缓解呕吐毒素致断奶仔猪肠道损伤的效果及机制研究[D]. 硕士学位论文. 武汉: 华中农业大学, 2021. ZHANG C. Effects of sodium butyrate on alleviating intestinal injury in weaned piglets exposed to deoxynivalenol[D]. Master's Thesis. Wuhan: Huazhong Agricultural University, 2021. (in Chinese) |
[15] |
JIA W, XIE G X, JIA W P. Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis[J]. Nature Reviews Gastroenterology & Hepatology, 2018, 15(2): 111-128. |
[16] |
WANG G, HUANG S, WANG Y M, et al. Bridging intestinal immunity and gut microbiota by metabolites[J]. Cellular and Molecular Life Sciences, 2019, 76(20): 3917-3937. DOI:10.1007/s00018-019-03190-6 |
[17] |
DOU S, GADONNA-WIDEHEM P, ROME V, et al. Characterisation of early-life fecal microbiota in susceptible and healthy pigs to post-weaning diarrhoea[J]. PLoS One, 2017, 12(1): e0169851. DOI:10.1371/journal.pone.0169851 |
[18] |
LI L, SU Q, XIE B, et al. Gut microbes in correlation with mood: case study in a closed experimental human life support system[J]. Neurogastroenterology and Motility, 2016, 28(8): 1233-1240. DOI:10.1111/nmo.12822 |
[19] |
MACK I, CUNTZ U, GRÄMER C, et al. Weight gain in anorexia nervosa does not ameliorate the faecal microbiota, branched chain fatty acid profiles and gastrointestinal complaints[J]. Scientific Reports, 2016, 6(1): 26752. DOI:10.1038/srep26752 |
[20] |
ZHENG W J, JI X, ZHANG Q, et al. Intestinal microbiota ecological response to oral administrations of hydrogen-rich water and lactulose in female piglets fed a Fusarium toxin-contaminated diet[J]. Toxins, 2018, 10(6): 246. DOI:10.3390/toxins10060246 |
[21] |
BANSIL R, TURNER B S. The biology of mucus: composition, synthesis and organization[J]. Advanced Drug Delivery Reviews, 2018, 124: 3-15. DOI:10.1016/j.addr.2017.09.023 |
[22] |
PELASEYED T, BERGSTRÖM J H, GUSTAFSSON J K, et al. The mucus and mucins of the goblet cells and enterocytes provide the first defense line of the gastrointestinal tract and interact with the immune system[J]. Immunological Reviews, 2014, 260(1): 8-20. DOI:10.1111/imr.12182 |
[23] |
JOHANSSON M E V, GUSTAFSSON J K, HOLMÉN-LARSSON J, et al. Bacteria penetrate the normally impenetrable inner colon mucus layer in both murine colitis models and patients with ulcerative colitis[J]. Gut, 2014, 63(2): 281-291. DOI:10.1136/gutjnl-2012-303207 |
[24] |
BRACARENSE A P F L, LUCIOLI J, GRENIER B, et al. Chronic ingestion of deoxynivalenol and fumonisin, alone or in interaction, induces morphological and immunological changes in the intestine of piglets[J]. British Journal of Nutrition, 2012, 107(12): 1776-1786. DOI:10.1017/S0007114511004946 |
[25] |
LEWCZUK B, PRZYBYLSKA-GORNOWICZ B, GAJECKA M, et al. Histological structure of duodenum in gilts receiving low doses of zearalenone and deoxynivalenol in feed[J]. Experimental and Toxicologic Pathology, 2016, 68(2/3): 157-166. |
[26] |
PINTON P, GRAZIANI F, PUJOL A, et al. Deoxynivalenol inhibits the expression by goblet cells of intestinal mucins through a PKR and MAP kinase dependent repression of the resistin-like molecule β[J]. Molecular Nutrition & Food Research, 2015, 59(6): 1076-1087. |
[27] |
SNOECK V, GODDEERIS B, COX E. The role of enterocytes in the intestinal barrier function and antigen uptake[J]. Microbes and Infection, 2005, 7(7/8): 997-1004. |
[28] |
CAPALDO C T, NUSRAT A. Claudin switching: physiological plasticity of the tight junction[J]. Seminars in Cell & Developmental Biology, 2015, 42: 22-29. |
[29] |
LIAO S M, TANG S G, TAN B, et al. Chloroquine improves deoxynivalenol-induced inflammatory response and intestinal mucosal damage in piglets[J]. Oxidative Medicine and Cellular Longevity, 2020, 2020: 9834813. |
[30] |
PINTON P, NOUGAYRÈDE J P, DEL RIO J C, et al. The food contaminant deoxynivalenol, decreases intestinal barrier permeability and reduces claudin expression[J]. Toxicology and Applied Pharmacology, 2009, 237(1): 41-48. DOI:10.1016/j.taap.2009.03.003 |
[31] |
KOLF-CLAUW M, CASTELLOTE J, JOLY B, et al. Development of a pig jejunal explant culture for studying the gastrointestinal toxicity of the mycotoxin deoxynivalenol: histopathological analysis[J]. Toxicology in Vitro, 2009, 23(8): 1580-1584. DOI:10.1016/j.tiv.2009.07.015 |
[32] |
PLUSKE J R, TURPIN D L, KIM J C. Gastrointestinal tract (gut) health in the young pig[J]. Animal Nutrition, 2018, 4(2): 187-196. DOI:10.1016/j.aninu.2017.12.004 |
[33] |
HUANG C, FENG L, JIANG W D, et al. Deoxynivalenol decreased intestinal immune function related to NF-κB and TOR signalling in juvenile grass carp (Ctenopharyngodon idella)[J]. Fish & Shellfish Immunology, 2019, 84: 470-484. |
[34] |
LIAO P, LI Y H, LI M J, et al. Baicalin alleviates deoxynivalenol-induced intestinal inflammation and oxidative stress damage by inhibiting NF-κB and increasing mTOR signaling pathways in piglets[J]. Food and Chemical Toxicology, 2020, 140: 111326. DOI:10.1016/j.fct.2020.111326 |
[35] |
曹林, 肖传明, 冯秀燕, 等. 天然植物提取物对断奶仔猪生长性能、血清生化指标、抗氧化能力及免疫功能的影响[J]. 饲料研究, 2022, 45(9): 40-44. CAO L, XIAO C M, FENG X Y, et al. Effect of natural plant extracts on growth performance, serum biochemical indexes, antioxidant capacity and immune function of weaning pigs[J]. Feed Research, 2022, 45(9): 40-44 (in Chinese). |
[36] |
唐茂妍, 陈旭东. 天然植物提取物替代饲用抗生素的应用研究进展[J]. 饲料博览, 2018(12): 17-22. TANG M Y, CHEN X D. Researches on the application of phytogenic feed additives substituted for antibiotics in animal feed[J]. Feed Review, 2018(12): 17-22 (in Chinese). |
[37] |
曾建国. 植物提取物及其饲料添加剂注册开发建议[J]. 饲料工业, 2020, 41(10): 1-8. ZENG J G. Plant extracts and recommendations for the registration and development of plant extract feed additives[J]. Feed Industry, 2020, 41(10): 1-8 (in Chinese). |
[38] |
TANG M, YUAN D X, LIAO P. Berberine improves intestinal barrier function and reduces inflammation, immunosuppression, and oxidative stress by regulating the NF-κB/MAPK signaling pathway in deoxynivalenol-challenged piglets[J]. Environmental Pollution, 2021, 289: 117865. |
[39] |
YANG J, ZHU C, YE J L, et al. Protection of porcine intestinal-epithelial cells from deoxynivalenol-induced damage by resveratrol via the Nrf2 signaling pathway[J]. Journal of Agricultural and Food Chemistry, 2019, 67(6): 1726-1735. |
[40] |
MARTÍNEZ G, DIÉGUEZ S N, FERNÁNDEZ PAGGI M B, et al. Effect of fosfomycin, Cynara scolymus extract, deoxynivalenol and their combinations on intestinal health of weaned piglets[J]. Animal Nutrition, 2019, 5(4): 386-395. |
[41] |
许小向. 甘草酸和益生菌组合缓解呕吐毒素危害断奶仔猪生长和肠道健康的分子机制[D]. 博士学位论文. 郑州: 河南农业大学, 2021. XU X X. The molecular mechanism of combination of glycyrrhizic acid and probiotics for alleviating the hazards of weaned piglet growth and gut health induced by deoxynivalenol[D]. Ph. D. Thesis. Zhengzhou: Henan Agricultural University, 2021. (in Chinese) |
[42] |
XU X X, CHANG J, WANG P, et al. Effect of chlorogenic acid on alleviating inflammation and apoptosis of IPEC-J2 cells induced by deoxyniyalenol[J]. Ecotoxicology and Environmental Safety, 2020, 205: 111376. |
[43] |
XU X X, YAN G R, CHANG J, et al. Astilbin ameliorates deoxynivalenol-induced oxidative stress and apoptosis in intestinal porcine epithelial cells (IPEC-J2)[J]. Journal of Applied Toxicology, 2020, 40(10): 1362-1372. |
[44] |
TAO Y, YUE M F, LV C J, et al. Pharmacological activation of ERβ by arctigenin maintains the integrity of intestinal epithelial barrier in inflammatory bowel diseases[J]. The FASEB Journal, 2020, 34(2): 3069-3090. |
[45] |
WU Q H, LIU L, MIRON A, et al. The antioxidant, immunomodulatory, and anti-inflammatory activities of Spirulina: an overview[J]. Archives of Toxicology, 2016, 90(8): 1817-1840. |
[46] |
程瑾, 李澜鹏, 罗中, 等. 脂肪酸分离技术研究进展[J]. 中国油脂, 2018, 43(11): 49-53. CHENG J, LI L P, LUO Z, et al. Progress in separation of fatty acids[J]. China Oils and Fats, 2018, 43(11): 49-53 (in Chinese). |
[47] |
WONG J M W, DE SOUZA R, KENDALL C W C, et al. Colonic health: fermentation and short chain fatty acids[J]. Journal of Clinical Gastroenterology, 2006, 40(3): 235-243. |
[48] |
WANG Z H, WU Q H, KUČA K, et al. Deoxynivalenol: signaling pathways and human exposure risk assessment—an update[J]. Archives of Toxicology, 2014, 88(11): 1915-1928. |
[49] |
LIN R Q, SUN Y, MU P Q, et al. Lactobacillus rhamnosus GG supplementation modulates the gut microbiota to promote butyrate production, protecting against deoxynivalenol exposure in nude mice[J]. Biochemical Pharmacology, 2020, 175: 113868. |
[50] |
WANG S, ZHANG C, YANG J C, et al. Sodium butyrate protects the intestinal barrier by modulating intestinal host defense peptide expression and gut microbiota after a challenge with deoxynivalenol in weaned piglets[J]. Journal of Agricultural and Food Chemistry, 2020, 68(15): 4515-4527. |
[51] |
HUANG C, SONG P X, FAN P X, et al. Dietary sodium butyrate decreases postweaning diarrhea by modulating intestinal permeability and changing the bacterial communities in weaned piglets[J]. The Journal of Nutrition, 2015, 145(12): 2774-2780. |
[52] |
ZENTEK J, BUCHHEIT-RENKO S, MÄNNER K, et al. Intestinal concentrations of free and encapsulated dietary medium-chain fatty acids and effects on gastric microbial ecology and bacterial metabolic products in the digestive tract of piglets[J]. Archives of Animal Nutrition, 2012, 66(1): 14-26. |
[53] |
XIAO K, LIU C C, QIN Q, et al. EPA and DHA attenuate deoxynivalenol-induced intestinal porcine epithelial cell injury and protect barrier function integrity by inhibiting necroptosis signaling pathway[J]. The FASEB Journal, 2020, 34(2): 2483-2496. |
[54] |
PAPADA E, KALIORA A C, GIOXARI A, et al. Anti-inflammatory effect of elemental diets with different fat composition in experimental colitis[J]. British Journal of Nutrition, 2014, 111(7): 1213-1220. |
[55] |
范觉鑫, 刘志强, 田雯, 等. 微量元素研究进展[J]. 饲料博览, 2020(6): 20-22. FAN J X, LIU Z Q, TIAN W, et al. Research progress of trace elements[J]. Feed Review, 2020(6): 20-22 (in Chinese). |
[56] |
WANG X M, ZUO Z C, DENG J L, et al. Protective role of selenium in immune-relevant cytokine and immunoglobulin production by piglet splenic lymphocytes exposed to deoxynivalenol[J]. Biological Trace Element Research, 2018, 184(1): 83-91. |
[57] |
ZHA A D, TU R Q, CUI Z J, et al. Baicalin-zinc complex alleviates inflammatory responses and hormone profiles by microbiome in deoxynivalenol induced piglets[J]. Frontiers in Nutrition, 2021, 8: 738281. |
[58] |
ZHA A D, YUAN D X, CUI Z J, et al. The evaluation of the antioxidant and intestinal protective effects of baicalin-copper in deoxynivalenol-challenged piglets[J]. Oxidative Medicine and Cellular Longevity, 2020, 2020: 5363546. |