我国是生猪养殖大国和猪肉消费大国,从国外引进的外来猪种比例高达80%,主要以约克夏猪、大白猪和杜洛克猪为主,引进猪种具有生长速度快、繁殖力强、饲料利用率高等优点,但存在肉品质差、对环境抵抗力低、肌内脂肪含量低等不足[1]。与引进猪种相比,我国本土地方猪种资源种类繁多,且蕴含丰富的遗传多样性,具有抗逆性强及肉品质优良等特性,为有效解决猪品种培育及性状功能发掘等方面出现的问题提供了良好的来源[2]。由于地域不同,地方猪种主要分为华北型、华中型、华南型、西南型、江海型和高原型,代表猪种依次为民猪、金华猪、香猪、荣昌猪、太湖猪和藏猪[3]。与引进猪种相比,地方猪种肠道微生物组成更为丰富,在抗病力和抗逆性等方面发挥一定的优势作用,这与其生长环境和饲养方式有关[4]。近年来,大量研究表明通过将地方猪种粪菌移植(fecal microbiota transplantation, FMT)到商品猪种体内可以使受试猪种表现出与供体猪种相似的肠道微生物区系及表型性状[5-6],表明肠道微生物具有携带“拟表型”的能力。因此,基于地方猪的优良特性,本文综述了中国地方猪种肠道微生物群的优势,并总结了地方猪种肠道中优势菌种与其表型性状的潜在联系,为地方猪肠道微生物资源的开发与利用奠定基础。
1 地方猪种肠道微生物的组成和多样性特征猪肠道中微生物种类复杂多样,可达500多种,其中,细菌含量约占微生物总数的99%,为发挥作用的主要微生物,古菌和真核微生物等占1%[7]。肠道内菌群多达25个门,引进猪种和地方猪种都以厚壁菌门(Firmicutes)、拟杆菌门(Bacteroidetes)和螺旋菌门(Spirochaetes)为主[8],不同的是,在对地方猪种及引进猪种粪便中微生物群落多样性进行分析时,发现荣昌猪(地方猪种)肠道微生物群落中优势种/属菌的数量高于长白猪和杜洛克猪[9],说明地方猪种的微生物组成更加丰富多样。以藏猪和荣昌猪为代表的地方猪种比大白猪具有更高的Firmicutes和Spirochaetes及更低的Bacteroidetes丰度,属水平上,Firmicutes主要以乳酸杆菌属(Lactobacillus)、梭菌属(Clostridium)和芽孢杆菌属(Bacillus)为主;Bacteroidetes主要以拟杆菌属(Bacteroides)和普氏菌属(Prevotella)为主。同时,地方猪种类型不同,肠道微生物菌群存在显著差异,金华猪粪便微生物主要以Firmicutes和Bacteroidetes为主,其中Firmicutes丰度(70.42%)显著高于杜洛克猪(39.63%)、约克夏猪(42.02%)和长白猪(45.55%),而Bacteroidetes丰度(14.36%)远低于3个外来引进品种(杜洛克猪57.01%、长白猪47.64%、约克夏猪51.38%)[10];藏猪、荣昌猪主要肠道菌群除Bacteroidetes、Firmicutes外,Spirochaetes和变形菌门(Proteobacteria)也占据主要地位[11]。尽管各地方猪种的优势菌群相差不大,但各菌属相对丰度相同(表 1)。
![]() |
表 1 不同类型地方猪种的微生物组成和优势菌属 Table 1 Microbial composition and dominant bacteria of different types of native pigs |
抗病力高是地方猪种的优良特性之一。抗病性与地方猪种体内的部分菌株丰度呈正相关。面对病原体入侵,地方猪种表现出更少的感染率和更轻的炎症表现,在这个过程中,肠道中潜在的有益微生物会增加并通过不同的机制影响宿主肠道免疫。大量研究已表明,地方猪种肠道中具有较高丰度的Lactobacillus、Bacillus、瘤胃球菌属(Ruminococcus)、密螺旋体属(Treponema)、颤螺菌属(Oscillospira)等有益菌。Zhao等[24]建立了民猪和约克夏猪结肠炎模型,发现Lactobacillus和Ruminococcus等有益菌在疾病组的民猪中得到富集。Lactobacillus能够表达色氨酸酶,是代谢色氨酸的最重要共生菌,它可保护被致病菌破坏的肠上皮屏障的完整性,并减少潜在致病菌的数量。Ruminococcus可以促进短链脂肪酸(SCFAs)浓度的增加,保护肠道屏障功能从而发挥抗炎作用。有研究表明,将从民猪肠道中筛选出来的枯草芽孢杆菌(Bacillus subtilis)和贝莱斯芽孢杆菌(Bacillus velezensis)分别灌服断奶仔猪和SD大鼠,发现可以增强受体免疫、抑制炎症因子的表达和有害菌繁殖,调节肠道菌群[25-26]。Xin等[27]利用反相液相色谱提取了藏猪源Bacillus subtilis的抑菌物质——抗菌肽,该肽可以有效抑制癌细胞的生长发育,可以很好地起到抗炎杀菌的作用。和菌表达抗菌肽一样,很多地方猪种的优势菌都通过受体蛋白和通路影响机体免疫,在结肠炎症条件的刺激下,Bacteroidetes抗原通过具有细菌硫酸酯酶活性的外膜囊泡定位于宿主免疫细胞,诱导巨噬细胞的激活,抑制炎症的进一步发生[28]。Treponema和Oscillospira丰度与类固醇合成通路基因表达呈显著正相关,与膀胱癌等合成通路基因表达呈显著负相关[22],促进机体类固醇的合成,抵制败血症、癌症等疾病的发生[29-30]。由此可见,地方猪种抗病力强与其体内微生物有很大的关联,其优势菌群能够直接或间接地影响机体的免疫,从而影响抗病性表型的形成。
2.2 肠道微生物与耐粗饲耐粗饲是地方猪种的种质特性之一[31],地方猪种消化粗纤维的能力高于引进猪种,这可能与其优势菌属Ruminococcus等有关[32],Ruminococcus等能够将难消化的多糖分解为SCFAs,从而促进与肠黏膜肠上皮细胞G蛋白偶联受体(GPR)的结合,通过肠-脑轴调控中枢神经系统,分泌与食欲相关的激素,刺激机体的采食量,使机体更好地进行能量摄入[33]。此外,地方猪肠道中富含降解纤维素类物质的微生物,能够降解机体摄入的难分解的物质,进而被机体吸收利用,为机体的生长发育提供营养来源。Prevotella、纤维杆菌属(Fibrobacter)、Bacillus等优势菌属也与粗纤维代谢有关。Prevotella可以分泌碳水化合物降解酶(GHs),通过催化糖苷键水解或重排来降解多糖[34],Fibrobacter能够分泌纤维素酶来分解纤维素[35]。同时,盲肠微生物可以将羧甲基纤维素降解为还原糖[36],这些方式直接促进了营养物质的吸收,从而促使机体产生耐粗饲的特性。
2.3 肠道微生物与肉品质我国地方猪种的肉品质相较于引进品种有显著优势,素有肉质优良的盛名[37]。具体表现为保水能力强、肉色鲜红等特点[38],这与其独特的微生物有关。肉品质与机体脂质代谢有关,受微生物影响[39-40]。研究发现,Prevotella copri可以通过激活Toll样受体4(TLR4)和哺乳动物雷帕霉素靶蛋白(mTOR)信号通路激活宿主慢性炎症反应,并显著上调了与脂肪生成和脂肪积累相关的基因的表达,从而增加宿主的脂肪沉积[41]。地方猪种体内Firmicutes与Bacteroidetes比例更高,从而导致更高的体脂肪质量、更高的慢收缩纤维比例、更小的纤维大小和快速Ⅱb纤维百分比,并增强腓肠肌的脂肪生成[42]。除此之外,Firmicutes中的优势菌属能够产生SCFAs,一方面通过调控脂质代谢相关基因的表达,直接影响机体的脂质代谢,另一方面作为信号分子激活短链脂肪酸受体(GPR)41和GPR43间接影响脂质代谢[43-44]。金华猪肠道菌群中Epulopiscium和支原体属(Mycoplasma)通过调控脂肪酸结合蛋白表达来调节猪的脂肪沉积[45],回肠中的优势真菌属卡扎斯坦酵母属(Kazachstania)和担子菌酵母属(Naganishia)与脂肪沉积也存在相关性[13]。此外,约氏乳杆菌(Lactobacillus johnsonii)也能够增强猪在肌肉中沉积脂肪的能力[46]。由此可见,地方猪种微生物是导致其肌内脂肪含量高、肉色鲜红、口感鲜嫩多汁、肉味儿较浓的重要因素。
2.4 肠道微生物与抗逆性能微生物可以激发机体的抗寒能力、抗应激水平和抗氧化能力。近期有研究表明,肠道细菌是Nod2配基的重要来源,Nod2配基(如MDP)可以直接被下丘脑神经元识别,影响动物的食欲和体温调控系统[47]。研究表明,金华猪肠道中Clostridium、拟杆菌属(Bacteroides)、Oscillospira的含量比较高,Firmicutes/Bacteroidetes比例也高,这直接或间接地促进其抗逆特性。Firmicutes/Bacteroidetes比例越高时,肠道中可吸收利用的SCFAs的含量越多,肠道微生物从饮食中提取的能量效率越高[48-49]。Bacteroides和Oscillospira丰度均与背膘厚呈正相关[43];Bacteroides促进与回肠脂类物质吸收相关的酶类mRNA表达[50];Oscillospira促进宿主能量吸收从而导致脂肪沉积[51]。此外,富集的优势菌可能会直接或间接地导致白色脂肪发生棕色化以抵御寒冷[52],促进代谢产热[53]。除对寒冷表现良好的抵抗效果,地方猪种对抗应激及抗氧化的能力也与微生物密不可分。Clostridium中的丁酸梭菌(Clostridium butyricum)可以提高仔猪还原型辅酶Ⅰ和Ⅱ、过氧化物酶、超氧化物歧化酶(SOD)活性,清除应激状态下所产生的活性氧和自由基,从而发挥抗氧化作用[54];同时通过诱导机体核转录因子红系衍生的核因子2相关因子2(Nrf2)的表达来调节抗氧化酶的表达,进而抑制氧化应激反应[55]。Bacillus subtilis能够提高谷胱甘肽过氧化氢酶(GSH-Px)活性和总抗氧化能力,增加回肠中Nrf2和血红素氧合酶-1(HO-1)基因的表达水平,保护细胞免受氧化应激诱导的损伤[25]。采用Lactobacillus发酵饲料可以显著提高生长猪血清中SOD和GSH-Px活性,显著降低丙二醛含量[56-57]。由此可见,地方猪种优势菌群的富集对宿主抗逆表型具有显著的促进作用。
3 地方猪种肠道微生物在动物生产中的应用 3.1 地方猪种肠道微生物的营养调控肠道微生物可以利用宿主无法直接吸收的饲料成分分解得到SCFAs和葡萄糖等,给机体生长繁殖提供营养,促进宿主的生长发育。营养素(碳水化合物、脂肪、蛋白质)、抗生素和微生态制剂等都是影响猪营养调控的原因。有研究表明,饲喂藏猪纤维含量比较多的饲粮可以使其肠道菌群更加丰富[22],同时,饲喂高纤维水平饲粮的猪胃肠道微生物活性高于饲喂低纤维水平饲粮[58],这说明了高纤维饮食能够丰富肠道菌群的多样性。地方猪种对于营养素的调控与引进猪种类似。与饲喂高蛋白质饲粮组(20%)相比,低蛋白质饲粮组(15%)猪的粪便中,吲哚、SCFAs和支链脂肪酸的含量均减少,说明肠道微生物对蛋白质的利用与饲粮中蛋白质的添加量有很大的关联[59]。同样,饲粮中脂肪水平对猪的肠道微生物有一定的影响,研究发现,高脂肪水平饲粮增加了粪便中Bacteroides的数量,降低了益生菌的数量[60]。猪饲粮中添加Bacillus velezensis能够提高毛螺菌科和Lactobacillus的相对丰度,降低链球菌属(Streptococcus)等条件致病菌的相对丰度[61]。在实际生产中,应该根据猪的品种和日龄等选择最适合猪的饲粮搭配,从而使肠道菌群达到最优的状态。
3.2 地方猪种FMT在实际生产中,仔猪由于自身抵抗力差或外界干扰很容易引起肠道疾病,尤其在断奶前后,由于肠道微生物菌群发生改变,容易引起腹泻等疾病。地方猪种由于其独特的微生物组成及结构,其断奶应激反应较小。根据此特点,可以通过FMT解决仔猪断奶时的肠道问题,将处理后的健康地方猪种粪便菌液移植到仔猪体内达到改善肠道健康的目的。Teng等[5]研究将民猪哺乳母猪的粪便移植到新生约克夏仔猪的体内,经检测发现Firmicutes相对丰度增加、Bacteroidetes相对丰度降低,免疫水平得到提高。Hu等[62]将成年金华猪粪便菌悬液灌服给杜×长×大三元仔猪,饲喂一段时间后,受饲仔猪结肠中Firmicutes、Prevotella、Ruminococcus等相对丰度增加,小肠黏膜中β-防御素2蛋白的表达量增加,腹泻发生率降低。Diao等[63]的研究表明,藏猪粪便生物群可以使仔猪腹泻指数降低,提高吸收酶活性。Hu等[64]将健康从江香仔猪粪便微生物群移植到长×大二元杂交商品(LY)仔猪体内,可显著提高LY仔猪粪便中Gasseri LA39和Lactobacillus frumenti的相对丰度,降低了早期断奶仔猪腹泻发生率和腹泻指数,对治疗腹泻有一定效果。由此可见,地方猪种粪菌移植有利于引进猪种优良性状的形成。尽管如此,FMT在单一肠段具有一定局限性,对微生物区系的影响主要集中在回肠[65],因此在进行FMT时,我们应该使用基于空肠、回肠、盲肠、结肠等组合而成的全肠段微生物移植,同时通过靶向重塑受体生态位点(尤其小肠)的菌群移植,从而更好地改善机体健康和营养利用表型[66]。此外,FMT在动物生产中也存在某些局限性,它可能携带生长缓慢的特性,有研究表明将高饲料利用率的育肥猪粪便移植到母猪或后代,发现移植母猪的后代体重显著低于对照母猪的后代,这可能是由于FMT导致了后代生长受损,表明FMT存在一定的局限性[65]。因此,基于高通量测序手段分析肠道中能够发挥特异性作用的核心菌群并在体外分离筛选,理论上具有更好的作用效果,可能在改善受体相应性状同时也不会影响到其他性能。
3.3 地方猪种肠源益生菌的筛选与应用地方猪种肠道微生物菌群丰富多样,筛选潜在的有益菌直接或间接地饲喂给受体动物能够提高生产效益。我们通过多组学技术发现地方猪种和引进猪种相比,Firmicutes丰度较大,由此可以针对性地挖掘出Bacillus、Lactobacillus等优势菌株,研究它们对猪的影响。刘锁珠等[67]从藏猪粪便分离出解淀粉芽孢杆菌(Bacillus amyloliquefaciens) TL,由于它可高产纤维素酶,可促进草食性状。张友华等[68]从荣昌猪肠道中筛选出Lactobacillus,可用来研制微生态制剂,对抗逆性具有促进作用。单明旭[69]筛选出1株民猪源贝莱斯芽孢杆菌MZ-78,具有很好的抑菌效果,可作为一种猪用抗腹泻益生菌剂进行开发利用。杨雪[70]从民猪粪便中筛选出了多株玉米赤霉烯酮降解菌,可以高效地降解玉米赤霉烯酮。王晓旭[71]从民猪粪便中分离出枯草芽孢杆菌MZ-01,它具有良好的抑制病原菌生长的效果,可作为一种民猪源益生菌株进行开发利用,将其灌服给断奶仔猪,可以有效减轻仔猪的腹泻,抑制炎症因子的表达[25]。由此可见,地方猪肠源益生菌的筛选和应用可以有效地改善由仔猪断奶引发的肠道紊乱,调节肠道菌群平衡。
4 小结地方猪种肠道中丰富多样的微生物菌群与其肉品质、耐粗饲、抗逆性等优良性状密切相关。其肠道中Treponema、Prevotella、Ruminococcus等优势菌属可以通过激活体内特异性的通路引发宿主生理变化,从而影响肉品质、耐粗饲、抗逆性等性状的形成。转录组、蛋白组和基因组等技术的发展,为精细化分析地方猪种特异性菌株对宿主表型的促进作用提供了便利。通过微生物功能及宿主性状的联系,采用FMT和定量筛选益生菌等方法作用于商品猪,能够使受试动物特异性拥有和地方猪种相一致的优良性状,进而提高生产效益,造福养殖业。
[1] |
张琪, 于永生, 张树敏, 等. 我国引进猪种与地方猪种选育过程中的几个关键问题[J]. 猪业科学, 2022, 39(1): 103-105. ZHANG Q, YU Y S, ZHANG S M, et al. Several key problems in the process of breeding imported and local pig breeds in China[J]. Swine Industry Science, 2022, 39(1): 103-105 (in Chinese). DOI:10.3969/j.issn.1673-5358.2022.01.033 |
[2] |
LIANG W, LI Z H, WANG P, et al. Differences of immune responses between Tongcheng (Chinese local breed) and Large White pigs after artificial infection with highly pathogenic porcine reproductive and respiratory syndrome virus[J]. Virus Research, 2016, 215: 84-93. DOI:10.1016/j.virusres.2016.02.004 |
[3] |
魏菁, 张子群, 王琦, 等. 中国地方猪种种质资源的保护与利用探讨[J]. 畜禽业, 2021, 32(3): 43-44. WEI J, ZHANG Z Q, WANG Q, et al. Discussion on the protection and utilization of germplasm resources of native pigs in China[J]. Livestock and Poultry Industry, 2021, 32(3): 43-44 (in Chinese). DOI:10.19567/j.cnki.1008-0414.2021.03.021 |
[4] |
张冬杰, 张跃灵, 王文涛, 等. 民猪肠道菌群特征分析[J]. 中国畜牧杂志, 2018, 54(3): 27-32, 40. ZHANG D J, ZHANG Y L, WANG W T, et al. Character analysis of gut microbiota in Min pig[J]. Chinese Journal of Animal Science, 2018, 54(3): 27-32, 40 (in Chinese). DOI:10.19556/j.0258-7033.2018-03-027 |
[5] |
TENG T, GAO F, HE W, et al. An early fecal microbiota transfer improves the intestinal conditions on microflora and immunoglobulin and antimicrobial peptides in piglets[J]. Journal of Agricultural and Food Chemistry, 2020, 68(17): 4830-4843. DOI:10.1021/acs.jafc.0c00545 |
[6] |
XU B Y, QIN W X, YAN Y Q, et al. Gut microbiota contributes to the development of endometrial glands in gilts during the ovary-dependent period[J]. Journal of Animal Science and Biotechnology, 2021, 12(1): 57. DOI:10.1186/s40104-021-00578-y |
[7] |
刘虹, 王琪, 刘作华, 等. 猪肠道微生物区系的形成及营养调控[J]. 动物营养学报, 2018, 30(7): 2480-2487. LIU H, WANG Q, LIU Z H, et al. Formation of intestinal microflora in pigs and nutrients regulation[J]. Chinese Journal of Animal Nutrition, 2018, 30(7): 2480-2487 (in Chinese). DOI:10.3969/j.issn.1006-267x.2018.07.007 |
[8] |
WEINSTOCK G M. Genomic approaches to studying the human microbiota[J]. Nature, 2012, 489(7415): 250-256. DOI:10.1038/nature11553 |
[9] |
曾志光, 王红宁, 高荣, 等. PCR-DGGE技术研究荣昌猪、长白猪、杜洛克猪肠道微生物群落多样性[C]//第四届中国畜牧科技论坛论文集. 重庆: 中国畜牧兽医学会, 2009: 483-487. ZENG Z G, WANG H N, GAO R, et al. Study on intestinal microbial community diversity of Rongchang, Landrace and Duroc pigs by PCR-DGGE[C]//Proceedings of the 4th China Animal Husbandry Science and Technology Forum. Chongqing: Chinese Association of Animal Science and Veterinary Medicine, 2009: 483-487. (in Chinese) |
[10] |
YANG H, XIAO Y P, WANG J J, et al. Core gut microbiota in Jinhua pigs and its correlation with strain, farm and weaning age[J]. Journal of Microbiology, 2018, 56(5): 346-355. DOI:10.1007/s12275-018-7486-8 |
[11] |
DIAO H, YAN H L, XIAO Y, et al. Intestinal microbiota could transfer host gut characteristics from pigs to mice[J]. BMC Microbiology, 2016, 16(1): 238. DOI:10.1186/s12866-016-0851-z |
[12] |
张冬杰, 张跃灵, 王文涛, 等. 民猪与大白猪肠道菌群的比较研究[J]. 畜牧与兽医, 2018, 50(1): 67-72. ZHANG D J, ZHANG Y L, WANG W T, et al. Comparative study on intestinal flora between Minzhu and Large White pigs[J]. Animal Husbandry & Veterinary Medicine, 2018, 50(1): 67-72 (in Chinese). |
[13] |
李景上, 章啸君, 陈胜昌, 等. 金华猪回肠、结肠真菌结构及其与体脂沉积的相关性研究[J]. 动物营养学报, 2022, 34(1): 131-140. LI J S, ZHANG X J, CHEN S C, et al. Study on fungi structure in ileum and colon of Jinhua pigs and its correlation with body fat deposition[J]. Chinese Journal of Animal Nutrition, 2022, 34(1): 131-140 (in Chinese). DOI:10.3969/j.issn.1006-267x.2022.01.014 |
[14] |
田威龙, 刘笑笑, 程锋, 等. 巴马香猪不同生长阶段的肠道菌群特征分析[J]. 中国畜牧杂志, 2021, 57(S1): 187-194. TIAN W L, LIU X X, CHENG F, et al. Characteristics of intestinal microflora in Bama Xiang pigs at different growth stages[J]. Chinese Journal of Animal Science, 2021, 57(S1): 187-194 (in Chinese). |
[15] |
杨利娜. 不同猪种间肠道微生物菌群以及生长相关指标的比较[D]. 硕士学位论文. 南京: 南京农业大学, 2014. YANG L N. Comparison on microbial community and growth relevant indicators in different pig breeds[D]. Master's Thesis. Nanjing: Nanjing Agricultural University, 2014. (in Chinese) |
[16] |
周梦情. 两个中国地方猪种肠道菌群组成对生长性状的影响研究[D]. 硕士学位论文. 南昌: 江西农业大学, 2021. ZHOU M Q. Effects of gut microbiota on growth traits of two indigenous pigs in China[D]. Master's Thesis. Nanchang: Jiangxi Agricultural University, 2021. (in Chinese) |
[17] |
刁慧. 猪肠道微生物与SCFAs对肠道结构和功能的影响及其机制[D]. 博士学位论文. 雅安: 四川农业大学, 2017. DIAO H. Effects of gut microbiota and SCFAs on intestinal structure and functions of pigs and the underlying mechanisms[D]. Ph. D. Thesis. Ya'an: Sichuan Agricultural University, 2017. (in Chinese) |
[18] |
刘颖. 梅山猪不同发育阶段肠道微生物变化及免疫调控机制分析[D]. 博士学位论文. 扬州: 扬州大学, 2018. LIU Y. The dynamics of gut microbiome and immune regulatory mechanism analysis of Meishan pigs at different growth stages[D]. Ph. D. Thesis. Yangzhou: Yangzhou University, 2018. (in Chinese) |
[19] |
肖文萍. 藏猪肠道微生物多样性的研究[D]. 硕士学位论文. 杨凌: 西北农林科技大学, 2012. XIAO W P. Diversity of gastrointestinal microflora of Tibetan pig[D]. Master's Thesis. Yangling: Northwest A & F University, 2012. (in Chinese) |
[20] |
肖文萍, 刘海艳, 赵海波, 等. 藏猪食草机理的研究——藏猪肠道微生物的多样性分析[J]. 中国兽医学报, 2013, 33(3): 472-476. XIAO W P, LIU H Y, ZHAO H B, et al. Reseatch of phytivorous mechanism of Tibet pig-analyses of intestinal canal microorganism diversity[J]. Chinese Journal of Veterinary Science, 2013, 33(3): 472-476 (in Chinese). |
[21] |
杨伟平. 藏猪肠道细菌群落组成与纤维素分解菌的研究[D]. 博士学位论文. 杨凌: 西北农林科技大学, 2015. YANG W P. A study on the bacteria community and the cellulolytic bacterium in Tibetan pigs[D]. Ph. D. Thesis. Yangling: Northwest A & F University, 2015. (in Chinese) |
[22] |
李卓君. 海拔高度及饲养方式对藏猪肠道菌群结构及其特征的影响[D]. 硕士学位论文. 南昌: 江西农业大学, 2017. LI Z J. Investigation on the effects of feeding and altitude on gut microbial composition and structure of Tibetan pigs[D]. Master's Thesis. Nanchang: Jiangxi Agricultural University, 2017. (in Chinese) |
[23] |
刘瑶, 商振达, 谭占坤, 等. 饲养方式对藏猪小肠菌群结构的影响[J]. 黑龙江畜牧兽医, 2021, 24: 24-30, 144. LIU Y, SHANG Z D, TAN Z K, et al. Effects of feeding model on small intestinal flora structure of Tibetan pigs[J]. Heilongjiang Animal Science and Veterinary Medicine, 2021, 24(24): 24-30, 144 (in Chinese). DOI:10.13881/j.cnki.hljxmsy.2021.05.0166 |
[24] |
ZHAO X, JIANG L, FANG X Y, et al. Host-microbiota interaction-mediated resistance to inflammatory bowel disease in pigs[J]. Microbiome, 2022, 10(1): 115. DOI:10.1186/s40168-022-01303-1 |
[25] |
刘洋. 民猪肠源枯草芽孢杆菌对断奶仔猪生长性能和肠道健康的影响[D]. 硕士学位论文. 哈尔滨: 东北农业大学, 2022. LIU Y. Effects of Bacillus subtilis from intestine of Northeast Min pig on growth performance and intestinal health of weaned piglets[D]. Master's Thesis. Haerbin: Northeast Agricultural University, 2022. (in Chinese) |
[26] |
孙长超, 高响, 李锋, 等. 短期灌喂民猪源贝莱斯芽孢杆菌M2对SD大鼠生长、免疫及肠道菌群的影响[J]. 中国畜牧兽医, 2021, 48(4): 1264-1274. SUN C C, GAO X, LI F, et al. Effects of short-term administration of Bacillus velezensis M2 isolated from Min pigs on the growth, immunity and intestinal microflora of SD rats[J]. China Animal Husbandry & Veterinary Medicine, 2021, 48(4): 1264-1274 (in Chinese). |
[27] |
XIN H Y, JI S Y, PENG J Y, et al. Isolation and characterisation of a novel antibacterial peptide from a native swine intestinal tract-derived bacterium[J]. International Journal of Antimicrobial Agents, 2017, 49(4): 427-436. DOI:10.1016/j.ijantimicag.2016.12.012 |
[28] |
HICKEY C A, KUHN K A, DONERMEYER D L, et al. Colitogenic Bacteroides thetaiotaomicron antigens access host immune cells in a sulfatase-dependent manner via outer membrane vesicles[J]. Cell Host & Microbe, 2015, 17(5): 672-680. |
[29] |
王瑞航, 华鹏, 刘晓波, 等. 类固醇对免疫检查点抑制剂治疗非小细胞肺癌疗效影响的Meta分析[J]. 中南药学, 2022, 20(3): 678-685. WANG R H, HUA P, LIU X B, et al. Effect of steroids on the immune checkpoint inhibitors for non-small cell lung cancer: a Meta-analysis[J]. Central South Pharmacy, 2022, 20(3): 678-685 (in Chinese). |
[30] |
NICHOLSON D P, 蒋庭章, 李庆. 皮质类固醇在败血症性休克和成人呼吸窘迫综合征治疗中的应用[J]. 国际呼吸杂志, 1984(1): 10-11. N D P, JIANG T Z, LI Q. Application of corticosteroids in the treatment of septic shock and adult respiratory distress syndrome[J]. International Journal of Respiration, 1984(1): 10-11 (in Chinese). |
[31] |
RICHARDS J D, GONG J, DELANGE C F M, 等. 胃肠道菌群及其在单胃动物主要在猪的营养和健康中的作用: 目前的认识, 可能的调节方法及对菌群生态学新的研究方法[J]. 畜牧与兽医, 2012, 44(S1): 357-358. RICHARDS J D, GONG J, DELANGE C F M, et al. Gastrointestinal flora and its role in monogastric animals, mainly in the nutrition and health of pigs: current understanding, possible regulatory methods and new research methods on flora ecology[J]. Animal Husbandry & Veterinary Medicine, 2012, 44(S1): 357-358 (in Chinese). |
[32] |
FARHADI A, BANAN A, FIELDS J, et al. Intestinal barrier: an interface between health and disease[J]. Journal of Gastroenterology and Hepatology, 2003, 18(5): 479-497. DOI:10.1046/j.1440-1746.2003.03032.x |
[33] |
CANI P D, DELZENNE N M. Gut microflora as a target for energy and metabolic homeostasis[J]. Current Opinion in Clinical Nutrition and Metabolic Care, 2007, 10(6): 729-734. DOI:10.1097/MCO.0b013e3282efdebb |
[34] |
GÁLVEZ E J C, ILJAZOVIC A, AMEND L, et al. Distinct polysaccharide utilization determines interspecies competition between intestinal Prevotella spp.[J]. Cell Host & Microbe, 2020, 28(6): 838-852.e6. |
[35] |
李江凌, 陈晓晖, 刘锐, 等. 藏猪、长白猪肠道微生物菌群的定量分析及比较研究[J]. 中国猪业, 2016, 11(3): 61-64. LI J L, CHEN X H, LIU R, et al. Quantitative analysis and comparative study on intestinal microflora of Tibetan and Landrace pigs[J]. China Swine Industry, 2016, 11(3): 61-64 (in Chinese). DOI:10.3969/j.issn.1673-4645.2016.03.023 |
[36] |
胥清富, 孙镇平, 杨建生, 等. 荣昌猪盲肠微生物消化粗纤维的体外试验研究[J]. 扬州大学学报(自然科学版), 1999(3): 33-36. XU Q F, SUN Z P, YANG J S, et al. Studies in vitro on digestibility of crude fiber by microbe in caecum of Rongchang pigs[J]. Journal of Yangzhou University (Natural Science Edition), 1999(3): 33-36 (in Chinese). |
[37] |
姜延志, 陈燕, 朱砺, 等. 我国地方猪种肉质特性及其遗传改良[J]. 猪业科学, 2016, 33(11): 34-36. JIANG Y Z, CHEN Y, ZHU L, et al. Meat quality characteristics and genetic improvement of native pigs in China[J]. Swine Industry Science, 2016, 33(11): 34-36 (in Chinese). DOI:10.3969/j.issn.1673-5358.2016.11.012 |
[38] |
蔡如玉, 段梦琪, 王士欣, 等. 藏猪与大白猪胴体性能及肉质特性分析[J]. 家畜生态学报, 2021, 42(7): 35-38. CAI R Y, DUAN M Q, WANG S X, et al. Analysis on carcass performance and meat quality between the Tibetan pig and large white pig[J]. Acta Ecologae Animalis Domastici, 2021, 42(7): 35-38 (in Chinese). DOI:10.3969/j.issn.1673-1182.2021.07.007 |
[39] |
WU T, ZHANG Z H, YUAN Z Q, et al. Distinctive genes determine different intramuscular fat and muscle fiber ratios of the longissimus dorsi muscles in Jinhua and landrace pigs[J]. PLoS One, 2013, 8(1): e53181. DOI:10.1371/journal.pone.0053181 |
[40] |
STEPHENS R W, ARHIRE L, COVASA M. Gut microbiota: from microorganisms to metabolic organ influencing obesity[J]. Obesity (Silver Spring, Md.), 2018, 26(5): 801-809. |
[41] |
CHEN C Y, FANG S M, WEI H, et al. Prevotella copri increases fat accumulation in pigs fed with formula diets[J]. Microbiome, 2021, 9(1): 175. |
[42] |
YAN H L, DIAO H, XIAO Y, et al. Gut microbiota can transfer fiber characteristics and lipid metabolic profiles of skeletal muscle from pigs to germ-free mice[J]. Scientific Reports, 2016, 6: 31786. |
[43] |
KARAKI S I, MITSUI R, HAYASHI H, et al. Short-chain fatty acid receptor, GPR43, is expressed by enteroendocrine cells and mucosal mast cells in rat intestine[J]. Cell and Tissue Research, 2006, 324(3): 353-360. |
[44] |
GE H F, LI X F, WEISZMANN J, et al. Activation of G protein-coupled receptor 43 in adipocytes leads to inhibition of lipolysis and suppression of plasma free fatty acids[J]. Endocrinology, 2008, 149(9): 4519-4526. |
[45] |
王远霞, 刘秀婷, 章啸君, 等. 金华猪回肠菌群结构和脂肪酸结合蛋白发育性变化与脂肪沉积的相关性研究[J]. 畜牧兽医学报, 2021, 52(3): 723-732. WANG Y X, LIU X T, ZHANG X J, et al. The developmental changes of ileal microbiota and fatty acid binding proteins and its correlation with fat deposition in Jinhua pigs[J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(3): 723-732 (in Chinese). |
[46] |
MA J, DUAN Y H, LI R, et al. Gut microbial profiles and the role in lipid metabolism in Shaziling pigs[J]. Animal Nutrition, 2022, 9: 345-356. |
[47] |
GABANYI I, LEPOUSEZ G, WHEELER R, et al. Bacterial sensing via neuronal Nod2 regulates appetite and body temperature[J]. Science, 2022, 376(6590): eabj3986. |
[48] |
TILG H, MOSCHEN A R. Microbiota and diabetes: an evolving relationship[J]. Gut, 2014, 63(9): 1513-1521. |
[49] |
TURNBAUGH P J, BÄCKHED F, FULTON L, et al. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome[J]. Cell Host & Microbe, 2008, 3(4): 213-223. |
[50] |
HOOPER L V, WONG M H, THELIN A, et al. Molecular analysis of commensal host-microbial relationships in the intestine[J]. Science, 2001, 291(5505): 881-884. |
[51] |
DUCA F A, SAKAR Y, LEPAGE P, et al. Replication of obesity and associated signaling pathways through transfer of microbiota from obese-prone rats[J]. Diabetes, 2014, 63(5): 1624-1636. |
[52] |
PAULO E, WANG B. Towards a better understanding of beige adipocyte plasticity[J]. Cells, 2019, 8(12): 1552. |
[53] |
SHABALINA I G, PETROVIC N, DE JONG J M A, et al. UCP1 in brite/beige adipose tissue mitochondria is functionally thermogenic[J]. Cell Reports, 2013, 5(5): 1196-1203. |
[54] |
HAMER H M, JONKERS D M A E, BAST A, et al. Butyrate modulates oxidative stress in the colonic mucosa of healthy humans[J]. Clinical Nutrition, 2009, 28(1): 88-93. |
[55] |
ENDO H, NⅡOKA M, KOBAYASHI N, et al. Butyrate-producing probiotics reduce nonalcoholic fatty liver disease progression in rats: new insight into the probiotics for the gut-liver axis[J]. PLoS One, 2013, 8(5): e63388. |
[56] |
李涛, 曾东, 倪学勤, 等. 乳酸杆菌发酵饲料对猪生长性能和肉质及血清抗氧化性能的影响[J]. 湖南农业大学学报(自然科学版), 2014, 40(2): 192-195. LI T, ZENG D, NI X Q, et al. Effect of lactic acid bacteria fermented feed on growth performance, meat quality and serum antioxidant activity of pigs[J]. Journal of Hunan Agricultural University (Natural Sciences Edition), 2014, 40(2): 192-195 (in Chinese). |
[57] |
刘辉, 季海峰, 王四新, 等. 复合乳酸菌发酵饲料对生长猪生长性能、粪便菌群、血清免疫和抗氧化指标的影响[J]. 动物营养学报, 2022, 34(2): 783-794. LIU H, JI H F, WANG S X, et al. Effects of compound lactic acid bacteria fermented feed on growth performance, fecal microflora, serum immune and antioxidant indexes of growing pigs[J]. Chinese Journal of Animal Nutrition, 2022, 34(2): 783-794 (in Chinese). |
[58] |
JAWORSKI N W, OWUSU-ASIEDU A, WALSH M C, et al. Effects of a 3 strain Bacillus-based direct-fed microbial and dietary fiber concentration on growth performance and expression of genes related to absorption and metabolism of volatile fatty acids in weanling pigs[J]. Journal of Animal Science, 2017, 95(1): 308-319. |
[59] |
CHO S, HWANG O, PARK S. Effect of dietary protein levels on composition of odorous compounds and bacterial ecology in pig manure[J]. Asian-Australasian Journal of Animal Sciences, 2015, 28(9): 1362-1370. |
[60] |
HEKMATDOOST A, FEIZABADI M M, DJAZAYERY A, et al. The effect of dietary oils on cecal microflora in experimental colitis in mice[J]. Indian Journal of Gastroenterology, 2008, 27(5): 186-189. |
[61] |
刘韶娜, 张斌, 相德才, 等. 贝莱斯芽孢杆菌对猪生长性能、微生物群落和代谢产物的影响[J]. 动物营养学报, 2020, 32(12): 5622-5635. LIU S N, ZHANG B, XIANG D C, et al. Effects of Bacillus velezensis on growth performance, fecal microbiota and metabolites in pigs[J]. Chinese Journal of Animal Nutrition, 2020, 32(12): 5622-5635 (in Chinese). |
[62] |
HU L S, GENG S J, LI Y, et al. Exogenous fecal microbiota transplantation from local adult pigs to crossbred newborn piglets[J]. Frontiers in Microbiology, 2018, 8: 2663. |
[63] |
DIAO H, YAN H L, XIAO Y, et al. Modulation of intestine development by fecal microbiota transplantation in suckling pigs[J]. RSC Advances, 2018, 8(16): 8709-8720. |
[64] |
HU J, MA L B, NIE Y F, et al. A microbiota-derived bacteriocin targets the host to confer diarrhea resistance in early-weaned piglets[J]. Cell Host & Microbe, 2018, 24(6): 817-832.e8. |
[65] |
CANIBE N, O'DEA M, ABRAHAM S. Potential relevance of pig gut content transplantation for production and research[J]. Journal of Animal Science and Biotechnology, 2019, 10: 55. |
[66] |
LI N, ZUO B, HUANG S M, et al. Spatial heterogeneity of bacterial colonization across different gut segments following inter-species microbiota transplantation[J]. Microbiome, 2020, 8(1): 161. |
[67] |
刘锁珠, 李龙, 付冠华, 等. 藏猪源高产纤维素酶菌株的筛选及鉴定[J]. 西北农林科技大学学报(自然科学版), 2017, 45(3): 43-50. LIU S Z, LI L, FU G H, et al. Screening and identification of high-yield cellulase degrading bacteria strain from Tibetan pigs[J]. Journal of Northwest A & F University (Natural Science Edition), 2017, 45(3): 43-50 (in Chinese). |
[68] |
张友华, 胡怀容, 鲜欣言, 等. 荣昌猪肠道乳酸菌筛选及鉴定[J]. 西南大学学报(自然科学版), 2016, 38(9): 6-11. ZHANG Y H, HU H R, XIAN X Y, et al. Isolation and identification of lactic acid bacteria from intestinal tract of Rongchang pig[J]. Journal of Southwest University (Natural Science Edition), 2016, 38(9): 6-11 (in Chinese). |
[69] |
单明旭. 民猪肠源益生菌的筛选及其生物学特性[D]. 硕士学位论文. 哈尔滨: 东北农业大学, 2020. SHAN M X. Screening and biological characteristics of the probiotics from Min pigs' intestines[D]. Master's Thesis. Haerbin: Northeast Agricultural University, 2020. (in Chinese) |
[70] |
杨雪. 猪源玉米赤霉烯酮降解菌的筛选与鉴定及其生物学特性[D]. 硕士学位论文. 哈尔滨: 东北农业大学, 2020. YANG X. Screening and identification of zearalenone degrading bacteria from pig and its biological characteristics[D]. Master's Thesis. Haerbin: Northeast Agricultural University, 2020. (in Chinese) |
[71] |
王晓旭. 民猪肠源抑制致病菌的益生菌株筛选及其抑菌成分解析[D]. 硕士学位论文. 哈尔滨: 东北农业大学, 2022 WANG X X. Screening of probiotic strains and analysis of their antibacterial components from Min pigs[D]. Master's Thesis. Haerbin: Northeast Agricultural University, 2022. (in Chinese). |