微生物发酵饲料是应用现代发酵技术手段,根据微生物的特性生产出富有生物活性的饲料产品。现如今这项技术已被欧盟等发达国家普遍应用,其优势也逐渐凸显。发酵饲料作为一种新型饲料,对畜禽生产的可持续发展意义深远。为此,本文重点综述了微生物发酵饲料在动物生产上的应用,以期为微生物发酵饲料的进一步开发和大规模使用提供参考。
1 微生物发酵饲料 1.1 微生物发酵饲料的概述微生物发酵饲料是由某种饲料原料经过微生物代谢作用产生的一类饲料,具有降低原料中抗营养因子含量、产生有机酸和可溶性小肽等有益代谢产物、改善饲粮适口性和动物对饲粮营养物质消化和吸收等特性和作用[1]。微生物发酵饲料使用的原料分为常规饲料(玉米、豆粕等)和非常规饲料(饼粕类、糟渣类和秸秆秕壳类等);常用于发酵饲料的益生菌种类包括酵母菌、芽孢杆菌、乳酸菌和霉菌[2]。采用微生物发酵技术能够改善饲料特性,既可扩大饲料来源,也有利于缓解我国饲料原料不足的现状。
1.2 微生物发酵饲料的发酵方式发酵饲料的生产有多种发酵形式。当前,工业生产发酵饲料的常用方式为固态发酵和液态发酵2种。
1.2.1 固态发酵固态发酵是指没有自由水的条件下,在具有足够相对湿度的水不溶性固态基质中,用单一或多种微生物进行的生物反应过程。自20世纪中叶以来,利用固态发酵生产抗菌肽、酶制剂、蛋白质、氨基酸和维生素等饲料添加剂已经形成了工业化生产模式[3]。使用固态发酵方式发酵饲料可以按照生产饲料的类型分为两大类:第一类是通过微生物的发酵作用改变饲料原料的特性,主要包括全价料、豆粕、杂粕以及粗饲料的发酵;第二类是微生物利用工业残渣或副产物来生产单细胞蛋白质饲料,发酵时还会产生益生菌和生长因子等特殊性物质,这为生产优质蛋白质类饲料提供了新思路。
1.2.2 液态发酵液态发酵与固态发酵在发酵条件方面相类似,不同的是液态发酵需要一定比例的自由水。液态发酵产生的乙酸和乳酸等能够使饲料的pH在一定程度上降低。液态发酵过后的饲料通常带有酸香气味,在发酵的过程中,随着微生物的繁殖及发酵底物的逐步降解,还能增加饲料中益生菌、氨基酸等活性成分[4]。
2 微生物发酵饲料品质的影响因素发酵是将复杂的底物转化为简单化合物的动态过程,其产物主要受微生物种类、发酵底物特性和发酵参数的影响[5]。
2.1 微生物种类微生物种类多且生物学特性不尽相同,目前常用于发酵饲料的微生物包括细菌和真菌2类[2]。乳酸菌属作为公认安全的益生菌,其被广泛用于液态发酵饲料和固态发酵饲料的生产,它可以促进有机酸(尤其是乳酸)的产生,并降低饲料的pH[1]。酵母菌是一类单细胞真菌,在动物饲料添加剂中酿酒酵母的应用最为广泛[6]。芽孢杆菌通过发酵可产生淀粉酶、纤维素酶和脂肪酶等活性较高的酶,它起初被用于食品发酵[7],后来也被用于发酵饲料[8-9]。曲霉菌属也可用于发酵饲料,如米曲霉和黑曲霉[10-11]。
菌种的合理选择是提高发酵效率的关键。如今,微生物发酵技术已由单一菌种向混合菌种发展。相对于单菌种发酵,混合菌种发酵优势在于多个菌种可以发挥协同作用。以生产蛋白质饲料为例,龚仁[12]以葵花盘粉为原料,分别经黑曲霉、米曲霉、产朊假丝酵母和枯草芽孢杆菌单独发酵后粗蛋白质含量由8.31%增加至10.47%、10.18%、9.78%和10.78%;将这4种菌株按最佳的比例混合发酵后,原料中粗蛋白质含量高达13.17%。Teng等[13]分别用枯草芽孢杆菌和米曲霉发酵豆粕,最终粗蛋白质含量由34.46%分别增至37.43%、37.36%,粗蛋白质分别增量8.61%和8.42%。郭萌萌等[14]用枯草芽孢杆菌、植物乳杆菌和酿酒酵母联合发酵豆粕的研究中发现,混合菌种发酵可显著提高豆粕中粗蛋白质含量,最高可将豆粕中粗蛋白质含量由45.58%提高至55.58%,粗蛋白质增量21.94%。由此可见,混合菌种协同发酵对发酵饲料的品质具有正向调控作用,但截止目前,混合菌种的互作机制研究相对缺乏。
2.2 发酵原料微生物发酵饲料早期主要以富含粗纤维的作物为原料,如玉米秸秆、稻草等,随着微生物发酵技术的广泛研究,豆粕、谷物、全价饲料等也被用作发酵饲料的原料。发酵底物为微生物提供营养和生存环境,发酵底物的特性会直接影响微生物的生长,进而影响产生的代谢产物[5]。目前发酵饲料底物的选择主要包括单一或几种单一饲料原料的混合和全价饲料2种。液态发酵的底物主要是谷物和全价饲料2种,与发酵谷物相比,发酵全价饲料是较为便捷的方式,但这种发酵方式会损失较多赖氨酸等氨基酸[15]。
2.3 发酵参数发酵过程是在酶的催化下进行的,而温度则是保证酶活性的重要因素。适当的发酵温度有利于缩短反应稳定时间。Dujardin等[16]试验结果表明,将液体发酵饲料温度从15 ℃提高至30 ℃时,饲料pH降至4.0的时间缩短约6倍。从酶动力学角度理解,提高温度可加快微生物生长和代谢速度[17]。微生物发酵饲料过程中,微生物的生长和代谢也会产生热量。这些热量一部分用作合成化合物,而一部分则通过热能的形式散发到基质中。固态发酵底物热传导效率低会导致微生物快速生长时发酵底物温度骤增,如果多余的热量不能及时散失,微生物的生长代谢会受到限制。
在发酵早期阶段营养物质充足,随着发酵时间的延长营养物质逐渐被消耗,因此,发酵不完全会导致发酵目标产物浓度过低[18]。然而,发酵时间过长,微生物会消耗发酵体系中的营养物质,微生物还可能发生自噬现象,不利于高品质发酵饲料的生产。发酵底物湿度也是微生物发酵的重要因素之一,因固态发酵体系不存在自由水,所以与液态发酵相比,发酵底物湿度对固态发酵而言更为重要[19]。已有研究证明,最优的底物湿度与发酵体系中,底物特性、微生物发酵类型以及发酵温度和时间等因素密不可分[20]。总之,微生物发酵是个复杂的动态发酵过程,发酵最终产物受其影响因素的互作调控。为获得理想的发酵产物,精准优化发酵条件势在必行。
3 微生物发酵饲料在动物生产上的应用 3.1 家禽微生物发酵饲料对家禽生产上的影响,主要体现在改善生长性能和肠道微生态等方面[21-27]。家禽体内缺乏内源性非淀粉多糖(NSP)水解酶,饲粮中可溶性NSP会增加肠道食糜黏度,降低营养物质消化率。菜籽粕中含较高水平的NSP,复合酶发酵可使菜籽粕中NSP总量减少31%~42%[28]。Chiang等[29]报道,饲喂乳杆菌和枯草芽孢杆菌发酵的菜籽饼粕可提高肉鸡增重和饲料转化效率。Ashayerizadeh等[21]研究也发现,嗜酸乳杆菌、枯草芽孢杆菌和黑曲霉菌发酵的菜籽饼粕,可提高肉鸡平均日增重和饲料转化效率。这意味着发酵过程提高饲粮的营养价值和养分的消化率可能是改善肉鸡生长性能的关键因素。
Jazi等[23]报道,嗜酸乳杆菌、植物乳杆菌、枯草芽孢杆菌和米曲霉菌发酵豆粕可以显著减少感染沙门氏菌肉鸡肠道中的沙门氏菌数量,同时乳酸菌数量增加。发酵玉米蛋白粉(酵母菌、乳酸菌、黑曲霉和地衣芽孢杆菌)能够减少黄羽肉鸡肠道内大肠杆菌的数量,增加乳酸杆菌的数量[24]。发酵棉籽饼粕(枯草芽孢杆菌、黑曲霉菌和米曲霉菌)也被发现可以降低肉鸡肠道中大肠杆菌的数量[25]。发酵饲料中的益生菌不仅能降低家禽肠道pH,还能够通过竞争排除肠道病原体[30]。因此,发酵饲料被视为减少肉鸡肠道病原体的有效策略。此外,发酵饲料还可以改善家禽肠道形态,提高家禽生产性能(如蛋品质等)[26-27]。
3.2 猪微生物发酵饲料在猪生产中已被广泛应用,它可降低腹泻、提高生长性能、促进肠道有益菌增长、提高仔猪初生重、改善肉品质等[31-39]。现代化养猪生产中,仔猪早期断奶技术已被普遍采用,但早期断奶仔猪极易出现腹泻,进而影响仔猪的生长和发育。Huang等[31]研究发现,饲喂断奶仔猪枯草芽孢杆菌和地衣芽孢杆菌联合发酵的酒糟可降低料重比和腹泻率。饲喂断奶仔猪发酵豆粕可提高粗蛋白质和氨基酸的表观消化率和标准回肠消化率[32],另外,枯草芽孢杆菌和黑曲霉联合发酵的豆粕能够提高大肠杆菌K88感染仔猪的平均日增重,增强其粪便黏稠度[33]。这些作用效果主要在于发酵过程中微生物能够降解抗营养因子和饲料中大分子物质,并提供益生菌及其代谢产物[40]。
Yin等[41]研究发现,乳酸菌发酵饲料可通过减少促炎因子的表达,减缓断奶仔猪的沙门氏菌感染。Price等[42]报道,给感染沙门氏菌的仔猪补充酵母发酵产品能增加其拟杆菌和乳酸杆菌的数量。此外,在产仔母猪饲粮中添加植物乳杆菌发酵的液体饲料可减少粪便大肠菌群数量,增强宿主免疫力[37]。这些研究都表明,微生物发酵饲料有益于改善猪肠道微生物群落结构。多数研究者认为,益生元、益生菌及其代谢产物是微生物发酵饲料影响宿主肠道微生物和健康的重要因素。微生物发酵饲料发挥其积极作用包括2个重要方面:一方面,接种在饲料中的益生菌定植在肠道的不同部位发挥作用,其代谢产物如有机酸、短链脂肪酸等也可发挥抗菌、抗氧化等作用;另一方面,益生元促进肠道有益菌的繁殖,并可能增强其有益的代谢途径[43]。
3.3 反刍动物粗饲料是反刍动物饲粮中的重要组分,除粗纤维外其他养分含量相对较少,适口性差。利用微生物发酵技术处理粗饲料,可有效改善其营养特性[44],提高动物生产性能[45]。青贮饲料是反刍动物能量、营养物质和可消化纤维的主要来源。在奶牛粗饲料中使用一定量青贮玉米,可增加奶牛采食量、产奶量和乳蛋白含量[46-47]。另有研究报道,构树青贮可提高奶牛机体免疫和抗氧化能力,增加牛奶中多不饱和脂肪酸含量[48]。胡张涛等[49]在肉牛上的研究发现,青贮燕麦和发酵杂交构树能提高肉牛免疫性能,降低背最长肌肌纤维横截面积,增加背最长肌肌纤维密度。由此可见,青贮饲料已然成为高产反刍动物饲粮中不可或缺的组分。
随着发酵饲料技术的广泛应用,微生物发酵精饲料在反刍动物生产中也取得了一定进展。豆粕的主要抗营养因子可被瘤胃微生物所降解,然而发酵豆粕中的小肽可以直接被动物机体吸收,且易被组织利用。Wang等[50]研究发现,发酵豆粕可通过增加产琥珀酸丝状杆菌、反刍兽新月形单胞菌和普雷沃氏菌的拷贝数来改善泌乳奶牛瘤胃微生态环境。Kim等[51]报道,发酵豆粕还可降低犊牛的腹泻率。
玉米是我国主产粮之一,深加工过程中可产生庞大数量的玉米蛋白粉。玉米蛋白粉因蛋白溶解性、氨基酸不平衡和适口性差限制其在动物饲粮中的应用。随着微生物发酵饲料技术不断深入,已有研究将目标聚焦在玉米发酵蛋白粉上。姜鑫[52]用乳酸菌联合酸性蛋白酶发酵的玉米蛋白粉部分替代犊牛和泌乳奶牛饲粮中的豆粕,研究发现发酵玉米蛋白粉能够改善犊牛和泌乳牛的生产性能、瘤胃发酵模式和细菌群落的组成,证明了发酵玉米蛋白粉替代豆粕在牛生产中的可行性。本实验室探究了发酵玉米蛋白粉在羔羊和育肥羊上的应用效果,研究结果显示,用发酵玉米蛋白粉替代饲粮中20%、40%和60%的豆粕对羔羊生长性能无负面影响;发酵玉米蛋白粉替代饲粮中25%豆粕为最适替代量,该替代量能够增强瘤胃发酵,提高育肥羊抗氧化能力,改善羊肉品质。研究结果为发酵玉米蛋白粉在反刍动物生产中的应用提供了可行性参考。
4 小结与展望微生物发酵可降低饲料原料中的抗营养因子、增加有益的代谢产物、改善动物对饲料营养物质的消化和吸收及维持肠道菌群平衡等,具有广阔的应用空间。虽然微生物发酵饲料的优势逐渐被认可,但由于我国微生物发酵饲料的研究起步较晚,且整体研发和产业化水平相对滞后,有许多不足之处需加以改进。在饲料原料选择上,要扩大来源,充分利用非常规饲料,探索符合我国饲料资源特点的微生物发酵饲料。在生产制备方面,挖掘高效发酵菌种,探索发酵过程中菌种的作用机制及混合菌发酵的互作机制,精准优化发酵工艺,以期获得品质稳定型的微生物发酵饲料。在应用方面,研究不同发酵饲料饲喂效果的同时需深入探究其作用机理,为进一步开发高效精准型的微生物发酵饲料提供基础。总体上看,微生物发酵饲料在畜禽生产中已取得了一定成效,未来随着微生物发酵技术研究不断深入,其在动物生产中将会发挥更大的效用。
[1] |
MISSOTTEN J A, MICHIELS J, DEGROOTE J, et al. Fermented liquid feed for pigs: an ancient technique for the future[J]. Journal of Animal Science and Biotechnology, 2015, 6(1): 4. DOI:10.1186/2049-1891-6-4 |
[2] |
YANG L J, ZENG X F, QIAO S Y. Advances in research on solid-state fermented feed and its utilization: the pioneer of private customization for intestinal microorganisms[J]. Animal Nutrition, 2021, 7(4): 905-916. DOI:10.1016/j.aninu.2021.06.002 |
[3] |
YANG Z L, ZHANG Z S. Engineering strategies for enhanced production of protein and bio-products in Pichia pastoris: a review[J]. Biotechnology Advances, 2018, 36(1): 182-195. DOI:10.1016/j.biotechadv.2017.11.002 |
[4] |
TERÁN L C, MORTERA P, TUBIO G, et al. Genomic analysis revealed conserved acid tolerance mechanisms from native micro-organisms in fermented feed[J]. Journal of Applied Microbiology, 2022, 132(2): 1152-1165. DOI:10.1111/jam.15292 |
[5] |
CANIBE N, JENSEN B B. Fermented liquid feed-microbial and nutritional aspects and impact on enteric diseases in pigs[J]. Animal Feed Science and Technology, 2012, 173(1/2): 17-40. |
[6] |
KOGAN G, KOCHER A. Role of yeast cell wall polysaccharides in pig nutrition and health protection[J]. Livestock Science, 2007, 109(1/2/3): 161-165. |
[7] |
HAN B Z, ROMBOUTS F M, NOUT M J. A Chinese fermented soybean food[J]. International Journal of Food Microbiology, 2001, 65(1/2): 1-10. |
[8] |
MAZOTTO A M, COELHO R R R, CEDROLA S M L, et al. Keratinase production by three bacillus spp. using feather meal and whole feather as substrate in a submerged fermentation[J]. Enzyme Research, 2011, 2011: 523780. |
[9] |
YING W, ZHU R, LU W, et al. A new strategy to apply Bacillus subtilis Ma139 for the production of solid-state fermentation feed[J]. Letters in Applied Microbiology, 2009, 49(2): 229-234. DOI:10.1111/j.1472-765X.2009.02647.x |
[10] |
HONG K J, LEE C H, KIM S W. Aspergillus oryzae GB-107 fermentation improves nutritional quality of food soybeans and feed soybean meals[J]. Journal of Medicinal Food, 2004, 7(4): 430-435. DOI:10.1089/jmf.2004.7.430 |
[11] |
MUKHERJEE R, CHAKRABORTY R, DUTTA A. Role of fermentation in improving nutritional quality of soybean meal-a review[J]. Asian-Australasian Journal of Animal Sciences, 2016, 29(11): 1523-1529. |
[12] |
龚仁. 混合发酵葵花盘(粉)生产生物蛋白饲料的研究及应用[D]. 硕士学位论文. 西安: 西北大学, 2009. GONG R. Research and application on mixed fermentation of sunflower plate (pink) for bio-protein feed[D]. Master's Thesis. Xi'an: Northwest University, 2009. (in Chinese) |
[13] |
TENG D, GAO M Y, YANG Y L, et al. Bio-modification of soybean meal with Bacillus subtilis or Aspergillus oryzae[J]. Biocatalysis and Agricultural Biotechnology, 2012, 1(1): 32-38. DOI:10.1016/j.bcab.2011.08.005 |
[14] |
郭萌萌, 曹锡, 张科, 等. 复合菌发酵豆粕的效果及代谢产物研究[J]. 动物营养学报, 2022, 34(1): 659-670. GUO M M, CAO X, ZHANG K, et al. Effects and metabolites of soybean meal fermented by compound microbes[J]. Chinese Journal of Animal Nutrition, 2022, 34(1): 659-670 (in Chinese). DOI:10.3969/j.issn.1006-267x.2022.01.060 |
[15] |
O'MEARA F M, GARDINER G E, O'DOHERTY J V, et al. Effect of wet/dry, fresh liquid, fermented whole diet liquid, and fermented cereal liquid feeding on feed microbial quality and growth in grow-finisher pigs[J]. Journal of Animal Science, 2020, 98(6). |
[16] |
DUJARDIN M, ELAIN A, LENDORMI T, et al. Keeping under control a liquid feed fermentation process for pigs: a reality scale pilot based study[J]. Animal Feed Science and Technology, 2014, 194: 81-88. DOI:10.1016/j.anifeedsci.2014.04.017 |
[17] |
PANDEY A. Solid-state fermentation[J]. Biochemical Engineering Journal, 2003, 13(2/3): 81-84. |
[18] |
GAO J, ZHANG H J, WU S G, et al. Effect of Saccharomyces cerevisiae fermentation product on immune functions of broilers challenged with Eimeria tenella[J]. Poultry Science, 2009, 88(10): 2141-2151. DOI:10.3382/ps.2009-00151 |
[19] |
NAGEL F J, TRAMPER J, BAKKER M S, et al. Model for on-line moisture-content control during solid-state fermentation[J]. Biotechnology and Bioengineering, 2001, 72(2): 231-243. DOI:10.1002/1097-0290(20000120)72:2<231::AID-BIT11>3.0.CO;2-S |
[20] |
KIM M J, LEE H W, KIM J Y, et al. Impact of fermentation conditions on the diversity of white colony-forming yeast and analysis of metabolite changes by white colony-forming yeast in kimchi[J]. Food Research International, 2020, 136: 109315. DOI:10.1016/j.foodres.2020.109315 |
[21] |
ASHAYERIZADEH A, DASTAR B, SHAMS SHARGH M, et al. Fermented rapeseed meal is effective in controlling Salmonella enterica serovar Typhimurium infection and improving growth performance in broiler chicks[J]. Veterinary Microbiology, 2017, 201: 93-102. DOI:10.1016/j.vetmic.2017.01.007 |
[22] |
ASHAYERIZADEH A, DASTAR B, SHARGH M S, et al. Effects of feeding fermented rapeseed meal on growth performance, gastrointestinal microflora population, blood metabolites, meat quality, and lipid metabolism in broiler chickens[J]. Livestock Science, 2018, 216: 183-190. DOI:10.1016/j.livsci.2018.08.012 |
[23] |
JAZI V, MOHEBODINI H, ASHAYERIZADEH A, et al. Fermented soybean meal ameliorates Salmonella Typhimurium infection in young broiler chickens[J]. Poultry Science, 2019, 98(11): 5648-5660. DOI:10.3382/ps/pez338 |
[24] |
苗国伟. 微生物固态发酵玉米蛋白粉工艺优化及其对肉鸡抗氧化能力的影响[D]. 硕士学位论文. 长春: 吉林农业大学, 2016. MIAO G W. Optimization of solid-state fermentation parameters of corn gluten meal and the effect of antioxidant capacity of products on broilers[D]. Master's Thesis. Changchun: Jilin Agricultural University, 2016. (in Chinese) |
[25] |
JAZI V, BOLDAJI F, DASTAR B, et al. Effects of fermented cottonseed meal on the growth performance, gastrointestinal microflora population and small intestinal morphology in broiler chickens[J]. British Poultry Science, 2017, 58(4): 402-408. DOI:10.1080/00071668.2017.1315051 |
[26] |
LV J, GUO L J, CHEN B X, et al. Effects of different probiotic fermented feeds on production performance and intestinal health of laying hens[J]. Poultry Science, 2022, 101(2): 101570. DOI:10.1016/j.psj.2021.101570 |
[27] |
GUO L J, LV J, LIU Y L, et al. Effects of different fermented feeds on production performance, cecal microorganisms, and intestinal immunity of laying hens[J]. Animals: an Open Access Journal from MDPI, 2021, 11(10): 2799. |
[28] |
JAKOBSEN G V, JENSEN B B, KNUDSEN K E B, et al. Improving the nutritional value of rapeseed cake and wheat dried distillers grains with solubles by addition of enzymes during liquid fermentation[J]. Animal Feed Science and Technology, 2015, 208: 198-213. DOI:10.1016/j.anifeedsci.2015.07.015 |
[29] |
CHIANG G, LU W Q, PIAO X S, et al. Effects of feeding solid-state fermented rapeseed meal on performance, nutrient digestibility, intestinal ecology and intestinal morphology of broiler chickens[J]. Asian-Australasian Journal of Animal Sciences, 2010, 23(2): 263-271. |
[30] |
KIEROŃCZYK B, PRUSZYŃSKA-OSZMAŁEK E, ŚWIATKIEWICZ S, et al. The nisin improves broiler chicken growth performance and interacts with salinomycin in terms of gastrointestinal tract microbiota composition[J]. Journal of Animal and Feed Sciences, 2016, 25(4): 309-316. DOI:10.22358/jafs/67802/2016 |
[31] |
HUANG L L, REN P P, OUYANG Z C, et al. Effect of fermented feed on growth performance, holistic metabolism and fecal microbiota in weanling piglets[J]. Animal Feed Science and Technology, 2020, 266: 114505. DOI:10.1016/j.anifeedsci.2020.114505 |
[32] |
YAN H, JIN J Q, YANG P, et al. Fermented soybean meal increases nutrient digestibility via the improvement of intestinal function, anti-oxidative capacity and immune function of weaned pigs[J]. Animal, 2022, 16(6): 100557. DOI:10.1016/j.animal.2022.100557 |
[33] |
WANG W W, WANG Y, HAO X R, et al. Dietary fermented soybean meal replacement alleviates diarrhea in weaned piglets challenged with enterotoxigenic Escherichia coli K88 by modulating inflammatory cytokine levels and cecal microbiota composition[J]. BMC Veterinary Research, 2020, 16(1): 245. DOI:10.1186/s12917-020-02466-5 |
[34] |
KOO B, BUSTAMANTE-GARCÍA D, KIM J W, et al. Health-promoting effects of Lactobacillus-fermented barley in weaned pigs challenged with Escherichia coli K88+[J]. Animal, 2020, 14(1): 39-49. DOI:10.1017/S1751731119001939 |
[35] |
LIU S, XIAO H, XIONG Y X, et al. Effects of fermented feed on the growth performance, intestinal function, and microbiota of piglets weaned at different age[J]. Frontiers in Veterinary Science, 2022, 9: 841762. DOI:10.3389/fvets.2022.841762 |
[36] |
LUO W L, YIN X F, YAO J B, et al. Fermented soybean meal affects the reproductive performance and oxidative status of sows, and the growth of piglets[J]. Animals: an Open Access Journal from MDPI, 2021, 11(3): 597. |
[37] |
DEMECKOVÁ V, KELLY D, COUTTS A G P, et al. The effect of fermented liquid feeding on the faecal microbiology and colostrum quality of farrowing sows[J]. International Journal of Food Microbiology, 2002, 79(1/2): 85-97. |
[38] |
HAO L H, SU W F, ZHANG Y, et al. Effects of supplementing with fermented mixed feed on the performance and meat quality in finishing pigs[J]. Animal Feed Science and Technology, 2020, 266: 114501. DOI:10.1016/j.anifeedsci.2020.114501 |
[39] |
XIE K H, DAI Y Q, ZHANG A, et al. Effects of fermented soybean meal on growth performance, meat quality, and antioxidant capacity in finishing pigs[J]. Journal of Functional Foods, 2022, 94: 105128. DOI:10.1016/j.jff.2022.105128 |
[40] |
KIARIE E, BHANDARI S, SCOTT M, et al. Growth performance and gastrointestinal microbial ecology responses of piglets receiving Saccharomyces cerevisiae fermentation products after an oral challenge with Escherichia coli (K88)[J]. Journal of Animal Science, 2011, 89(4): 1062-1078. DOI:10.2527/jas.2010-3424 |
[41] |
YIN F G, FARZAN A, WANG Q C, et al. Reduction of Salmonella enterica serovar Typhimurium DT104 infection in experimentally challenged weaned pigs fed a Lactobacillus-fermented feed[J]. Foodborne Pathogens and Disease, 2014, 11(8): 628-634. DOI:10.1089/fpd.2013.1676 |
[42] |
PRICE K L, TOTTY H R, LEE H B, et al. Use of Saccharomyces cerevisiae fermentation product on growth performance and microbiota of weaned pigs during Salmonella infection[J]. Journal of Animal Science, 2010, 88(12): 3896-3908. DOI:10.2527/jas.2009-2728 |
[43] |
WANG C, SHI C Y, ZHANG Y, et al. Microbiota in fermented feed and swine gut[J]. Applied Microbiology and Biotechnology, 2018, 102(7): 2941-2948. DOI:10.1007/s00253-018-8829-4 |
[44] |
李术娜, 惠小双, 李红亚, 等. 多功能复合菌剂发酵玉米秸秆对育肥羊能量代谢的影响[J]. 动物营养学报, 2015, 27(7): 2231-2240. LI S N, HUI X S, LI H Y, et al. Effects of multifunctional complex microbial agent fermented corn straw on energy metabolism of fattening sheep[J]. Chinese Journal of Animal Nutrition, 2015, 27(7): 2231-2240 (in Chinese). DOI:10.3969/j.issn.1006-267x.2015.07.030 |
[45] |
ZHANG G N, LI Y, FANG X P, et al. Lactation performance, nitrogen utilization, and profitability in dairy cows fed fermented total mixed ration containing wet corn gluten feed and corn stover in combination replacing a portion of alfalfa hay[J]. Animal Feed Science and Technology, 2020, 269: 114687. DOI:10.1016/j.anifeedsci.2020.114687 |
[46] |
PHIPPS R H, SUTTON J D, BEEVER D E, et al. The effect of crop maturity on the nutritional value of maize silage for lactating dairy cows. 3. Food intake and milk production[J]. Animal Science, 2000, 71(2): 401-409. DOI:10.1017/S1357729800055259 |
[47] |
KEADY T W J, KILPATRICK D J, MAYNE C S, et al. Effects of replacing grass silage with maize silages, differing in maturity, on performance and potential concentrate sparing effect of dairy cows offered two feed value grass silages[J]. Livestock Science, 2008, 119(1/2/3): 1-11. |
[48] |
HAO Y Y, HUANG S, SI J F, et al. Effects of paper mulberry silage on the milk production, apparent digestibility, antioxidant capacity, and fecal bacteria composition in Holstein dairy cows[J]. Animals: an Open Access Journal from MDPI, 2020, 10(7): 1152. |
[49] |
胡张涛, 陈书礼, 倪洁, 等. 青贮燕麦和发酵杂交构树对肉牛生长性能、血清生化指标、肉品质以及肌肉组织学特性的影响[J]. 动物营养学报, 2022, 34(7): 4474-4486. HU Z T, CHEN S L, NI J, et al. Effects of oat silage and fermented hybrid broussonetia papyrifera on growth performance, serum biochemical indices, meat quality and muscle histological characteristics of cattle[J]. Chinese Journal of Animal Nutrition, 2022, 34(7): 4474-4486 (in Chinese). DOI:10.3969/j.issn.1006-267x.2022.07.037 |
[50] |
WANG Z, YU Y N, LI X Y, et al. Fermented soybean meal replacement in the diet of lactating Holstein dairy cows: modulated rumen fermentation and ruminal microflora[J]. Frontiers in Microbiology, 2021, 12: 625857. DOI:10.3389/fmicb.2021.625857 |
[51] |
KIM M H, YUN C H, KIM H S, et al. Effects of fermented soybean meal on growth performance, diarrheal incidence and immune-response of neonatal calves[J]. Animal Science Journal, 2010, 81(4): 475-481. DOI:10.1111/j.1740-0929.2010.00760.x |
[52] |
姜鑫. 玉米蛋白粉固态发酵条件及对奶牛饲喂效果研究[D]. 博士学位论文. 哈尔滨: 东北农业大学, 2021. JIANG X. Study on solid state fermentation conditions of corn gluten meal and its feeding effect on dairy cows[D]. Ph. D. Thesis. Harbin: Northeast Agricultural University, 2021. (in Chinese) |