近半个世纪来,世界养猪业由于受快速生长和高瘦肉率选育导向的驱使,商品猪生产几乎被外来瘦肉猪杂交组合所覆盖。这些品种为满足消费者对猪肉数量的需求作出了巨大贡献,但其所产猪肉的风味距我国地方猪种的“香鲜嫩”品质相差明显。随着生活水平的不断提高,消费者对优质风味猪肉的期望也日益强烈。兼具生产性能高和肉质风味好的猪品种培育和饲养技术研发,将是一个重要的科研方向。本文围绕这个方向,对猪肉质风味成因及其品种与饲料营养效应和改良技术研究进展作一综述。
1 猪肉风味的成因分析 1.1 猪肉风味形成的物质基础关于猪肉品质,质量安全与营养是基本要求,而风味则是决定猪肉档次的更高要求,也是消费者判断肉类食品质量和可接受性的重要感官属性之一[1]。猪肉风味体现在2个方面,一是挥发性呈味物质,通过刺激鼻腔嗅觉神经末梢而产生的香味感觉;二是非挥发性呈味物质,通过刺激舌面味觉神经末梢而产生的滋味感觉。
猪肉的香味源于:1)烹饪过程脂类降解,猪肉肌内、肌间脂肪的甘油三酯、磷脂、花生四烯酸、油酸、亚油酸等通过热降解和氧化降解生成各种醛、醇、呋喃类芳香物质等,形成猪肉香味[1];2)美拉德(Maillard)反应,即猪肉在烹饪或烧烤时氨基酸、肽、核苷酸等与糖类之间发生一系列复杂的化学反应,产生醛、酮、吡嗪、呋喃、噻吩、吡咯等数以百计的挥发性香味物质[1];3)烹饪时猪肉中含量丰富的硫胺素生成呋喃酮、二甲基二硫、呋喃硫醇、噻唑和多硫化物等猪肉香味物质[2]。
猪肉滋味包含:1)鲜味,是猪肉肌浆中游离鲜味氨基酸(谷氨酸、天冬酰胺、甘氨酸、精氨酸等)和肌苷酸盐、鸟苷酸盐及致鲜肽类共同作用、互作强化的效应[3];2)咸味,是肌浆中的谷氨酸钠、天冬氨酸钠等所致[3];3)甜味,来自肌浆中糖类、游离甜味氨基酸(丙氨酸、丝氨酸、苏氨酸、脯氨酸、甘氨酸、赖氨酸等)及亲水肽类[4];4)苦味,主要源于苦味氨基酸(蛋氨酸、缬氨酸、亮氨酸、异亮氨酸、苯丙氨酸等)[4]。上述游离氨基酸、肽类和核苷酸的相互增强效应极大提高了猪肉滋味。
猪肉中被鉴定的风味及风味前体物质已达1 000种以上,风味检测内容包括风味前体物质、香味物质和滋味物质。其中挥发性香味物质需要顶空采样或蒸馏,且其多为非极性杂环类,检测需要气相色谱-质谱联用(GC-MS),甚至核磁共振(NMR)等技术辅助,检测的稳定性和准确性还有待提高。即便气相离子迁移谱(GC-IMS)、气相-嗅闻-质谱(GC-O-MS)及电子鼻与GC-MS联用等更先进技术,仍有各自的局限性[5]。传统口感品尝小组主观评分仍为经典方法,主观评分与实验室分析相结合,可使肉质风味评定更加可靠。
1.2 常规肉质性状对猪肉风味形成的影响猪品种、性别、屠宰日龄、所喂饲粮、分割部位、屠宰加工及烹任方法等诸多因素都影响常规肉质性状[6],常规肉质性状进一步决定风味呈现。1)系水力及pH:系水力好的猪肉水溶性滋味物质流失少,烹饪时致鲜作用强。而系水力受肌浆pH影响,终点pH高于5.5(最好为6.0~6.4)时缓冲力强,肌浆蛋白微观结构保水力好,促使滋味物质保留而增强鲜味感;2)大理石纹和肌内脂肪:脂肪充沛地渗透于小肌束间,与结缔组织一起形成像大理石纹的猪肉,也称“雪花肉”,这种性状支撑了猪肉的多汁性,且脂类降解形成丰富的芳香物质,风味特征浓郁;3)嫩度:嫩度用剪切力反映,剪切力数值越小嫩度越好。嫩度好又不失咀嚼性的猪肉,口感嫩润滑爽,细嫩的猪肉有利于滋味物质更大面积地接触于口腔舌面而被感知滋味;4)肉色:肉色较深红意味着肌红蛋白含量高且处在还原态,风味物质保鲜态好,肌红蛋白中高比例的赖氨酸既呈甜味,又是美拉德反应前体;5)肌纤维直径:直径过粗的肌纤维,线粒体密集于细胞膜,不利于肌浆核心的氧化代谢而使糖酵解供能加剧,从而降低猪肉滋味(尤其鲜味)。上述因果关系提示可通过测定常规肉质性状来预测猪肉风味。
1.3 猪肌纤维类型对常规肉质性状乃至风味指标的影响上述影响猪肉风味的常规肉质性状都与肌纤维类型相关。猪等哺乳动物骨骼肌有4种肌纤维类型:Ⅰ型(慢-氧化型)、Ⅱa型(快-氧化型)、Ⅱx型(中间型)和Ⅱb型(快-酵解型),它们分别包含肌球蛋白重链(MyHC)的4种类型亚基[7]。按照“Ⅰ型→Ⅱa型→Ⅱx型→Ⅱb型”排序的4种肌纤维,线粒体含量与功能由高到低,肌红蛋白含量由高到低,肌纤维直径由细到粗,有氧代谢能力由高到低,糖酵解能力由低到高[8]。
肌纤维的线粒体含量越高,其有氧代谢和磷酸原转化能力越强,宰后肌肉糖酵解程度和pH下降程度就越低,一系列肉质风味指标就越好[8]。氧化型肌纤维因肌红蛋白含量高,决定了肉色红润、纤维直径细、肉品细嫩。大量研究发现,肌纤维类型组成与氟烷基因型、宰后早期肌肉ATP缺乏、代谢酶活性、滴水损失和肉品亮度(L*)值密切相关。肌纤维类型还通过糖代谢和脂代谢影响肌肉脂类含量与组成[9]。在活体肌肉中,Ⅰ型肌纤维从脂类氧化代谢获取主要能源,Ⅱb型肌纤维从糖类酵解获取主要能源,Ⅰ型与Ⅱb型肌纤维分别含26%和1%的中性脂,氧化型肌纤维的总脂类物质含量是酵解型肌纤维的3倍,肌肉中Ⅰ型肌纤维占比与多不饱和脂肪酸占比呈正相关。研究发现,4种MyHC亚基的mRNA与肉质性状显著相关,具有较高比例MyHCⅠ mRNA的肌肉(金华猪)表现较高的磷酸原转化能力和较低的糖酵解能力[8]。
1.4 肌纤维类型控制基因及分子通路目前较受公认的调控肌纤维类型转化的信号通路有:1)Ca2+信号途径。在钙调磷酸酶(CaN)和T细胞核因子(NFAT)或钙调素依赖性蛋白激酶(CaMK)和组蛋白脱乙酰酶(HDACs)等参与下,Ca2+信号途径在快肌纤维向慢肌纤维转化中起作用[10]。2)腺苷酸激活蛋白激酶(AMPK)/去乙酰化酶1(Sirt1)/过氧化物酶体增殖物激活受体γ共激活因子-1α(PGC-1α)信号途径。该途径通过激活AMPK、Sirt1和PGC-1α,促进肌肉氧化型肌纤维形成,提高有氧代谢和线粒体功能,此途径还表现为PGC-1α介导依赖性[11]。3)蛋白激酶B(Akt)/叉头框转录因子O亚族1(FoxO1)信号途径。激活FoxO1将直接促进快肌纤维形成,而Akt具有使其磷酸化激活作用[12]。FoxO1激活还可以抑制CaN活性,从而抑制氧化型肌纤维或慢肌纤维形成[13]。4)Wnt/β-连环蛋白(β-catenin)信号途径。该途径在慢肌纤维或氧化型肌纤维形成中起正向调控作用[14]。有研究证实,Wnt5a表达与猪氧化型肌纤维比例呈显著正相关[15]。此外,过氧化物酶体增殖物激活受体β/δ(PPARβ/δ)通过激活PGC-1α促进快肌纤维向慢肌纤维转化,也可以与AMPK通路关联起调节作用[16]。在生肌调节因子(MRFs)家族中,肌细胞生成素(MyoG)和生肌调节因子4(MRF4)正向调控慢肌纤维形成,生肌决定因子(MyoD)和生肌因子5(Myf5)正向调控快肌纤维形成,肌肉生长抑制素(myostatin)也正向调控快肌纤维形成[17]。不同信号途径之间交互影响,PGC-lα成为调控慢肌纤维形成途径的交汇点。
作为PGC-lα下游重要靶向因子的鸢尾素(irisin)及其前体基因Ⅲ型纤连蛋白组件包含蛋白5(FNDC5),被大量研究证明在糖代谢和脂代谢及脂肪细胞棕色化中发挥调控作用[18-19],并与肌纤维类型转化存在分子关联。研究发现,过表达FNDC5可以促进细胞脂肪酸代谢和对葡萄糖有氧利用[20],并通过与生肌调节因子作用影响肌纤维发育[21]。猪FNDC5 mRNA表达量在不同猪种间存在显著差异,并与氧化型肌纤维比例呈正相关。与酵解型肌纤维比例呈负相关;增加FNDC5基因表达显著上调MyHCⅡa表达水平,反之则显著下调;外源添加irisin可以激活骨骼肌细胞MyHCⅠ和MyHCⅡa mRNA表达[22]。irisin-FNDC5作为介导细胞内外信号传导的分子通路,参与正向调控氧化型肌纤维形成。
2 品种与饲料营养因素对猪肌纤维类型及肉质风味的影响 2.1 品种因素作用及相关育种展望肌纤维类型特征及其控制基因的品种差异,体现为我国地方猪种通常比外来瘦肉猪具有更高比例的Ⅰ型肌纤维[23]。Ⅰ型和Ⅱ型肌纤维比例遗传力中等偏上[23]。本实验室通过测定地方猪血缘梯度变化猪群的MyHC组成,解析了肌纤维类型遗传多样性及其与肉质的分子关联[8]。此后研究证实,肌纤维特性差异是猪肉品质风味品种间差异的重要原因[7],与之相关的一些基因位点及多态性也被研究鉴定[23]。有系统研究报告显示,相比“杜长大”猪肉,黑猪肉具有肉色鲜红、剪切力低、多汁性好、口感好、系水力好、特征风味前体物含量高的特点[24]。团体标准《中国黑猪肉》(T/CMATB 1001—2019)[25]将肌内脂肪含量≥3%、剪切力≤45 N、汁液流失≤2.5%作为中国黑猪肉量化标准。肌纤维类型、常规肉质性状及风味指标等方面的品种差异,佐证了我国地方猪种肉质风味的优异。近20余年来,我国逐渐展开含地方猪种血统优质猪品种的培育,约10个培育黑猪新品种通过审定,以中国黑猪为象征的优质猪产业悄然兴起。本实验室近10余年从“肌纤维类型-肌肉能量代谢-肉质风味”调控轴方向深入研究,进行了多元杂交选育实践并获进展。通过优化配置我国地方猪品种资源和优质外来品种资源的杂交育种,有望获得兼具高生长性能与肉质风味优异的新品种。
2.2 饲料营养因素作用及相关调控技术展望 2.2.1 母猪妊娠期营养对肌纤维类型分化的影响肌纤维是在胚胎发育过程中由胚层干细胞分化、增殖和转化形成。猪妊娠35~50 d时形成初级纤维,妊娠55~90 d时形成次级纤维(约20根围绕1根初级纤维),至妊娠80~90 d时肌纤维总数基本恒定,出生后主要发生体积增大和类型转化[26]。肌纤维类型发育始于母体妊娠期[26]。出生时初级纤维表达成熟Ⅰ型MyHC,也有表达胎儿型Ⅱa,至出生后发育为成熟Ⅱa型MyHC;出生时次级纤维表达胎儿型Ⅱa和Ⅱx,出生后发育为成熟Ⅱa型、Ⅱx型和Ⅱb型MyHC[26]。据报道,提高妊娠母猪营养可增加仔猪骨骼肌Ⅱa型肌纤维数量[27];母猪饲喂高脂高能饲粮可增加仔猪骨骼肌Ⅰ型肌纤维数量,降低Ⅱa型肌纤维数量[28];添加不饱和脂肪酸(亚油酸)提高仔猪MyHCⅠ基因表达水平[29]。
2.2.2 猪出生后能量及蛋白质营养对肌纤维类型的影响仔猪限饲可增加Ⅰ型肌纤维数量,延迟快肌纤维发育[30-31]。低蛋白质饲粮促进断奶仔猪慢肌纤维形成和AMPK信号激活[32],适当降低饲粮蛋白质水平增加育肥猪背最长肌和腰大肌MyHCⅡa mRNA水平及股二头肌MyHCⅠ mRNA水平[33]。高能量饲粮增加育肥猪Ⅱa型和Ⅱx型肌纤维比例,降低Ⅱb型肌纤维比例[34]。高蛋白质饲粮提高梅山猪育肥后期Ⅰ型肌纤维比例[35]。低淀粉高纤维饲粮减少育肥猪酵解型肌纤维比例。低直/支链淀粉比饲粮增加猪背最长肌MyHCⅠ表达,降低MyHCⅡb表达[36];豌豆淀粉显著增加育肥猪MyHCⅠ、MyHCⅡa表达,显著降低MyHCⅡb表达[37]。某些功能氨基酸(如精氨酸)可以改善猪肌肉线粒体功能,促进慢肌纤维形成[38]。虽然存在高能低氮饲粮利于氧化型肌纤维形成的趋势,但受猪品种、生长阶段、能量及蛋白质来源等因素影响而表现得不确定。
2.2.3 植物多酚等活性物质对肌纤维类型转化的调节植物多酚有提高骨骼肌AMPK磷酸化、激活PGC-1α通路进而调控肌纤维类型转化功能[39]。添加杜仲多酚、苹果多酚、绿茶多酚均可提高肌肉抗氧化能力和氧化型肌纤维比例,促进慢肌纤维形成[40-42]。添加叶绿醇[43]、番茄红素[44]和白藜芦醇[45]促进慢肌纤维形成和MyHCⅠ表达。添加丁酸盐显著提高肌纤维MyHCⅠ mRNA表达水平,显著降低MyHCⅡb mRNA表达水平,促进快肌纤维向慢肌纤维转化[46]。
2.2.4 饲粮脂肪酸组成对肌纤维类型转化的影响添加共轭亚油酸(CLA)可改变肌纤维类型[47],与其诱导体外培养猪骨骼肌细胞MyHCⅠ和MyHCⅡa mRNA转录结果一致[48]。研究显示,不饱和脂肪酸促进小鼠Ⅰ型肌纤维相关基因表达[29],添加n-3多不饱和脂肪酸促进猪Ⅰ型和Ⅱa型肌纤维相关基因表达[49],暗示优化饲粮脂肪酸组成可以调控肉质风味。本实验室近年开展了饲粮添加2%CLA对猪肉质的调控试验,结果显示,试验组猪MyHCⅠ mRNA比例和氧化代谢酶活性升高,背最长肌压榨损失和滴水损失降低,肉色红度(a*)值及饱和度(C)值显著提高[50]。
3 小结与展望追溯猪肉风味成因,首先是风味受系水力、pH、肌内脂肪含量、嫩度、肉色、肌纤维细度等常规肉质性状直接影响;然后是常规肉质性状又受骨骼肌纤维类型比例影响;再向上游追溯至肌纤维类型控制基因及分子通路Ca2+信号途径、AMPK/Sirtl/PGC-lα信号途径、Akt/FoxO1信号途径和Wnt/β-catenin信号途径。其中作为PGC-lα下游的irisin-FNDC5分子通路介导细胞内外信号传导,参与正向调控氧化型肌纤维形成。在上述猪肉风味成因链中,品种因素具有决定性的影响,提示可参考进行猪风味育种设计;饲料营养因素的影响也较大且涉及各环节,提示肉质风味的营养调控具有潜在空间。
[1] |
BASSAM S M, NOLETO-DIAS C, FARAG M A. Dissecting grilled red and white meat flavor: its characteristics, production mechanisms, influencing factors and chemical hazards[J]. Food Chemistry, 2022, 371: 131139. DOI:10.1016/j.foodchem.2021.131139 |
[2] |
崔艺燕, 马现永. 猪肉风味研究进展[J]. 肉类研究, 2017, 31(6): 55-60. CUI Y Y, MA X Y. Recent advances in the research on pork flavor compounds[J]. Meat Research, 2017, 31(6): 55-60 (in Chinese). |
[3] |
葛倩倩, 汤晓艳, 涂婷, 等. 不同品种猪肉鲜味特征比较研究[J]. 肉类研究, 2020, 34(9): 1-5. GE Q Q, TANG X Y, TU T, et al. Comparative study on the umami characteristics of pork from different breeds[J]. Meat Research, 2020, 34(9): 1-5 (in Chinese). |
[4] |
马黎, 聂靖茹, 鲁绍雄, 等. 迪庆藏猪与野藏杂交猪肌肉全谱游离氨基酸味道强度值比较[J]. 中国畜牧兽医, 2021, 48(4): 1275-1283. MA L, NIE J R, LU S X, et al. Comparison of the taste activity value of full spectrum free amino acid in muscle of Diqing Tibetan pig and wild boar×Diqing Tibetan pig[J]. China Animal Husbandry & Veterinary Medicine, 2021, 48(4): 1275-1283 (in Chinese). |
[5] |
肖智超, 葛长荣, 周光宏, 等. 肉的风味物质及其检测技术研究进展[J]. 食品工业科技, 2019, 40(4): 325-330. XIAO Z C, GE C R, ZHOU G H, et al. Research progress on meat flavor substance and detecting technique[J]. Science and Technology of Food Industry, 2019, 40(4): 325-330 (in Chinese). |
[6] |
张伟力. 猪肉的风味[J]. 养猪, 2003(2): 47-50. ZHANG W L. The flavor of pork[J]. Swine Production, 2003(2): 47-50 (in Chinese). DOI:10.3969/j.issn.1002-1957.2003.02.024 |
[7] |
KIM G D, YANG H S, JEONG J Y. Intramuscular variations of proteome and muscle fiber type distribution in semimembranosus and semitendinosus muscles associated with pork quality[J]. Food Chemistry, 2018, 244: 143-152. DOI:10.1016/j.foodchem.2017.10.046 |
[8] |
门小明. 肌肉纤维类型组成对猪肉品质的影响及其机理研究[D]. 博士学位论文. 无锡: 江南大学, 2012. MEN X M. Effects and underlying mechanisms of muscle fibre types on pork quality[D]. Ph. D. Thesis. Wuxi: Jiangnan University, 2012. (in Chinese) |
[9] |
HUA N, TAKAHASHI H, YEE G M, et al. Influence of muscle fiber type composition on early fat accumulation under high-fat diet challenge[J]. PLoS One, 2017, 12(8): e0182430. DOI:10.1371/journal.pone.0182430 |
[10] |
LUO P, WANG L N, LUO L, et al. Ca2+-calcineurin-NFAT pathway mediates the effect of thymol on oxidative metabolism and fiber-type Switch in skeletal muscle[J]. Food & Function, 2019, 10(8): 5166-5173. |
[11] |
REYES N L, BANKS G B, TSANG M, et al. Fnip1 regulates skeletal muscle fiber type specification, fatigue resistance, and susceptibility to muscular dystrophy[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(2): 424-429. DOI:10.1073/pnas.1413021112 |
[12] |
YUAN Y, SHI X E, LIU Y G, et al. FoxO1 regulates muscle fiber-type specification and inhibits calcineurin signaling during C2C12 myoblast differentiation[J]. Molecular and Cellular Biochemistry, 2011, 348(1/2): 77-87. |
[13] |
NI Y G, WANG N, CAO D J, et al. FoxO transcription factors activate Akt and attenuate insulin signaling in heart by inhibiting protein phosphatases[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(51): 20517-20522. DOI:10.1073/pnas.0610290104 |
[14] |
KURODA K, KUANG S H, TAKETO M M, et al. Canonical Wnt signaling induces BMP-4 to specify slow myofibrogenesis of fetal myoblasts[J]. Skeletal Muscle, 2013, 3(1): 5. DOI:10.1186/2044-5040-3-5 |
[15] |
MEN X M, DENG B, TAO X, et al. Wnt gene expression in adult porcine longissimus dorsi and its association with muscle fiber type, energy metabolism, and meat quality[J]. Journal of Integrative Agriculture, 2017, 16(1): 144-150. DOI:10.1016/S2095-3119(16)61451-X |
[16] |
KOH J H, HANCOCK C R, TERADA S, et al. PPARβ is essential for maintaining normal levels of PGC-1α and mitochondria and for the increase in muscle mitochondria induced by exercise[J]. Cell Metabolism, 2017, 25(5): 1176-1185.e5. DOI:10.1016/j.cmet.2017.04.029 |
[17] |
SODHI S S, SHARMA N, GHOSH M, et al. Differential expression patterns of myogenic regulatory factors in the postnatal longissimus dorsi muscle of Jeju native pig and Berkshire breeds along with their co-expression with Pax7[J]. Electronic Journal of Biotechnology, 2021, 51: 8-16. DOI:10.1016/j.ejbt.2021.03.001 |
[18] |
BOSTRÖM P, WU J, JEDRYCHOWSKI M P, et al. A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis[J]. Nature, 2012, 481(7382): 463-468. DOI:10.1038/nature10777 |
[19] |
CAO R Y, ZHENG H C, REDFEARN D, et al. FNDC5:a novel player in metabolism and metabolic syndrome[J]. Biochimie, 2019, 158: 111-116. DOI:10.1016/j.biochi.2019.01.001 |
[20] |
XIONG X Q, CHEN D, SUN H J, et al. FNDC5 overexpression and irisin ameliorate glucose/lipid metabolic derangements and enhance lipolysis in obesity[J]. Biochimica et Biophysica Acta, 2015, 1852(9): 1867-1875. DOI:10.1016/j.bbadis.2015.06.017 |
[21] |
BAI Y, BI H X, LI L X, et al. Effects of myostatin deficiency on PGC-1α and FNDC5 expression in three different murine muscle types[J]. Acta Histochemica, 2019, 121(3): 323-329. DOI:10.1016/j.acthis.2019.02.001 |
[22] |
MEN X M, XU Z W, TAO X, et al. FNDC5 expression closely correlates with muscle fiber types in porcine longissimus dorsi muscle and regulates myosin heavy chains (MyHCs) mRNA expression in C2C12 cells[J]. PeerJ, 2021, 9: e11065. DOI:10.7717/peerj.11065 |
[23] |
张贝贝. 一个大白猪群肌纤维性状的测定及其与候选基因SNP的关联分析[D]. 硕士学位论文. 武汉: 华中农业大学, 2014. ZHANG B B. The measurement of muscle fiber traits in a large white pig population and the association analysis of candidate genes SNP[D]. Master's Thesis. Wuhan: Huazhong Agricultural University, 2014. (in Chinese) |
[24] |
王晓红, 唐振闯. 中国黑猪产业品牌培育与消费升级研究报告[M]. 北京: 中国农业科学技术出版社, 2019: 19-24. WANG X H, TANG Z C. Research report on brand cultivation and consumption upgrading of Chinese black pig industry[M]. Beijing: China Agricultural Science and Technology Press, 2019: 19-24 (in Chinese). |
[25] |
中华人民共和国民政部. 中国黑猪肉: T/CMATB 1001—2019[S]. 北京: 中国肉类协会, 2019. Ministry of Civil Affairs of the People's Republic of China. Chinese pork of black-hair pigs: T/CMATB 1001—2019[S]. Beijing: China Meat Association, 2019. (in Chinese) |
[26] |
FOXCROFT G R, DIXON W T, NOVAK S, et al. The biological basis for prenatal programming of postnatal performance in pigs[J]. Journal of Animal Science, 2006, 84(Suppl.): E105-E112. |
[27] |
MCNAMARA L B, GIBLIN L, MARKHAM T, et al. Nutritional intervention during gestation alters growth, body composition and gene expression patterns in skeletal muscle of pig offspring[J]. Animal, 2011, 5(8): 1195-1206. DOI:10.1017/S1751731111000176 |
[28] |
OLIVEIRA T R D P, MANHÃES-DE-CASTRO R, SILVA J M, et al. Differential effects of maternal high-fat/high-caloric or isocaloric diet on offspring's skeletal muscle phenotype[J]. Life Sciences, 2018, 215: 136-144. DOI:10.1016/j.lfs.2018.11.011 |
[29] |
LU Z Q, REN Y, ZHOU X H, et al. Maternal dietary linoleic acid supplementation promotes muscle fibre type transformation in suckling piglets[J]. Journal of Animal Physiology and Animal Nutrition, 2017, 101(6): 1130-1136. DOI:10.1111/jpn.12626 |
[30] |
LEFAUCHEUR L, ECOLAN P, BARZIC Y M, et al. Early postnatal food intake alters myofiber maturation in pig skeletal muscle[J]. The Journal of Nutrition, 2003, 133(1): 140-147. DOI:10.1093/jn/133.1.140 |
[31] |
HARRISON A P, ROWLERSON A M, DAUNCEY M J. Selective regulation of myofiber differentiation by energy status during postnatal development[J]. The American Journal of Physiology, 1996, 270(3 Pt 2): R667-R674. |
[32] |
WU L, ZHANG H W, NA L, et al. Methionine restriction at the post-weanling period promotes muscle fiber transition in piglets and improves intramuscular fat content in growing-finishing pigs[J]. Amino Acids, 2019, 51(10): 1657-1666. |
[33] |
LI Y H, LI F N, WU L, et al. Effects of dietary protein restriction on muscle fiber characteristics and mTORC1 pathway in the skeletal muscle of growing-finishing pigs[J]. Journal of Animal Science and Biotechnology, 2016, 7(1): 47. DOI:10.1186/s40104-016-0106-8 |
[34] |
孙相俞. 不同品种和营养水平对猪肌纤维类型和胴体肉质性状的影响[D]. 硕士学位论文. 雅安: 四川农业大学, 2009. SUN X Y. Effects of nutrition and breed levels on myofibre types and pork meat quality in pigs[D]. Master's Thesis. Ya'an: Sichuan Agricultural University, 2009. (in Chinese) |
[35] |
WANG J Q, LI X, YANG X J, et al. Maternal dietary protein induces opposite myofiber type transition in Meishan pigs at weaning and finishing stages[J]. Meat Science, 2011, 89(2): 221-227. DOI:10.1016/j.meatsci.2011.04.023 |
[36] |
LI Y J, LI J L, ZHANG L, et al. Effects of dietary starch types on growth performance, meat quality and myofibre type of finishing pigs[J]. Meat Science, 2017, 131: 60-67. DOI:10.1016/j.meatsci.2017.04.237 |
[37] |
WANG H J, PU J N, CHEN D W, et al. Effects of dietary amylose and amylopectin ratio on growth performance, meat quality, postmortem glycolysis and muscle fibre type transformation of finishing pigs[J]. Archives of Animal Nutrition, 2019, 73(3): 194-207. DOI:10.1080/1745039X.2019.1583518 |
[38] |
CHEN X L, GUO Y F, JIA G, et al. Arginine promotes slow myosin heavy chain expression via Akirin2 and the AMP-activated protein kinase signaling pathway in porcine skeletal muscle satellite cells[J]. Journal of Agricultural and Food Chemistry, 2018, 66(18): 4734-4740. DOI:10.1021/acs.jafc.8b00775 |
[39] |
VACCA R A, VALENTI D, CACCAMESE S, et al. Plant polyphenols as natural drugs for the management of down syndrome and related disorders[J]. Neuroscience and Biobehavioral Reviews, 2016, 71: 865-877. DOI:10.1016/j.neubiorev.2016.10.023 |
[40] |
周艳. 杜仲叶多酚提取物对猪肉品质及绿原酸缓解肝—肠损伤研究[D]. 博士学位论文. 南昌: 南昌大学, 2015. ZHOU Y. Effect of polyphenols extract from Eucommia ulmoides oliver leaf on meat quality and chlorogenic acid ameliorate liver-intestine injury[D]. Ph. D. Thesis. Nanchang: Nanchang University, 2015. (in Chinese) |
[41] |
MIZUNOYA W, OKAMOTO S, MIYAHARA H, et al. Fast-to-slow shift of muscle fiber-type composition by dietary apple polyphenols in rats: impact of the low-dose supplementation[J]. Animal Science Journal, 2017, 88(3): 489-499. DOI:10.1111/asj.12655 |
[42] |
MURASE T, HARAMIZU S, SHIMOTOYODOME A, et al. Green tea extract improves endurance capacity and increases muscle lipid oxidation in mice[J]. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 2005, 288(3): R708-R715. DOI:10.1152/ajpregu.00693.2004 |
[43] |
YANG K L, WANG L N, ZHOU G, et al. Phytol promotes the formation of slow-twitch muscle fibers through PGC-1α/miRNA but not mitochondria oxidation[J]. Journal of Agricultural and Food Chemistry, 2017, 65(29): 5916-5925. DOI:10.1021/acs.jafc.7b01048 |
[44] |
WEN W X, CHEN X L, HUANG Z Q, et al. Dietary lycopene supplementation improves meat quality, antioxidant capacity and skeletal muscle fiber type transformation in finishing pigs[J]. Animal Nutrition, 2022, 8: 256-264. DOI:10.1016/j.aninu.2021.06.012 |
[45] |
WEN W X, CHEN X L, HUANG Z Q, et al. Resveratrol regulates muscle fiber type conversion via miR-22-3p and AMPK/SIRT1/PGC-1α pathway[J]. The Journal of Nutritional Biochemistry, 2020, 77: 108297. DOI:10.1016/j.jnutbio.2019.108297 |
[46] |
ZHANG Y, YU B, YU J, et al. Butyrate promotes slow-twitch myofiber formation and mitochondrial biogenesis in finishing pigs via inducing specific microRNAs and PGC-1α expression[J]. Journal of Animal Science, 2019, 97(8): 3180-3192. |
[47] |
苏展. 共轭亚油酸对生长育肥猪肉质和肌纤维类型的影响[D]. 硕士学位论文. 重庆: 西南大学, 2012. SU Z. Effects of conjugated linoleic acids on meat quality and muscle fiber types in growing-finishing pigs[D]. Master's Thesis. Chongqing: Southwest University, 2012. (in Chinese) |
[48] |
黄金秀, 杨飞云, 刘作华, 等. 共轭亚油酸对体外培养的猪骨骼肌肌纤维类型组成的影响[J]. 畜牧兽医学报, 2010, 41(3): 295-300. HUANG J X, YANG F Y, LIU Z H, et al. Effect of conjugated linoleic acid on the composition of myofiber types in skeletal muscle cells of pigs in vitro[J]. Acta Veterinaria et Zootechnica Sinica, 2010, 41(3): 295-300 (in Chinese). |
[49] |
MIZUNOYA W, IWAMOTO Y, SHIROUCHI B, et al. Dietary fat influences the expression of contractile and metabolic genes in rat skeletal muscle[J]. PLoS One, 2013, 8(11): e80152. DOI:10.1371/journal.pone.0080152 |
[50] |
MEN X M, DENG B, XU Z W, et al. Age-related changes and nutritional regulation of myosin heavy-chain composition in longissimus dorsi of commercial pigs[J]. Animal, 2013, 7(9): 1486-1492. DOI:10.1017/S1751731113000992 |