2. 中国科学院亚热带农业生态研究所,长沙 410125;
3. 中国农业科学院麻类研究所,长沙 410205
2. Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China;
3. Institute of Bast Fiber Crops, Chinese Academy of AgricuItureal, Changsha 410205, China
目前我国饲料原料的国际依赖度已经达到较高的水平,饲料原料匮乏已成为限制我国畜禽养殖业发展的瓶颈。因此,农业农村部《饲料中玉米豆粕减量替代工作方案》(2021年3月)表明,当前玉米、豆粕减量替代迫在眉睫。近年发现,利用生物发酵技术对非常规饲料进行处理,既能深化非常规原料的加工,又能通过增加其自身的营养价值来促进地源饲料的开发,使作物副产品得到最大程度地利用,从而减少饲料成本,增加养殖户的收入[1]。大量研究表明,非常规饲料经发酵后,通过增加粗蛋白质和有机物含量[2]、减少抗营养因子含量来改善饲料营养品质[3-4],同时还通过提供益生菌、消化酶以及其他代谢产物来提高畜禽吸收消化能力[5],促进畜禽生长[6],改善肉品质[7]。
罗汉果(Siraitia grosvenorii)是一种多年生藤本植物果实,以广西分布最多,且产量占全球80%以上。据统计,每年用于生产罗汉果甜苷的罗汉果数量过亿,提取后剩余的残渣为罗汉果渣,然而大部分罗汉果渣遭到废弃,造成资源的严重浪费[8]。罗汉果渣中含有丰富的黄酮、罗汉果苷、多糖等活性成分,是一种附加值较高的功能性原料,具有较高的饲料原料开发潜力与应用价值。罗汉果渣可作为非常规饲料原料进行开发利用。王启芝等[9]研究认为,罗汉果渣的常规营养成分中粗蛋白质含量为8.94%,总能为13.43 MJ/kg,可以作为一种非常规饲料资源进行开发。也有研究表明,罗汉果渣的营养价值较低,不能直接用作优质饲料来源,但可以采取适当的处理来减少其纤维含量,提高营养物质消化率[10]。罗汉果渣中存在果胶、单宁以及粗纤维等抗营养因子,阻碍其饲料化利用[11],而菌酶协同发酵可分解农副产物中的抗营养因子[12]。因此,将罗汉果渣发酵后用于畜禽饲料中是切实可行的,并且具有广阔的应用前景,而当前有关发酵罗汉果渣的饲用营养价值,特别是对家禽生长性能、血清生化指标和肉品质的研究数据较为缺乏。因此,本试验以罗汉果渣为原料,探究饲粮中发酵罗汉果渣等量替代玉米对黄羽肉鸡生长性能、血清生化指标和肉品质的影响,探讨在肉鸡饲粮中发酵罗汉果渣的适宜添加水平,为发酵罗汉果渣在黄羽肉鸡生产应用中提供参考。
1 材料与方法 1.1 试验材料发酵罗汉果渣由某生物科技有限公司提供,主要由罗汉果渣和麸皮以4∶1的比例混合,经酶制剂(木聚糖酶、葡聚糖酶、酸性蛋白酶以及碱性蛋白酶)和菌种(酵母菌、芽孢杆菌以及乳酸菌)协同发酵而得,其主要营养成分实测值分别为:粗蛋白质含量10.75%,粗灰分含量4.25%,粗脂肪含量1.63%,粗纤维含量38.18%,总能20.80 MJ/kg;氨基酸含量分别为:蛋氨酸0.12%、苏氨酸0.71%、赖氨酸0.33%、异亮氨酸0.36%、亮氨酸0.69%、苯丙氨酸0.44%、缬氨酸0.46%、天冬氨酸1.12%、丝氨酸0.64%、谷氨酸1.12%、甘氨酸0.64%、丙氨酸0.58%、酪氨酸0.33%、组氨酸0.18%、精氨酸0.39%、脯氨酸0.54%。
1.2 试验设计 1.2.1 代谢试验选取同一批中速型成年黄羽肉鸡5只,单笼单只饲养。预试期3 d后,将所有试验鸡禁食48 h,禁食结束后,每只试验鸡强饲50 g混有二氧化钛的饲粮,自由饮水并收集48 h排泄产物,把粪盘上的皮屑、羽毛以及饲料颗粒等清理干净,将所有的粪便转移到已知重量的铝盒中,称重,粪样与10%的盐酸混合均匀(防止氮的损失)。将粪便样品放于65 ℃烘箱中烘干至恒重,粉碎粪样,过40目筛后装入自封袋保存,待测常规营养成分。
1.2.2 饲养试验选用360只健康的1日龄中速型黄羽肉鸡,平均体重为(31.03±0.27) g,随机分为4个组,每组6个重复,每个重复15只。试验期70 d,分为3个阶段,分别是雏鸡阶段(1~21日龄)、生长阶段(22~42日龄)和育成阶段(43~70日龄)。对照组肉鸡饲喂玉米-豆粕基础饲粮;1~21日龄,在基础饲粮中分别添加1%(试验Ⅰ组)、3%(试验Ⅱ组)和5%(试验Ⅲ组)的发酵罗汉果渣等量替代玉米;22~42日龄和43~70日龄,在基础饲粮中分别添加5%(试验Ⅰ组)、8%(试验Ⅱ组)和10%(试验Ⅲ组)的发酵罗汉果渣等量替代玉米。试验在湖南省益阳市沅江市中国农业科学院麻类研究所石矶湖试验鸡舍内进行,参考GB/T 5916—2020《产蛋鸡和肉鸡配合饲料》配制基础饲粮,其组成及营养水平见表 1,饲喂粉状料,自由饮水。
![]() |
表 1 基础饲粮组成及营养水平(风干基础) Table 1 Composition and nutrient levels of basal diets (air-dry basis) |
取发酵罗汉果渣和代谢产物(粪样),分别测定粗蛋白质、粗灰分、粗脂肪、粗纤维、总能以及二氧化钛含量,并计算营养物质表观代谢率,计算公式如下:
![]() |
式中:A1为饲粮中二氧化钛含量(%);A2为粪便中二氧化钛含量(%);F1为饲粮中营养物质含量(%);F2为粪便中营养物质含量(%)。
1.3.2 生长性能在黄羽肉鸡1、21、42和70日龄,提前12 h禁食后空腹称重,记录肉鸡采食量,计算平均日增重(ADG)、平均日采食量(ADFI)和料重比(F/G),计算公式如下
![]() |
在黄羽肉鸡70日龄时,每重复采集1只鸡的血液样本,收集到真空血管中。常温静置约45 min后,在3 000 r/min下离心10 min(4 ℃条件),将血清转移到单独的管中,-20 ℃保存,采用全自动生化分析仪(Cobas C311,瑞士)和试剂盒(北京利德曼生物技术有限公司)测定以下血清生化指标:总蛋白(total protein,TP)、白蛋白(albumin,ALB)、尿素氮(urea nitrogen,UN)、谷丙转氨酶(glutamic-pyruvic transaminase,ALT)、碱性磷酸酶(alkaline phosphatase,ALP)、谷草转氨酶(glutamic oxalacetic transaminase,AST)、葡萄糖(blood glucose,GLU)、总胆固醇(total cholesterol,TC)、甘油三酯(triglyceride,TG)、高密度脂蛋白胆固醇(high density lipoprotein,HDL-C)、低密度脂蛋白胆固醇(low density lipoprotein,LDL-C)、免疫球蛋白G(immunoglobulin G,IgG)、免疫球蛋白M(immunoglobulin M,IgM)。
1.3.4 肉品质在黄羽肉鸡70日龄时,每重复统一取左半边腿肌、胸肌来测定肉品质,测定指标包括pH、肉色、滴水损失、蒸煮损失和剪切力。
pH:使用胴体pH直测仪(pH-STAR,Matthaus公司,德国)测定胸肌和腿肌的pH(45 min和24 h),每个肉样测定3次。
肉色:使用色差计(CR-410,Minolta公司,日本)测定胸肌、腿肌(45 min和24 h)的亮度(L*)、红度(a*)和黄度(b*)值,每个肉样测定3次。
滴水损失:从每个胸肌、腿肌上的肌肉取大小一致的肉样称重(m1),用铁丝的一端钩住肉样,另一端钩住塑料杯底部,使其悬挂在杯中,悬挂24 h后(4 ℃条件),用纸将肉块表面的水分拭除干净后称重(m2),计算胸肌和腿肌的滴水损失,计算公式如下:
![]() |
蒸煮损失:每重复取1块肉鸡的胸肌和腿肌,使用电子天平进行称重并记录数值后(m3),用锡箔纸包好,在水浴中煮15 min后取出,冷却至室温,将肉样纸除去表面水分,称重(m4),计算肉鸡胸肌和腿肌的蒸煮损失,计算公式如下:
![]() |
剪切力:蒸煮损失测定结束,将胸肌、腿肌切成大小和厚度相同的3块肉样,垂直于肌纤维轴放于C-LM3型数显肌肉嫩度仪上进行剪切,并记录数值。
1.4 数据统计分析采用SPSS 23.0软件对数据进行单因素方差分析(one-way ANOVA),采用Duncan氏法进行多重比较,并进行线性和二次曲线回归分析,结果用平均值±标准差表示,显著水平为P < 0.05。
2 结果 2.1 发酵罗汉果渣营养物质表观代谢率由表 2可知,黄羽肉鸡对发酵罗汉果渣的粗蛋白质和粗脂肪表观代谢率较低,分别为72.96%和72.90%;对粗灰分、粗纤维和总能表观代谢率较高,分别为83.88%、83.58%和87.44%。
![]() |
表 2 发酵罗汉果渣营养物质表观代谢率 Table 2 Apparent metabolism rates of nutrients of fermented Siraitia grosvenorii residue |
由表 3可知,与对照组相比,试验Ⅰ组、试验Ⅱ组和试验Ⅲ组3个阶段(1~21日龄、22~42日龄和43~70日龄)ADFI、ADG和F/G均无显著差异(P>0.05)。试验Ⅱ组ADG在各个阶段均为最高。
![]() |
表 3 发酵罗汉果渣对黄羽肉鸡生长性能的影响 Table 3 Effects of fermented Siraitia grosvenorii residue on growth performance of yellow-feathered broilers |
由表 4可知,与对照组相比,试验Ⅲ组血清TP含量显著降低(P < 0.05),降低了18.57%,且血清TP含量随饲粮中发酵罗汉果渣添加水平的增加呈线性关系(P < 0.05)。与对照组相比,试验Ⅰ、Ⅱ和Ⅲ组血清UN含量显著降低(P < 0.05),分别降低了57.58%、39.39%和54.55%,且血清UN含量随饲粮中发酵罗汉果渣添加水平的增加呈线性关系(P < 0.05)。与对照组相比,试验Ⅰ、Ⅱ组血清LDL-C含量显著降低(P < 0.05),分别降低了36.36%和33.88%,且血清LDL-C含量随饲粮中发酵罗汉果渣添加水平增加呈先降低后升高的二次曲线关系(P < 0.05),通过回归分析,二次曲线模型方程式为:y=0.013 2x2-0.155 9x+1.206 4,依此模型计算,当饲粮中发酵罗汉果渣添加水平为5.91%时,血清LDL-C含量最低。各组之间血清ALP、ALT、AST活性以及ALB、GLU、TG、TC、HDL-C、IgG和IgM含量均无显著差异(P>0.05)。
![]() |
表 4 发酵罗汉果渣对黄羽肉鸡血清生化指标的影响 Table 4 Effects of fermented Siraitia grosvenorii residue on serum biochemical indices of yellow-feathered broilers |
由表 5可知,与对照组相比,试验Ⅰ、Ⅱ、Ⅲ组胸肌45 min a*值显著提高(P < 0.05),分别提高了49.33%、53.45%和57.94%,且胸肌45 min a*值随饲粮中发酵罗汉果渣添加水平增加呈线性关系(P < 0.05)。试验Ⅰ、Ⅱ、Ⅲ组胸肌剪切力与对照组相比无显著差异(P>0.05);但与试验Ⅱ、Ⅲ组相比,试验Ⅰ组胸肌剪切力显著降低(P < 0.05)。与对照组相比,试验Ⅱ组腿肌蒸煮损失显著降低(P < 0.05),降低了13.25%;试验Ⅰ、Ⅲ组无显著差异(P>0.05),但也分别降低了7.44%、5.95%;腿肌蒸煮损失随着发酵罗汉果渣添加水平的增加呈现先降低后升高的二次曲线关系(P < 0.05),通过回归分析,二次曲线模型方程式为:y=0.105 0x2-1.398 1x+43.736 5,根据此模型计算,当饲粮中罗汉果渣添加水平为6.66%时,腿肌蒸煮损失最低。
![]() |
表 5 发酵罗汉果渣对黄羽肉鸡肉品质的影响 Table 5 Effects of fermented Siraitia grosvenorii residue on meat quality of yellow-feathered broilers |
菌酶协同发酵能高效降解饲料原料,改善饲料品质,促进动物消化吸收,进而提高利用率[13-14]。通过代谢试验发现,黄羽肉鸡除了对发酵罗汉果渣中粗蛋白质和粗脂肪表观代谢率相对较低外,对其他营养物质表观代谢率均较高,这与陈小连等[15]的研究结果相似。罗汉果渣是罗汉果加工产品后的副产物,因其富含多种活性成分且营养价值高,可作为一种非常规饲料原料,经发酵后可替代饲粮中部分常规饲料,减少饲料成本,从而获得可观的经济效益,同时对缓解饲料原料短缺具有重要的现实意义。
3.2 发酵罗汉果渣对黄羽肉鸡生长性能的影响生长性能是评价发酵饲料营养状况及经济效益的重要指标[16]。大量研究表明,发酵饲料不仅能提高营养价值,而且通过改善其适口性促进动物采食,在改善畜禽生长性能方面具有重要作用[17-18]。这是由于发酵中添加的菌种不仅能改善动物肠道菌群,且在代谢过程中产生多种营养物质(如氨基酸、蛋白质和有机酸等),改善饲料品质[19-20];同时还可激活淀粉酶、蛋白酶等与碳水化合物和蛋白质代谢相关的消化酶,加快畜禽消化吸收,进而提高生长性能[21]。本试验发现,饲粮中发酵罗汉果渣等量替代玉米对黄羽肉鸡的ADFI、ADG以及F/G均无显著影响,表明饲粮中发酵罗汉果渣等量替代玉米对黄羽肉鸡的生长性能无不良影响,这与Guo等[22]、Gao等[23]、Niu等[24]的研究结果类似。推测未能提高黄羽肉鸡生长性能有以下2方面原因,一方面可能是由于基础饲粮中的营养物质已满足黄羽肉鸡的生长需求,因此各组之间的ADFI均无显著差异,进一步导致各组之间的F/G差异也不显著;另一方面可能与发酵饲料主要原料的组成有关,由于罗汉果渣中存在较高水平的抗营养因子,经发酵后仍使黄羽肉鸡对其消化率及利用率不够明显,从而未能很好地提高黄羽肉鸡的生长性能[25]。另外,本试验结果发现,与试验Ⅰ、Ⅲ组相比,试验Ⅱ组的ADG最高,效果较好,表明饲粮中发酵罗汉果渣的添加水平与黄羽肉鸡的生长性能并非呈正相关,而是需要添加适宜水平才能达到最大化的饲料利用率。推测其原因可能是发酵饲料中含有较多的益生菌,而不足或过量添加都会影响肠道菌群结构,进而影响宿主对饲粮中的营养物质消化吸收及生长发育[26]。综上所述,在玉米-豆粕型基础饲粮中雏鸡阶段添加3%发酵罗汉果渣,在生长和育成阶段添加8%发酵罗汉果渣等量替代玉米效果最佳,不但对黄羽肉鸡的生长性能无不良影响,且能降低饲料成本,增加养殖户收益。
3.3 发酵罗汉果渣对黄羽肉鸡血清生化指标的影响血清生化指标是反映机体营养代谢功能和健康状况的重要指标[27]。TP主要反映体内蛋白质吸收状况[28]。本试验结果显示,与对照组相比,试验Ⅲ组血清TP含量显著降低,降低了18.57%,而试验Ⅰ、Ⅱ组没有显著差异,说明添加适量的发酵罗汉果渣不影响黄羽肉鸡对蛋白质的吸收和代谢,但过量添加会影响机体对蛋白质的吸收,可能是发酵罗汉果渣中的抗营养因子未被完全降解,从而阻碍了肉鸡机体对发酵料中蛋白质的分解与利用[29]。血清UN是动物体内蛋白质代谢的终产物,可反映机体蛋白质代谢和饲粮氨基酸平衡状况,当氨基酸平衡良好时,血清UN含量降低[30-31]。本试验中,试验Ⅰ、Ⅱ和Ⅲ组血清UN含量较对照组显著降低,与Xu等[32]的研究结果相似。血清UN含量降低的原因可能是发酵罗汉果渣中存在益生菌,其通过利用氨基酸脱氨基反应生成的氨气(NH3)来合成菌体蛋白,减少进入肝中的NH3数量,阻碍UN的形成,从而使血清UN含量显著降低[33]。LDL-C、HDL-C、TG以及TC是反映脂肪代谢的关键指标,能够衡量畜禽饮食均衡情况[34]。在本试验中,与对照组相比,试验Ⅰ、Ⅱ和Ⅲ组的血清TG、TC以及HDL-C含量均无显著差异,但血清LDL-C含量显著降低,与Ashayerizadeh等[35]的研究结果一致。血清LDL-C含量降低可能是发酵罗汉果渣中的甜苷抑制黄羽肉鸡体内的LDL-C合成,进而调控脂类代谢[36]。综上所述,饲粮中发酵罗汉果渣等量替代玉米可使黄羽肉鸡血清UN和LDL-C含量降低,从而改善血清生化指标,促进肉鸡机体健康。
3.4 发酵罗汉果渣对黄羽肉鸡肉品质的影响肉品质是畜禽生产中的一个关键要素,通常用pH、肉色、剪切力、滴水损失以及蒸煮损失等指标来反映肉品质[37]。pH是用来评定感官品质的指标之一,pH的高低将会直接影响肌肉的肉色和嫩度,动物被屠宰后其血液循环的营养供应被中断,引起糖酵解反应,进而产生乳酸,从而降低肌肉中的pH[38-39]。本试验发现,与对照组相比,试验Ⅰ、Ⅱ和Ⅲ组pH无显著差异。肉色是消费者做出购买决策的决定性因素之一,反映肉色的指标有L*、a*和b*。L*值越高表明肌肉水分渗出高,越容易形成PSE肉。一般情况下,a*值越高且b*值越低则表明肉的感官品质越好[40]。本试验发现,与对照组相比,试验Ⅰ、Ⅱ和Ⅲ组的45 min胸肌a*值均显著提高,表明发酵罗汉果渣的添加可增加肌肉亮度和色泽来改善肉色,这与孙波等[41]研究结果相类似。肉色得到改善的原因可能是罗汉果渣中的罗汉果多糖、黄酮具有抗氧化功能,能够阻碍细胞膜脂质发生氧化反应,进而可通过延缓肌红蛋白被氧化的速度来提高亮度[42]。蒸煮损失是评价肌肉质量的重要指标之一,能反映肌肉的持水能力[43]。本试验发现,与对照组相比,试验Ⅱ组腿肌蒸煮损失显著降低,降低了13.25%。这可能是发酵罗汉果渣中含有的活性物质可有效地减少屠宰后的肌肉细胞被自由基等有害物质损害,同时延缓其氧化,从而降低细胞中的水分损失,提高系水能力[44-45]。嫩度是反映消费者对肌肉口感是否满意的一个重要指标,可直接对肉的商品价值和食用价值产生影响,通常用剪切力来衡量肌肉的嫩度[46]。本试验中,与对照组相比,试验Ⅰ、Ⅱ和Ⅲ组剪切力均差异不显著。综上所述,饲粮中添加发酵罗汉果渣等量替代玉米可使黄羽肉鸡的肉品质得到改善。
4 结论饲粮中添加发酵罗汉果渣等量替代玉米对中速型黄羽肉鸡的生长性能无不良影响,但能改善血清生化指标和肉品质。综合各指标效果考虑,本试验条件下,以雏鸡阶段饲粮中添加3%发酵罗汉果渣、生长和育成阶段饲粮中添加8%发酵罗汉果渣等量替代玉米生产效应最佳,根据血清生化和肉品质指标的回归分析结果,建议在中速型黄羽肉鸡饲粮中发酵罗汉果渣适宜添加水平为5.91%~6.66%。
[1] |
王曼, 敖翔, 何健. 发酵金银花渣饲料对生长肥育猪生长性能和肉品质的影响[J]. 养猪, 2020(4): 14-16. WANG M, AO X, HE J. Effects of fermented honeysuckle residue feed on growth performance and meat quality of growing-finishing pigs[J]. Swine Production, 2020(4): 14-16 (in Chinese). DOI:10.3969/j.issn.1002-1957.2020.04.010 |
[2] |
WANG Y W, DENG Q Q, SONG D, et al. Effects of fermented cottonseed meal on growth performance, serum biochemical parameters, immune functions, antioxidative abilities, and cecal microflora in broilers[J]. Food and Agricultural Immunology, 2017, 28(4): 725-738. DOI:10.1080/09540105.2017.1311308 |
[3] |
李阳. 解淀粉芽孢杆菌发酵豆粕工艺及其对肉鸡生长影响的机理研究[D]. 博士学位论文. 北京: 中国农业科学院, 2020. LI Y. Study on fermented soybean meal with Bacillus amyloliquefaciens and its mechanism on improving growth performance of broilers[D]. Ph. D. Thesis. Beijing: Chinese Academy of Agricultural Sciences, 2020. (in Chinese) |
[4] |
李浩, 宋泽和, 范志勇. 麦麸的主要营养特性及其在畜禽饲料中的应用[J]. 中国饲料, 2018(3): 66-69. LI H, SONG Z H, FAN Z Y. The main nutritional characteristic of wheat bran and its application in animal feed[J]. China Feed, 2018(3): 66-69 (in Chinese). |
[5] |
OLUKOMAIYA O, FERNANDO C, MEREDDY R, et al. Solid-state fermented plant protein sources in the diets of broiler chickens: a review[J]. Animal Nutrition, 2019, 5(4): 319-330. DOI:10.1016/j.aninu.2019.05.005 |
[6] |
XIE P J, HUANG L X, ZHANG C H, et al. Nutrient assessment of olive leaf residues processed by solid-state fermentation as an innovative feedstuff additive[J]. Journal of Applied Microbiology, 2016, 121(1): 28-40. DOI:10.1111/jam.13131 |
[7] |
SUGIHARTO S, YUDIARTI T, ISROLI I. Functional properties of filamentous fungi isolated from the indonesian fermented dried cassava, with particular application on poultry[J]. Mycobiology, 2015, 43(4): 415-422. DOI:10.5941/MYCO.2015.43.4.415 |
[8] |
陈燕群, 何星存, 谢微, 等. 罗汉果渣资源化再利用吸附染料的效果[J]. 食品工业, 2019, 40(10): 204-209. CHEN Y Q, HE X C, XIE W, et al. The effect of adsorbing dyes on the utilization of Siraitia grosvenorii residue as resource[J]. The Food Industry, 2019, 40(10): 204-209 (in Chinese). |
[9] |
王启芝, 黄光云, 梁琪妹, 等. 广西17种非粮饲料资源营养价值监测[J]. 粮食与饲料工业, 2018(4): 47-50. WANG Q Z, HUANG G Y, LIANG Q M, et al. Nutritional value monitoring of 17 kinds of non-grain feed resources in Guangxi[J]. Cereal & Feed Industry, 2018(4): 47-50 (in Chinese). |
[10] |
俞文靓, 王超, 易显凤, 等. 用体外发酵法评价亚热带几种常用反刍动物饲料的营养价值[J]. 中国畜牧兽医, 2019, 46(12): 3530-3537. YU W L, WANG C, YI X F, et al. Evaluation of nutritional value of various common ruminant feeds in subtropical by in vitro fermentation[J]. China Animal Husbandry & Veterinary Medicine, 2019, 46(12): 3530-3537 (in Chinese). |
[11] |
韦春杰, 陆静, 王在贵, 等. 发酵饲料的研究与应用进展[J]. 粮食与饲料工业, 2021(5): 50-54, 58. WEI C J, LU J, WANG Z G, et al. Research and application progress of fermented feed[J]. Cereal & Feed Industry, 2021(5): 50-54, 58 (in Chinese). |
[12] |
徐伟佳, 王智伟, 袁凯鑫, 等. 菌酶协同发酵饲料研究进展[J]. 家畜生态学报, 2020, 41(11): 84-86. XU W J, WANG Z W, YUAN K X, et al. Advances of microbial coupling with enzyme fermented feed[J]. Acta Ecologae Animalis Domastici, 2020, 41(11): 84-86 (in Chinese). DOI:10.3969/j.issn.1673-1182.2020.11.017 |
[13] |
GOODARZI BOROOJENI F, SENZ M, KOZŁOWSKI K, et al. The effects of fermentation and enzymatic treatment of pea on nutrient digestibility and growth performance of broilers[J]. Animal, 2017, 11(10): 1698-1707. DOI:10.1017/S1751731117000787 |
[14] |
GOODARZI BOROOJENI F, KOZOWSKI K, JANKOWSKI J, et al. Fermentation and enzymatic treatment of pea for turkey nutrition[J]. Animal Feed Science and Technology, 2018, 237: 78-88. DOI:10.1016/j.anifeedsci.2018.01.008 |
[15] |
陈小连, 陈受金, 赵品, 等. 饲粮甜菊渣添加水平对21~70日龄肉鹅生长性能和血清生化指标的影响[J]. 动物营养学报, 2020, 32(11): 5406-5414. CHEN X L, CHEN S J, ZHAO P, et al. Effects of stevia residues on growth performance and serum biochemical indexes of meat geese during 21 to 70 days of age[J]. Chinese Journal of Animal Nutrition, 2020, 32(11): 5406-5414 (in Chinese). DOI:10.3969/j.issn.1006-267x.2020.11.047 |
[16] |
梁天柱, 梁光哲, 梁志东, 等. 发酵饲料对广西三黄鸡生长性能、屠宰性能和肉品质的影响[J]. 饲料研究, 2021, 44(4): 26-30. LIANG T Z, LIANG G Z, LIANG Z D, et al. Effect of fermented feed on growth performance, slaughter performance and meat quality of Guangxi Sanhuang chicken[J]. Feed Research, 2021, 44(4): 26-30 (in Chinese). |
[17] |
LI L, LI W F, LIU S Z, et al. Probiotic fermented feed improved the production, health and nutrient utilisation of yellow-feathered broilers reared in high altitude in Tibet[J]. British Poultry Science, 2020, 61(6): 746-753. DOI:10.1080/00071668.2020.1801988 |
[18] |
OMAR A E, AL-KHALAIFAH H S, ISMAIL T A, et al. Performance, serum biochemical and immunological parameters, and digestive enzyme and intestinal barrier-related gene expression of broiler chickens fed fermented fava bean by-products as a substitute for conventional feed[J]. Frontiers in Veterinary Science, 2021, 8: 696841. DOI:10.3389/fvets.2021.696841 |
[19] |
贺腾飞, 龙沈飞, 朴香淑. 生物饲料在肉鸡和猪生产中的应用[J]. 动物营养学报, 2019, 31(7): 2988-2998. HE T F, LONG S F, PU X S, et al. Application of biological feeds in broiler and pig production[J]. Chinese Journal of Animal Nutrition, 2019, 31(7): 2988-2998 (in Chinese). DOI:10.3969/j.issn.1006-267x.2019.07.007 |
[20] |
孙颢轩, 蔡辉益, 陈志敏, 等. 发酵饲料在肉鸡生产中应用的研究进展[J]. 饲料工业, 2021, 42(17): 8-14. SUN H X, CAI H Y, CHEN Z M, et al. Research progress on application of fermented feed in broilers production[J]. Feed Industry, 2021, 42(17): 8-14 (in Chinese). |
[21] |
王琳. 白术多糖、枯草芽孢杆菌对育成鸡生长性能和肠道生理的影响[D]. 硕士学位论文. 保定: 河北农业大学, 2018. WANG L. Effects of dietary Atractylis macroceohala Koidz. polysaccharide and Bacillus subtilis on growth performance and intestinal physiology of growing laying hens[D]. Master's Thesis. Baoding: Hebei Agricultural University, 2018. (in Chinese) |
[22] |
GUO S S, ZHANG Y K, CHENG Q, et al. Partial substitution of fermented soybean meal for soybean meal influences the carcass traits and meat quality of broiler chickens[J]. Animals, 2020, 10(2): 225. DOI:10.3390/ani10020225 |
[23] |
GAO M, CIES'LAK A, KIERON'CZYK B, et al. Effects of raw and fermented rapeseed cake on growth performance, methane production, and breast meat fatty acid composition in broiler chickens[J]. Animals, 2020, 10(12): 2250. DOI:10.3390/ani10122250 |
[24] |
NIU J L, WEI L Q, LUO Y Q, et al. Fermented cottonseed meal improves production performance and reduces fat deposition in broiler chickens[J]. Animal Bioscience, 2021, 34(4): 680-691. DOI:10.5713/ajas.20.0571 |
[25] |
王磊, 吴国芳, 周继平, 等. 乳酸菌发酵饲料对八眉三元猪生长性能及肉品质的影响[J]. 青海大学学报, 2020, 38(6): 22-26. WANG L, WU G F, ZHOU J P, et al. Effects of fermented feed of lactic acid bacteria on the growth performance and meat quality of Bamei ternary hybrid pig[J]. Journal of Qinghai University, 2020, 38(6): 22-26 (in Chinese). |
[26] |
刘辉, 季海峰, 王四新, 等. 复合乳酸菌发酵饲料对生长猪生长性能、粪便菌群、血清免疫和抗氧化指标的影响[J]. 动物营养学报, 2022, 34(2): 783-794. LIU H, JI H F, WANG S X, et al. Effects of compound lactic acid bacteria fermented feed on growth performance, fecal microflora, serum immune and antioxidant indexes of growing pigs[J]. Chinese Journal of Animal Nutrition, 2022, 34(2): 783-794 (in Chinese). |
[27] |
VICARI T, VAN DEN BORNE J J G C, GERRITS W J J, et al. Postprandial blood hormone and metabolite concentrations influenced by feeding frequency and feeding level in veal calves[J]. Domestic Animal Endocrinology, 2008, 34(1): 74-88. DOI:10.1016/j.domaniend.2006.11.002 |
[28] |
XU X, LI L M, LI B, et al. Effect of fermented biogas residue on growth performance, serum biochemical parameters, and meat quality in pigs[J]. Asian-Australasian Journal of Animal Sciences, 2017, 30(10): 1464-1470. DOI:10.5713/ajas.16.0777 |
[29] |
许丽惠, 祁瑞雪, 王长康, 等. 发酵豆粕对黄羽肉鸡生长性能、血清生化指标、肠道黏膜免疫功能及微生物菌群的影响[J]. 动物营养学报, 2013, 25(4): 840-848. XU L H, QI R X, WANG C K, et al. Effects of fermented soybean meal on growth performance, serum biochemical indices, mucosal immune function and microorganism in yellow-feathered broilers[J]. Chinese Journal of Animal Nutrition, 2013, 25(4): 840-848 (in Chinese). |
[30] |
WANG J H, WU C C, FENG J. Effect of dietary antibacterial peptide and zinc-methionine on performance and serum biochemical parameters in piglets[J]. Czech Journal of Animal Science, 2011, 56(1): 30-36. |
[31] |
CHEN H Y, MILLER P S, LEWIS A J, et al. Changes in plasma urea concentration can be used to determine protein requirements of two populations of pigs with different protein accretion rates[J]. Journal of Animal Science, 1995, 73(9): 2631-2639. |
[32] |
XU F Z, ZENG X G, DING X L. Effects of replacing soybean meal with fermented rapeseed meal on performance, serum biochemical variables and intestinal morphology of broilers[J]. Asian-Australasian Journal of Animal Sciences, 2012, 25(12): 1734-1741. |
[33] |
谢燕妮, 王海波, 雷国华, 等. 酵母硒和益生菌对罗曼蛋鸡生产性能和血清生化指标的影响[J]. 饲料研究, 2022, 45(3): 53-57. XIE Y N, WANG H B, LEI G H, et al. Effect of selenium yeast and probiotics on production performance and serum biochemical indices of Roman laying hens[J]. Feed Research, 2022, 45(3): 53-57 (in Chinese). |
[34] |
陈娜, 周玮, 和立文, 等. 黄梁木叶对麻黄鸡屠宰性能、小肠形态和血清生化指标的影响[J]. 动物营养学报, 2021, 33(7): 3833-3841. CHEN N, ZHOU W, HE L W, et al. Effects of Neolamarckia cadamba leaves on slaughter performance, small intestine morphology and serum biochemical indices of partridge chicken[J]. Chinese Journal of Animal Nutrition, 2021, 33(7): 3833-3841 (in Chinese). |
[35] |
ASHAYERIZADEH A, DASTAR B, SHARGH M S, et al. Effects of feeding fermented rapeseed meal on growth performance, gastrointestinal microflora population, blood metabolites, meat quality, and lipid metabolism in broiler chickens[J]. Livestock Science, 2018, 216: 183-190. |
[36] |
李雨蒙, 张泽生, 秦程广, 等. 罗汉果甜苷的提取及活性研究进展[J]. 食品研究与开发, 2017, 38(8): 220-224. LI Y M, ZHANG Z S, QIN C G, et al. Research progress of extraction and active of mogroside[J]. Food Research and Development, 2017, 38(8): 220-224 (in Chinese). |
[37] |
韩启春, 吴国芳, 王磊, 等. 微生物发酵饲料在畜禽养殖中的应用[J]. 家畜生态学报, 2021, 42(1): 83-85. HAN Q C, WU G F, WANG L, et al. The application of microbial fermented feed in livestock and poultry breeding[J]. Acta Ecologae Animalis Domastici, 2021, 42(1): 83-85 (in Chinese). |
[38] |
李龙, 蒋守群, 郑春田, 等. 不同品种黄羽肉鸡肉品质比较研究[J]. 中国家禽, 2015, 37(21): 6-11. LI L, JIANG S Q, ZHENG C T, et al. Comparisons of meat quality characteristics of different yellow-feathered broilers[J]. China Poultry, 2015, 37(21): 6-11 (in Chinese). |
[39] |
米春桃, 王安琪, 黄波, 等. 发酵饲料对育肥猪屠宰后肉品质的影响[J]. 饲料与畜牧, 2015(9): 29-34. MI C T, WANG A Q, HUANG B, et al. Effect of fermented feed on meat quality of finishing pigs after slaughter[J]. Feed and Husbandry, 2015(9): 29-34 (in Chinese). |
[40] |
LI J J, YANG C W, PENG H, et al. Effects of slaughter age on muscle characteristics and meat quality traits of Da-Heng meat type birds[J]. Animals, 2019, 10(1): 69. |
[41] |
孙波, 黄燕, 罗艳, 等. 复合益生菌发酵饲料对纳雍土鸡生长性能、屠宰性能和肉品质的影响[J]. 中国饲料, 2021(2): 37-40. SUN B, HUANG Y, LUO Y, et al. Effect of compound probiotic fermented feed on growth performance, slaughter performance and meat quality of Nayong free-range chicken[J]. China Feed, 2021(2): 37-40 (in Chinese). |
[42] |
朱坤, 毛胜勇, 朱崇淼, 等. 发酵饲料对育肥猪生长性能、胴体性状、肉品质、血清生化指标和代谢产物的影响[J]. 动物营养学报, 2018, 30(10): 4244-4250. ZHU K, MAO S Y, ZHU C M, et al. Effects of fermented feed on growth performance, carcass traits, meat quality, serum biochemical indicators and metabolites of finishing pigs[J]. Chinese Journal of Animal Nutrition, 2018, 30(10): 4244-4250 (in Chinese). |
[43] |
WOELFEL R L, OWENS C M, HIRSCHLER E M, et al. The characterization and incidence of pale, soft, and exudative broiler meat in a commercial processing plant[J]. Poultry Science, 2002, 81(4): 579-584. |
[44] |
高升, 陈哲, 柯慧, 等. 发酵豆粕对肥育黑猪生长性能、胴体性状、肉品质和肌内氨基酸含量的影响[J]. 养猪, 2020(4): 5-8. GAO S, CHEN Z, KE H, et al. Effects of fermented soybean meal on growth performance, carcass traits, meat quality and intramuscular amino acid content of fattening black pigs[J]. Swine Production, 2020(4): 5-8 (in Chinese). |
[45] |
金融, 徐雪梅. 发酵原料在提高肉品质中的应用研究进展[J]. 广东饲料, 2020, 29(4): 39-41. JIN R, XU X M. Application of fermented feed in improving meat quality[J]. Guangdong Feed, 2020, 29(4): 39-41 (in Chinese). |
[46] |
CAI J R, CHEN Q S, WAN X M, et al. Determination of total volatile basic nitrogen (TVB-N) content and Warner-Bratzler shear force (WBSF) in pork using Fourier transform near infrared (FT-NIR) spectroscopy[J]. Food Chemistry, 2011, 126(3): 1354-1360. |