家兔是一种小型哺乳动物,既能产肉,又能产毛产皮。在兔毛和兔皮生产中,包括被毛密度在内的被毛品质是重要的经济指标;毛囊是被毛生长和发育的基础,毛囊的生长发育直接决定了毛皮的质量。毛囊的生长发育不仅受年龄、季节、环境等因素的影响,还受到各种营养物质及信号通路的影响,本文对近年来有关家兔毛囊生长发育及营养物质调控相关文献进行综述,以期对以后研究毛囊生长发育提供参考。
1 家兔毛囊形态发生、结构及发育毛囊是哺乳动物特有的皮肤附属物,是毛发生长的基础[1],分为初级毛囊和次级毛囊。毛囊发育从基板开始,皮肤由表皮和真皮2个主要部分组成:由一层上皮细胞组成的表皮,形成一个保护屏障,防止外部损伤;真皮中含有支持皮肤的成纤维细胞。上皮细胞增厚,真皮成纤维细胞增加聚集,诱导基板的形成[2],经过毛胚、膨大、毛管等最终产生毛囊。毛发由毛囊产生,通过生长期、退行期和休眠期的周期循环来维持被毛的完整[3]。
毛囊间充质由2个截然不同的部分代表,即真皮乳头(DP)和真皮鞘(DS)。毛乳头控制着基质细胞的数量,进而控制着毛囊及其毛干的性质和大小。驻留在DS内的真皮干细胞作为细胞库,在每个新周期中维持补充DP细胞的数量[4]。
家兔(獭兔)胚胎期毛囊发育开始于20、21日龄,出现少量的毛囊钉球;22日龄毛囊钉球数目增多,基板增厚;23、24日龄时,毛乳头细胞生长且毛囊内根鞘向上延伸;25日龄时毛囊基本发育成型[5]。毛密度在1~3月龄处于平台期;4~7月龄处于波形变动期,切片结果显示5~7月龄为全休止期;4~6月龄为换毛期。在整个毛发周期中,毛乳头细胞表现出异常强烈的碱性磷酸酶(ACP)活性[6]。
2 家兔毛囊生长发育相关信号通路及重要基因毛囊发育过程中不同的信号级联以及转录因子的不同组合,在特定阶段发挥不同的作用。Wnt/β-连环蛋白(β-catenin)信号通路在毛囊形态发生和再生中起着至关重要的作用,转化生长因子-β(TGF-β)和骨形态发生蛋白(BMP)信号主要在静止期、退行期发挥作用。Notch信号通过抑制TGF-β和激活Kit配体,确保了在第1个生长期的最佳基质增殖环境[7]。磷脂酰肌醇3-激酶(PI3K)/蛋白激酶B(Akt)信号通路对于维持和恢复树突状细胞的毛发诱导性至关重要[8]。音猬因子(Shh)信号由Eda激活参与初级毛发与次级毛发的形成以及后期分化[9],调节特定的DP信号通路来维持DP成熟,同时维持Shh-Noggin环来驱动毛囊形态发生[10]。Notch1过表达导致表皮分化细胞腔室增加,延迟内根鞘分化,导致毛发生长周期早期相关的毛干异常和脱发[11]。
此外,一些信号分子也调节毛囊周期进入生长期的时间[12]。胰岛素样生长因子-1(IGF-1)影响毛囊增殖、毛发生长周期和毛囊分化[13]。安哥拉兔皮下注射表皮生长因子(EGF)可提高毛产量,并可引起毛囊的再生。EGF抑制了毛囊基质细胞的DNA合成,显著刺激了外根鞘(ORS)的DNA合成,刺激了毛囊外根鞘下部细胞的增厚和空泡化,毛囊的基质细胞向上迁移,形成了“棒状毛发”结构,通过上皮细胞与真皮乳头保持连接[14]。IGF-1和EGF联合治疗可增强毛囊的增殖,促进毛发周期由静止期向生长期的转变,刺激毛发轴的生长,维持毛囊的结构,并促进皮肤外根鞘和真皮乳头的细胞增殖[15]。肝细胞生长因子(HGF)是一种旁分泌激素,在上皮-间质转化中起重要作用。HGF能使β-catenin进入培养的上皮毛囊干细胞的细胞核,可能通过增加β-catenin的表达促进毛囊的生长[16]。HGF通过上调Wnt6和Wnt10b的表达抑制真皮乳头中的分泌型卷曲相关蛋白1(SFRP1)的表达,激活人头发基质中的Wnt/β-catenin信号通路,调控人类毛发生长和色素沉着[17]。Wnt10b在皮肤中过表达时,可能是通过增强典型Wnt信号通路来诱导毛囊从静止期向初发期的生物学切换[18-19]。富含亮氨酸重复序列的G蛋白偶联受体5(LGR5)在膜水平成为Wnt信号复合物的一部分,增强Wnt/β-catenin信号。然而,LGR5的内化对于增强典型的Wnt信号通路并不是必需的[20]。T细胞因子3(TCF3)是一种转录抑制因子,参与Wnt信号转导,在胚胎轴定向和干细胞分化中发挥关键作用[21]。血管内皮细胞生长因子受体-2(VEGFR-2)和转录因子核因子-κB(NF-κB)参与了小鼠毛发周期的调节,NF-κB在小鼠毛囊干细胞的激活、维持和/或生长中是不可或缺的[22]。趋化因子配体27(CCL27)是一种主要由皮肤角质细胞表达的趋化因子,皮肤淋巴细胞表达CCL27唯一已知受体趋化因子受体10(CCR10)。CCL27/CCR10轴的主要功能是帮助建立组织常驻淋巴细胞和维持皮肤免疫稳态[23]。利用高通量测序技术对兔毛评估差异表达基因,发现WNT5A、WNT11、骨形态发生蛋白4(BMP4)、骨形态发生蛋白7(BMP7)、肌节同源盒基因同系物2(MSX2)、成纤维生长因子5(FGF5)、血小板衍生生长因子A(PDGFA)和胰岛素样生长因子结合蛋白5(IGFBP5)等基因是影响毛长的候选基因[24]。
成纤维生长因子8(FGF8)过表达抑制表皮细胞增殖,同时促进细胞凋亡,导致毛囊发育受阻[25]。趋化因子CXC配体12(CXCL12)在真皮成纤维细胞中高度表达,其水平在毛发周期的退行期和静止期均有升高;CXC趋化因子受体4(CXCR4)表达于DP和ORS,CXCL12通过CXCR4的激活,增加了DP和ORS细胞中信号转导和转录活化因子3(STAT3)和信号转导和转录活化因子5(STAT5)的磷酸化,抑制毛发生长[26]。FGF5是毛发长度变化的主要候选因子,也是决定毛发活性生长期和毛囊退化期的调节因子;FGF5已被确定为各种哺乳动物毛发生长的抑制剂;FGF5诱导人毛囊的退化,使用CRISPR/Cas9系统敲除和破坏山羊FGF5基因导致纤维变长[27]。也有研究表明,从FGF5 mRNA的交替剪接变体翻译而来的FGF5多肽会抑制FGF5的活性,促进毛发生长[28]。在静止期过表达的成纤维生长因子18(FGF18)主要通过维持静止期、抑制毛囊进入发育期来调控毛囊周期。FGF5的抑制可以延长毛囊的发育期,而FGF18的抑制则可以促进毛囊从静止期向发育期过渡[29]。
3 营养物质对家兔毛囊生长发育的调控作用营养物质与毛囊生长发育密切相关,影响着家兔产毛量和毛品质。
3.1 蛋白质/氨基酸赖氨酸是毛发的蛋白质支撑结构——胶原蛋白的组成成分,也有助于机体吸收铁,滋养毛囊并促进生长。含硫氨基酸是限制毛发生长的主要氨基酸之一。在培养基中添加适宜浓度的蛋氨酸可以提高水貂毛乳头细胞的增殖活力[30]。在低蛋白质饲粮条件下,长毛兔产毛量、粗毛比重和兔毛平均细度随蛋氨酸水平的升高而增高[31]。增加妊娠期母兔饲粮中蛋氨酸水平有利于仔兔毛囊发育,能够提高细毛纤维直径;随着饲粮蛋氨酸水平的提高,2月龄长毛兔背部皮肤初级毛囊密度呈升高趋势[32]。人类毛囊表达免疫调节糖蛋白——骨桥蛋白,可降低毛发生长启动子成纤维生长因子7(FGF7)的mRNA和蛋白表达,以FGF7依赖的方式有效地抑制人类毛发的生长[33]。外源性谷氨酸促进小鼠毛发生长和角质细胞增殖[34]。毛囊干细胞谱系发展为外根鞘祖细胞需要氧化磷酸化和哺乳动物雷帕霉素靶蛋白复合物2(mTORC2)-Akt信号轴调节谷氨酰胺分解代谢进入三羧酸循环(TCA)[35]。依氟鸟氨酸是一种特定的、不可逆的鸟氨酸脱羧酶(ODC)抑制剂,被认为是通过抑制毛囊中的鸟氨酸脱羧酶来减缓毛发生长[36]。鸟氨酸脱羧酶是多胺生物合成途径中的限速酶,在小鼠毛囊中周期性变化,与毛发生长平行,也表明多胺合成促进毛囊生长[37]。
3.2 维生素维生素A通过改变干细胞来调控毛发周期,包括从静止期到生长期和从生长期到退行期的转变,以及调节滤泡间表皮(IFE)中的脂质代谢以维持表皮屏障功能[38]。水貂饲粮中过量维生素A通过抑制转化生长因子-β2(TGF-β2)/Smad2途径抑制毛乳头细胞的增殖,促进其凋亡,导致毛囊生长期缩短,抑制毛囊生长[39]。在獭兔皮肤毛乳头细胞的分离培养中,适宜浓度的维生素B6能够显著抑制细胞凋亡,通过抑制ocu-miR-205-5p表达,激活PI3K/Akt、Wnt和Notch等信号通路中相关基因和蛋白的表达,延长毛囊生长期,推迟休止期到来[40]。在生长獭兔饲粮中添加适宜水平的烟酸增加了初级、次级及总毛囊密度[41]。维生素D可能对全秃、普秃、斑秃患者具有免疫调节治疗作用,其受体维生素D受体(VDR)的存在成为维持正常头发周期的先决条件[42]。泛酸通过DNA结合抑制剂3/Notch信号通路促进水貂毛囊毛乳头细胞增殖[43]。维生素C可刺激真皮乳头细胞生长及促进毛囊生长,能够抑制白细胞的聚集、清除氧自由基、抑制膜脂质过氧化,从而抑制大鼠烧伤皮肤毛囊上皮细胞的凋亡[44]。
3.3 微量元素铜和锌是毛纤维的组成物质,缺乏会使毛发生长受阻。低铜可导致毛弯曲明显减少,甚至无弯曲。缺铜时兔毛延伸力、弹性、染料亲和力和胱氨酸含量下降。铜和钼通过改变次级毛囊和活跃次级毛囊的数量以及次级毛囊与初级毛囊的比例对羊绒生长或直径产生明显的交互作用[45]。饲粮中添加钴可以增加獭兔的皮张重量和毛囊密度;高水平钴显著降低毛囊密度,而低水平钴对毛囊密度无显著影响[46]。在生长獭兔饲粮中以硫酸锌形式添加锌,可通过上调Noggin基因的表达下调BMP4基因的表达,减少对毛囊生长的抑制并激活毛囊上皮细胞增殖,促进毛囊的形成和发育[47]。高剂量的口服锌通过延缓小鼠毛发生长初期的发育而显著抑制毛发生长[48]。饲粮中添加适量的碘能提高獭兔的皮张面积、毛皮撕裂强度,促进獭兔生长发育[49]。饲喂含亚硒酸钠的饲粮会使新西兰兔的被毛稀疏、杂乱、无光泽[50]。普遍认为硒对机体产生毒性是因为它取代了硫的位置,使含硫氨基酸的代谢发生障碍,导致含硫角质素分解、坏死,抑制巯基酶活性,从而引起机体代谢功能失常[51]。
4 非编码RNA对家兔毛囊生长发育的调控作用非编码RNA是不翻译成蛋白质,但参与调节各种细胞和生物过程的RNA,已知有些非编码RNA参与毛囊发育过程的调控。lncRNA2919主要定位于细胞核,能够极显著下调毛乳头细胞中骨形态发生蛋白2(BMP2)、细胞周期蛋白D1(CCND1)、淋巴样增强因子1(LEF1)和WNT2基因的表达,并且抑制细胞增殖,促进细胞凋亡;lncRNA2919在退行期高表达,使毛囊密度减少,毛囊深度明显降低,延缓毛干生长,延长休止期向生长期的过渡,进而抑制毛囊的周期性再生[52]。cu-miR-205-5p在低毛发密度兔的毛乳头细胞中的表达水平高于高毛发密度兔;ocu-miR-205增加了细胞凋亡率,改变了细胞周期的进程,促进了毛囊从生长期向退行期和静息期的转变,改变了獭兔的毛发密度[53]。miR-129-5p通过靶向调控同源盒C13(HOXC13)表达显著促进毛乳头细胞的凋亡并抑制增殖,从而抑制毛囊生长[54]。miR-218-5p能够靶向下调SFRP2基因的表达,激活Wnt信号通路的转录调控,影响家兔毛囊发育[55]。
5 其他因素对家兔毛囊生长发育的调控作用除上面所述营养物质外,还有一些其他物质如激素、脂肪酸等也对毛囊发育有影响。褪黑激素大幅度减弱了细胞凋亡程度,维持细胞正常形态,增强皮板强韧度,可促进毛囊发育,提高产毛量[56]。18-甲基二十烷酸是哺乳动物毛发纤维中主要的共价结合脂肪酸,对毛囊发育也有重要影响[57]。胆固醇调节角质细胞增殖和分化,胆固醇稳态的损害会通过调节固醇敏感信号通路而破坏正常的毛囊发育循环[58]。
6 小结综上所述,毛囊生长发育是一个生长期、退行期、静止期周期性的循环,其过程受到众多因子或信号通路的调控,其中Wnt/β-catenin、IGF-1、HGF、EGF、Shh、Notch等信号对毛囊发育有促进作用,而FGF、BMP、TGF-β等信号促进毛囊进入退行期或静止期。从营养调控方向上着手,氨基酸(赖氨酸和蛋氨酸)、维生素(维生素A、维生素D和维生素C)、矿物元素(铜、锌和碘)在调控毛囊发育的表型上都具有促进作用,但这些营养素具体的作用机制仍不明确,还需进一步去探索。
[1] |
STENN K S, PAUS R. Controls of hair follicle cycling[J]. Physiological Reviews, 2001, 81(1): 449-494. DOI:10.1152/physrev.2001.81.1.449 |
[2] |
SCHMIDT-ULLRICH R, PAUS R. Molecular principles of hair follicle induction and morphogenesis[J]. BioEssays, 2005, 27(3): 247-261. DOI:10.1002/bies.20184 |
[3] |
SAXENA N, RENDL M. A 4D road map for the formation of hair follicles[J]. Nature, 2021, 594(7864): 500-501. DOI:10.1038/d41586-021-01482-1 |
[4] |
RAHMANI W, ABBASI S, HAGNER A, et al. Hair follicle dermal stem cells regenerate the dermal sheath, repopulate the dermal papilla, and modulate hair type[J]. Developmental Cell, 2014, 31(5): 543-558. DOI:10.1016/j.devcel.2014.10.022 |
[5] |
李冰. 獭兔毛囊发育规律及不同被毛密度獭兔皮肤组织差异基因的筛选[D]. 硕士学位论文. 泰安: 山东农业大学, 2014. LI B. The research of the different embryonic period of hair follicle development and differential gene expression profiles of embryos in Rex rabbits with different wool density[D]. Master's Thesis. Tai'an: Shandong Agricultural University, 2014. (in Chinese) |
[6] |
傅祥超, 张凯, 文斌, 等. 獭兔毛密度变化及毛囊分化研究[J]. 中国养兔, 2012(1): 4-7. FU X C, ZHANG K, WEN B, et al. Study on hair follicles differentiation and hair density variation of Rex rabbit[J]. Chinese Journal of Rabbit Farming, 2012(1): 4-7 (in Chinese). DOI:10.3969/j.issn.1005-6327.2012.01.001 |
[7] |
RISHIKAYSH P, DEV K, DIAZ D, et al. Signaling involved in hair follicle morphogenesis and development[J]. International Journal of Molecular Sciences, 2014, 15(1): 1647-1670. DOI:10.3390/ijms15011647 |
[8] |
YAMANE M, SEO J, ZHOU Y H, et al. Effects of the PI3K/Akt signaling pathway on the hair inductivity of human dermal papilla cells in hair beads[J]. Journal of Bioscience and Bioengineering, 2022, 134(1): 55-61. DOI:10.1016/j.jbiosc.2022.03.010 |
[9] |
CUI C Y, KUNISADA M, CHILDRESS V, et al. Shh is required for Tabby hair follicle development[J]. Cell Cycle, 2011, 10(19): 3379-3386. DOI:10.4161/cc.10.19.17669 |
[10] |
WOO W M, ZHEN H H, ORO A E. Shh maintains dermal papilla identity and hair morphogenesis via a Noggin-Shh regulatory loop[J]. Genes & Development, 2012, 26(11): 1235-1246. |
[11] |
UYTTENDAELE H, PANTELEYEV A A, DE BERKER D, et al. Activation of Notch1 in the hair follicle leads to cell-fate switch and Mohawk alopecia[J]. Differentiation, 2004, 72(8): 396-409. DOI:10.1111/j.1432-0436.2004.07208006.x |
[12] |
JIANG Y, JIANG Y F, ZHANG H H, et al. A mutation in MAP2 is associated with prenatal hair follicle density[J]. FASEB Journal, 2019, 33(12): 14479-14490. DOI:10.1096/fj.201901187R |
[13] |
TRVEB R M. Further clinical evidence for the effect of IGF-1 on hair growth and alopecia[J]. Skin Appendage Disorders, 2018, 4(2): 90-95. DOI:10.1159/000479333 |
[14] |
PHILPOTT M P, KEALEY T. Effects of EGF on the morphology and patterns of DNA synthesis in isolated human hair follicles[J]. Journal of Investigative Dermatology, 1994, 102(2): 186-191. DOI:10.1111/1523-1747.ep12371760 |
[15] |
ZHAO B H, LI J L, CHEN Q R, et al. A treatment combination of IGF and EGF promotes hair growth in the angora rabbit[J]. Genes, 2020, 12(1): 24. DOI:10.3390/genes12010024 |
[16] |
QI Y H, LI M, XU L, et al. Therapeutic role of human hepatocyte growth factor (HGF) in treating hair loss[J]. PeerJ, 2016, 4: e2624. DOI:10.7717/peerj.2624 |
[17] |
NICU C, O'SULLIVAN J D B, RAMOS R, et al. Dermal adipose tissue secretes HGF to promote human hair growth and pigmentation[J]. Journal of Investigative Dermatology, 2021, 141(7): 1633-1645. DOI:10.1016/j.jid.2020.12.019 |
[18] |
WU P, ZHANG Y, XING Y, et al. The balance of Bmp6 and Wnt10b regulates the telogen-anagen transition of hair follicles[J]. Cell Communication and Signaling, 2019, 17(1): 16. DOI:10.1186/s12964-019-0330-x |
[19] |
LI Y H, ZHANG K, YANG K, et al. Adenovirus-mediated Wnt10b overexpression induces hair follicle regeneration[J]. Journal of Investigative Dermatology, 2013, 133(1): 42-48. DOI:10.1038/jid.2012.235 |
[20] |
CARMON K S, LIN Q S, GONG X, et al. LGR5 interacts and cointernalizes with Wnt receptors to modulate Wnt/β-catenin signaling[J]. Molecular and Cellular Biology, 2012, 32(11): 2054-2064. DOI:10.1128/MCB.00272-12 |
[21] |
HIKASA H, EZAN J, ITOH K, et al. Regulation of TCF3 by Wnt-dependent phosphorylation during vertebrate axis specification[J]. Developmental Cell, 2010, 19(4): 521-532. DOI:10.1016/j.devcel.2010.09.005 |
[22] |
KRIEGER K, MILLAR S E, MIKUDA N, et al. NF-κB participates in mouse hair cycle control and plays distinct roles in the various pelage hair follicle types[J]. Journal of Investigative Dermatology, 2018, 138(2): 256-264. DOI:10.1016/j.jid.2017.08.042 |
[23] |
LI C, XU M, COYNE J, et al. Psoriasis-associated impairment of CCL27/CCR10-derived regulation leads to IL-17A/IL-22-producing skin T-cell overactivation[J]. The Journal of Allergy and Clinical Immunology, 2021, 147(2): 759-763. DOI:10.1016/j.jaci.2020.05.044 |
[24] |
ZHAO B, CHEN Y, HAO Y, et al. Transcriptomic analysis reveals differentially expressed genes associated with wool length in rabbit[J]. Animal Genetics, 2018, 49(5): 428-437. DOI:10.1111/age.12701 |
[25] |
WANG Z S, CHEN Y X, CHEN M Y, et al. Overexpression of Fgf8 in the epidermis inhibits hair follicle development[J]. Experimental Dermatology, 2021, 30(4): 494-502. DOI:10.1111/exd.14232 |
[26] |
ZHENG M, OH S H, CHOI N, et al. CXCL12 inhibits hair growth through CXCR4[J]. Biomedicine & Pharmacotherapy, 2022, 150: 112996. |
[27] |
HIGGINS C A, PETUKHOVA L, HAREL S, et al. FGF5 is a crucial regulator of hair length in humans[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(29): 10648-10653. DOI:10.1073/pnas.1402862111 |
[28] |
HE X L, CHAO Y, ZHOU G X, et al. Fibroblast growth factor 5-short (FGF5s) inhibits the activity of FGF5 in primary and secondary hair follicle dermal papilla cells of cashmere goats[J]. Gene, 2016, 575(2 Pt 2): 393-398. |
[29] |
ZHAO J G, LIN H J, WANG L S, et al. Suppression of FGF5 and FGF18 expression by cholesterol-modified siRNAs promotes hair growth in mice[J]. Frontiers in Pharmacology, 2021, 12: 666860. DOI:10.3389/fphar.2021.666860 |
[30] |
南韦肖, 张海华, 司华哲, 等. 蛋氨酸对水貂毛乳头细胞生长的影响[J]. 中国兽医杂志, 2017, 53(2): 23-25, 28, 49. NAN W X, ZHANG H H, SI H Z, et al. Effects of methionine on the developmental of mink dermal papilla cellsin vitro[J]. Chinese Journal of Veterinary Medicine, 2017, 53(2): 23-25, 28, 49 (in Chinese). |
[31] |
王童童. 低蛋白饲粮添加蛋氨酸对安哥拉兔生产性能和消化代谢的影响[D]. 硕士学位论文. 泰安: 山东农业大学, 2020. WANG T T. Effects of low protein diet supplemented with methionine on production performance and digestive metabolism of Angola rabbits[D]. Master's Thesis. Tai'an: Shandong Agricultural University, 2020. (in Chinese) |
[32] |
陶可. 饲粮蛋氨酸水平对长毛兔毛囊发育、产毛性能的影响[D]. 硕士学位论文. 重庆: 西南大学, 2008. TAO K. Effect of dietary menthionine level on hair follicle development and productive performance of long hair rabbit[D]. Master's Thesis. Chongqing: Southwest University, 2008. (in Chinese) |
[33] |
BERTOLINI M, ALAM M, GHERARDINI J, et al. 1371 FGF7-dependent inhibition of human hair growth byan osteopontin-derived peptide: a novel solution for hirsutism and hypertrichosis?[J]. Journal of Investigative Dermatology, 2018, 138(5): S233. |
[34] |
JARA C P, DE ANDRADE BERTI B, MENDES N F, et al. Glutamic acid promotes hair growth in mice[J]. Scientific Reports, 2021, 11(1): 15453. DOI:10.1038/s41598-021-94816-y |
[35] |
KIM C S, DING X L, ALLMEROTH K, et al. Glutamine metabolism controls stem cell fate reversibility and long-term maintenance in the hair follicle[J]. Cell Metabolism, 2020, 32(4): 629-642. DOI:10.1016/j.cmet.2020.08.011 |
[36] |
BALFOUR J A B, MCCLELLAN K. Topical eflornithine[J]. American Journal of Clinical Dermatology, 2001, 2(3): 197-201. DOI:10.2165/00128071-200102030-00009 |
[37] |
RAMOT Y, PIETILÄ M, GIULIANI G, et al. Polyamines and hair: a couple in search of perfection[J]. Experimental Dermatology, 2010, 19(9): 784-790. DOI:10.1111/j.1600-0625.2010.01111.x |
[38] |
EVERTS H B. Endogenous retinoids in the hair follicle and sebaceous gland[J]. Biochimica et Biophysica Acta, 2012, 1821(1): 222-229. DOI:10.1016/j.bbalip.2011.08.017 |
[39] |
南韦肖. 维生素A对水貂生长性能及其调控毛囊发育机理的研究[D]. 博士学位论文. 长春: 吉林农业大学, 2020. NAN W X. Effects of vitamin a on growth performance and mechanism of it regulating hair follicle development of mink (Neovison vison)[D]. Ph. D. Thesis. Changchun: Jilin Agricultural University, 2020. (in Chinese) |
[40] |
刘公言. 维生素B6通过miRNA调控獭兔毛囊发育作用机制的研究[D]. 博士学位论文. 泰安: 山东农业大学, 2019. LIU G Y. Study on the mechanism of vitamin B6 regulating hair follicle development of Rex rabbits by miRNA[D]. Ph. D. Thesis. Taian: Shandong Agricultural University, 2019. (in Chinese) |
[41] |
孙海涛, 杨丽萍, 李春燕, 等. 日粮烟酸水平对生长獭兔肉品质和毛囊发育的影响[J]. 山东农业科学, 2017, 49(4): 112-115. SUN H T, YANG L P, LI C Y, et al. Effects of dietary niacin supplemental level on meat quality and hair follicle development of growing Rex rabbits[J]. Shandong Agricultural Sciences, 2017, 49(4): 112-115 (in Chinese). |
[42] |
PAPADIMITRIOU D T, BOTHOU C, DERMITZAKI E, et al. Treatment of alopecia totalis/universalis/focalis with vitamin D and analogs: three case reports and a literature review[J]. World Journal of Clinical Pediatrics, 2021, 10(6): 192-199. DOI:10.5409/wjcp.v10.i6.192 |
[43] |
SCHAEFFEL F, HOWLAND H C. Mathematical model of emmetropization in the chicken[J]. Journal of the Optical Society of America A: Optics and Image Science, 1988, 5(12): 2080-2086. DOI:10.1364/JOSAA.5.002080 |
[44] |
查天建. 液体复苏时间和维生素C对烧伤后大鼠受损部位皮肤及毛囊上皮细胞凋亡的影响[D]. 硕士学位论文. 乌鲁木齐: 新疆医科大学, 2011. ZHA T J. Resuscitative time and vitamin C on epithelial cell apoptosis of skin hair follicle partial thickness burn in rats[D]. Master's Thesis. Urumqi: Xinjiang Medical University, 2011. (in Chinese) |
[45] |
ZHANG W, ZHANG Y S, ZHU X P, et al. Effect of different levels of copper and molybdenum supplements on performance, nutrient digestibility, and follicle characteristics in cashmere goats[J]. Biological Trace Element Research, 2011, 143(3): 1470-1479. DOI:10.1007/s12011-011-8954-8 |
[46] |
高琴. 日粮钴添加水平对生长獭兔生产性能、氮代谢性能和毛囊发育的影响[D]. 硕士学位论文. 泰安: 山东农业大学, 2017. GAO Q. Effects of dietary cobalt levels on growth performance, metabolic performance and hair follicle development of growing Rex rabbits[D]. Master's Thesis. Tai'an: Shandong Agricultural University, 2017. (in Chinese) |
[47] |
赵曼, 杨国雨, 刘永需, 等. 饲粮中锌添加水平对生长獭兔毛囊发育及相关基因表达的影响[J]. 动物营养学报, 2021, 33(6): 3532-3541. ZHAO M, YANG G Y, LIU Y X, et al. Effects of dietary zinc supplemental level on hair follicle development and related gene expression of growing Rex rabbits[J]. Chinese Journal of Animal Nutrition, 2021, 33(6): 3532-3541 (in Chinese). |
[48] |
PLONKA P M, HANDJISKI B, POPIK M, et al. Zinc as an ambivalent but potent modulator of murine hair growth in vivo-preliminary observations[J]. Experimental Dermatology, 2005, 14(11): 844-853. DOI:10.1111/j.1600-0625.2005.00365.x |
[49] |
申垒. 日粮碘水平对生长獭兔生产性能、肉毛皮品质、脂肪和氮代谢的影响[D]. 硕士学位论文. 泰安: 山东农业大学, 2018. SHEN L. Effects of dietary iodine levels on growth performance, muscle and fur quality, lipid and nitrogen metabolism of growing Rex rabbits[D]. Master's Thesis. Tai'an: Shandong Agricultural University, 2018. (in Chinese) |
[50] |
杨杰, 潘孝青, 赵艳红, 等. 硒对新西兰兔皮肤抗氧化性及GPx4、EGFR蛋白表达的影响[J]. 江苏农业学报, 2017, 33(1): 133-140. YANG J, PAN X Q, ZHAO Y H, et al. Effects of selenium on skin antioxidant and expression of GPx4 and EGFR proteins in New Zealand rabbit[J]. Jiangsu Journal of Agricultural Sciences, 2017, 33(1): 133-140 (in Chinese). DOI:10.3969/j.issn.1000-4440.2017.01.021 |
[51] |
SAVASKAN N E, BRÄUER A U, KVHBACHER M, et al. Selenium deficiency increases susceptibility to glutamate-induced excitotoxicity[J]. FASEB Journal, 2003, 17(1): 112-114. DOI:10.1096/fj.02-0067fje |
[52] |
赵博昊. lncRNA2919调控毛兔毛囊周期性再生的分子机制研究[D]. 博士学位论文. 扬州: 扬州大学, 2020. ZHAO B H. Molecular mechanism of lncRNA2919 regulates the cyclic regeneration of hair follicle in angora rabbit[D]. Ph. D. Thesis. Yangzhou: Yangzhou University, 2020. (in Chinese) |
[53] |
LIU G Y, LI S, LIU H L, et al. The functions of ocu-miR-205 in regulating hair follicle development in Rex rabbits[J]. BMC Developmental Biology, 2020, 20(1): 8. DOI:10.1186/s12861-020-00213-5 |
[54] |
YAO F, ZHAO B H, HU S S, et al. miR-129-5p participates in hair follicle growth by targeting HOXC13 in rabbit[J]. Genes, 2022, 13(4): 679. DOI:10.3390/genes13040679 |
[55] |
赵博昊, 陈阳, 胡帅帅, 等. miR-218-5p靶向调控SFRP2对家兔毛囊发育的影响[C]//中国畜牧兽医学会养兔学分会第二届学术交流大会论文集, 济南: 中国畜牧兽医学会, 2018: 14. ZHAO B H, CHEN Y, HU S S, et al. The effect of miR-218-5p targeted regulation of SFRP2 on rabbit hair follicle development[C]//Proceedings of the Second Academic Exchange Conference of Rabbit Raising Branch of China Animal Husbandry and Veterinary Society, Jinan: Chinese Association of Animal Science and Veterinary Medicine, 2018: 14. (in Chinese) |
[56] |
李晟毅, 孙永峰, 隋玉健, 等. 褪黑激素对毛囊发生发育调控作用的研究进展[J]. 经济动物学报, 2021, 25(3): 190-196. LI S Y, SUN Y F, SUI Y J, et al. Advance of regulation of melatonin on development of hair follicles[J]. Journal of Economic Animal, 2021, 25(3): 190-196 (in Chinese). |
[57] |
JONES L N, RIVETT D E. The role of 18-methyleicosanoic acid in the structure and formation of mammalian hair fibres[J]. Micron, 1997, 28(6): 469-485. DOI:10.1016/S0968-4328(97)00039-5 |
[58] |
PALMER M A, BLAKEBOROUGH L, HARRIES M, et al. Cholesterol homeostasis: links to hair follicle biology and hair disorders[J]. Experimental Dermatology, 2020, 29(3): 299-311. DOI:10.1111/exd.13993 |