2. 河北农业大学山区研究所, 保定 071001;
3. 国家北方山区 农业工程技术研究中心, 保定 071001;
4. 江苏奕农生物股份有限公司, 宿迁 223600
2. Mountainous Area Research Institute of Hebei Province, Hebei Agricultural University, Baoding 071001, China;
3. National Engineering Research Center for Agriculture in Northern Mountainous Areas, Baoding 071001, China;
4. Jiangsu Yinong Bioengineering Co., Ltd., Suqian 223600, China
饲料全面禁抗以来,亟需开发能够提高家兔生产性能,改善免疫力,缓解应激的替抗产品,而益生菌制剂及其代谢产物的研发应用为无抗养殖提供了可行途径。酵母菌(yeast)属于兼性厌氧微生物,菌体蛋白质含量高,细胞中核酸、维生素和微量元素丰富,细胞壁具有多种生物活性物质[1],而酵母培养物(yeast culture)则是在特定工艺条件控制下由酵母菌在特定的培养基上经过充分的厌氧发酵后形成的微生态制品,具备安全、高效、绿色无污染及营养物质丰富等优点。研究显示,饲粮中添加酵母培养物可以提高畜禽的养分表观消化率[2]、改善肠道健康和促进生长[3-5],而且在提高机体免疫力和抗氧化能力方面也起到了积极作用[6-7]。凝结芽孢杆菌(Bacillus coagulans)作为益生菌,既能形成芽孢又能产生多种营养物质及抑制有害菌的物质如凝固素和L-乳酸,具有抗逆性强、耐胃酸、耐高温、易保存和可定植等生物特性[8]。有研究证实,凝结芽孢杆菌可以促进动物生长,提高免疫力及抗氧化能力,改善肠黏膜形态结构和增强肠道屏障功能[9-10],且具有抑制肠道致病菌,刺激免疫器官发育的功能[11]。目前,酵母菌和凝结芽孢杆菌在畜禽生产中应用报道较多,但在獭兔生产中应用的研究鲜有报道,且在其他畜禽生产中的应用多为单独使用,两者联合发酵时,由于凝结芽孢杆菌好氧发酵,可以加速酵母菌厌氧发酵过程,保证底物发酵更彻底。因此,二者联合发酵在理论上具有相互协同,效果叠加作用。本试验拟研究酵母菌-凝结芽孢杆菌联合发酵培养物对獭兔生长性能、养分表观消化率、免疫力及抗氧化能力的影响,为其在兔生产中的推广应用提供参考。
1 材料与方法 1.1 试验材料酵母菌-凝结芽孢杆菌联合发酵培养物由某公司提供,是酵母菌和凝结芽孢杆菌联合发酵而成,主要活性成分:酵母菌代谢产物(抑菌活性肽≥6.0%)、凝结芽孢杆菌(≥5×108 CFU/g)、凝结芽孢杆菌代谢产物(凝固素含量0.8 mg/mL、L-乳酸含量5.5~8.5 g/kg)、葡聚糖(≥0.2%)、甘露聚糖(≥1.0%)。
1.2 试验设计及基础饲粮选取体重相近的健康35日龄獭兔160只,随机分为4组,每组8个重复,每个重复5只(单笼单只饲养)。对照组饲喂基础饲粮,试验组分别在基础饲粮中添加0.01%、0.02%和0.04%酵母菌-凝结芽孢杆菌联合发酵培养物。基础饲粮参照NRC(2012)[12]和谷子林等[13]推荐的家兔饲养标准进行配制,基础饲粮组成及营养水平见表 1。酵母菌-凝结芽孢杆菌联合发酵培养物以粉剂的形式添加到基础饲粮中,逐级稀释,混合均匀,制成颗粒饲料。
![]() |
表 1 基础饲粮组成及营养水平(风干基础) Table 1 Composition and nutrient levels of the basal diet (air-dry basis) |
试验前兔舍和笼具彻底清理和消毒,采用3层阶梯式饲养笼进行单笼单只饲养,对每只兔笼进行单独编号。试验期间自由采食和饮水,每天08:00和18:00各饲喂1次。预试期7 d,正试期56 d,试验期间按照正常免疫程序接种。
1.4 测定指标及方法 1.4.1 生长性能在试验期开始和结束时的清晨各试验兔空腹称重,获得初始体重和终末体重,计算平均日增重(ADG);准确记录试验期内每个重复的采食量,计算平均日采食量(ADFI)和料重比(F/G);记录试验期内试验兔腹泻只日数(只日数:每只兔腹泻的天数;腹泻判断:粪便不成球、稀软,呈粥状或水样,后肢、肛门和尾部被毛被粪便污染[14-15]),计算腹泻频率。计算公式如下:
![]() |
试验期结束前7 d,每个组以重复为单位选择8只接近平均体重的试验兔,进行消化代谢试验,采用全收粪法,记录试验兔每日采食量,收集全部粪便,称重后分为2份,一份加10%盐酸固氮,用于测定粗蛋白质(CP)含量,另一份测定其他养分含量。粪样烘干粉碎,放入样品袋中备测。参照张丽英[16]的方法测定饲粮及粪中各养分含量。养分表观消化率计算公式如下:
![]() |
试验期第56天空腹称重,每组挑选8只试验兔(每个重复挑选1只),每只试验兔耳缘静脉采血5 mL,3 500 r/min离心10 min,取上清液,-20 ℃保存备测。采用酶联免疫检测(ELISA)试剂盒测定血清免疫和抗氧化指标,试剂盒购自北京博锐长远科技有限公司,具体操作按照说明书步骤进行。所测血清免疫指标包括免疫球蛋白A(IgA)、免疫球蛋白G(IgG)、免疫球蛋白M(IgM)和白细胞介素-4(IL-4)含量,所测血清抗氧化指标包括谷胱甘肽过氧化物酶(GSH-Px)、超氧化物歧化酶(SOD)活性及总抗氧化能力(T-AOC)和丙二醛(MDA)含量。
1.4.4 免疫器官指数和组织抗氧化指标测定将采完血后的试验兔屠宰,取胸腺、脾脏和圆小囊称重,计算胸腺指数、脾脏指数和圆小囊指数。计算公式如下:
![]() |
取肝脏和空肠肠段,切割称重,加入磷酸盐缓冲液(PBS),低温研磨后离心,取上清液,-20 ℃保存备测。采用酶联免疫吸附测定(ELISA)试剂盒测定GSH-Px、SOD活性以及T-AOC和MDA含量,试剂盒购自北京博锐长远科技有限公司,具体操作按照说明书步骤进行。
1.4.5 肠道消化酶活性屠宰后,取空肠、回肠和盲肠食糜放入冻存管中,-80 ℃保存备测。采用ELISA试剂盒测定空肠、回肠和盲肠α-淀粉酶、脂肪酶、胰蛋白酶和盲肠纤维素酶活性,试剂盒购自北京博锐长远科技有限公司,具体操作按照说明书步骤进行。
1.5 数据统计分析试验数据采用SPSS 20.0软件进行单因素方差分析,并采用Duncan氏法进行多重比较检验,结果采用“平均值±标准误”表示,以P<0.05表示差异显著,0.05≤P<0.10表示有趋势[17-18]。
2 结果与分析 2.1 酵母菌-凝结芽孢杆菌联合发酵培养物对獭兔生长性能的影响由表 2可知,各组间初始体重差异不显著(P>0.05);0.01%、0.02%和0.04%添加组终末体重分别比对照组提高3.23%、4.95%和4.98%,呈提高趋势(0.05≤P<0.10);各添加组ADFI均高于对照组,但差异不显著(P>0.05);0.01%、0.02%和0.04%添加组ADG分别比对照组提高5.75%、8.18%和9.83%,且均差异显著(P<0.05),各添加组之间差异不显著(P>0.05);0.01%、0.02%和0.04%添加组F/G分别比对照组降低6.41%、6.01%和5.81%,呈降低趋势(0.05≤P<0.10)。对照组腹泻频率为0.22%,0.02%添加组腹泻频率为0.09%,0.01%和0.04%添加组未出现腹泻情况。
![]() |
表 2 酵母菌-凝结芽孢杆菌联合发酵培养物对獭兔生长性能的影响 Table 2 Effects of combined yeast and Bacillus coagulans fermentation culture on growth performance of Rex rabbits |
由表 3可知,干物质(DM)、总能(GE)和CP的表观消化率以0.04%添加组最高,分别较对照组提高3.99、3.26和2.55个百分点,且差异显著(P<0.05),0.01%和0.02%添加组与对照组差异不显著(P>0.05);0.01%、0.02%和0.04%添加组钙(Ca)表观消化率分别较对照组提高5.77、5.09和13.46个百分点,且差异显著(P<0.05);各组间粗纤维(CF)、中性洗涤纤维(NDF)、酸性洗涤纤维(ADF)、粗脂肪(EE)和磷(P)的表观消化率差异不显著(P>0.05)。
![]() |
表 3 酵母菌-凝结芽孢杆菌联合发酵培养物对獭兔养分表观消化率的影响 Table 3 Effects of combined yeast and Bacillus coagulans fermentation culture on nutrient apparent digestibility of Rex rabbits |
由表 4可知,0.01%和0.04%添加组空肠α-淀粉酶活性分别较对照组提高9.16%和9.85%,但差异未达显著水平(P>0.05);空肠脂肪酶和胰蛋白酶活性各组间均无显著差异(P>0.05)。各添加组回肠α-淀粉酶和胰蛋白酶活性均高于对照组,但差异不显著(P>0.05);空肠脂肪酶活性各组之间均无显著差异(P>0.05)。盲肠α-淀粉酶、脂肪酶、胰蛋白酶和纤维素酶活性各组间均无显著差异(P>0.05)。
![]() |
表 4 酵母菌-凝结芽孢杆菌联合发酵培养物对獭兔肠道消化酶活性的影响 Table 4 Effects of combined yeast and Bacillus coagulans fermentation culture on intestinal enzyme activities of Rex rabbits |
由表 5可知,各组间胸腺指数、脾脏指数和圆小囊指数均无显著差异(P>0.05)。
![]() |
表 5 酵母菌-凝结芽孢杆菌联合发酵培养物对獭兔免疫器官指数的影响 Table 5 Effects of combined yeast and Bacillus coagulans fermentation culture on immune organ indexes of Rex rabbits |
由表 6可知,0.01%、0.02%和0.04%添加组血清IgA含量分别较对照组提高36.75%、25.09%和29.90%,差异显著(P<0.05);0.04%添加组血清IgG含量较对照组提高12.03%,呈提高趋势(0.05≤P<0.10);各组间血清IgM含量差异不显著(P>0.05);各添加组血清IL-4含量均较对照组显著提高(P<0.05)。
![]() |
表 6 酵母菌-凝结芽孢杆菌联合发酵培养物对獭兔血清免疫指标的影响 Table 6 Effects of combined yeast and Bacillus coagulans fermentation culture on serum immune indexes of Rex rabbits |
由表 7可知,各组间血清、肝脏和空肠GSH-Px和SOD活性及T-AOC差异均不显著(P>0.05)。各添加组血清和肝脏MDA含量均低于对照组,但差异不显著(P>0.05);0.02%和0.04%添加组空肠MDA含量分别较对照组降低9.98%和11.17%,呈降低趋势(0.05≤P<0.10)。
![]() |
表 7 酵母菌-凝结芽孢杆菌联合发酵培养物对獭兔血清、肝脏和空肠抗氧化指标的影响 Table 7 Effects of combined yeast and Bacillus coagulans fermentation culture on serum, liver and jejunum antioxidant indexes of Rex rabbits |
动物的生长速度和饲料报酬是衡量动物生长性能的关键指标,同时还可以间接反映出饲料的营养价值。酵母培养物和凝结芽孢杆菌在促进动物机体生长发育、改善肠道健康、提高饲料报酬和增强机体免疫力等方面具有积极作用[19-21]。唐丽等[22]研究发现,饲粮中添加0.2%或0.3%的酵母培养物均能够提高肉兔机体血糖浓度,以保证机体能量供给,促进肉兔生长发育。Shanmuganathan等[23]研究表明,添加酵母培养物可促进新西兰兔对营养物质的消化吸收,显著提高ADG,降低F/G。孙强东等[24]研究发现,饲粮中添加1%的酵母培养物可显著提高仔猪增重,降低F/G,有效降低腹泻率,但效果不及抗生素。赵娜等[11]研究表明,饲粮中添加300 mg/kg凝结芽孢杆菌可显著提高生长后期肉鸡的日增重和采食量。Zhang等[25]研究发现,肉鸡饲粮中添加5×109 CFU/kg凝结芽孢杆菌可显著提高ADG和42日龄体重,并提高饲料报酬。本试验发现,饲粮中添加酵母菌-凝结芽孢杆菌联合发酵培养物显著提高了獭兔的ADG,F/G呈降低趋势,这与前人研究报道相一致。这可能是因为酵母菌-凝结芽孢杆菌联合发酵培养物兼具了酵母培养物和凝结芽孢杆菌两者优点,酵母培养物营养丰富,富含β-葡聚糖、甘露寡糖、氨基酸和维生素等,能够为机体提供营养物质、未知生长因子及多种免疫因子,在促进动物生长发育中也起到积极作用[26];凝结芽孢杆菌代谢产生的多种营养物质供机体吸收利用,如氨基酸、维生素、短链脂肪酸和促生长因子等[27],酵母菌代谢产物中的抑菌活性肽能够降低肠道有害菌数量级,凝结芽孢杆菌在肠道定植,消耗肠道中游离氧,创造低氧环境,抑制需氧型有害菌和腐败微生物生长,在两者共同作用下减少了有害菌对营养物质的消耗,从而达到促生长作用[28]。
本试验中,各添加组腹泻频率均低于对照组。这可能是因为:一方面,酵母菌代谢产物抑菌活性肽和凝结芽孢杆菌代谢产生的凝固素可以破坏革兰氏阳性和阴性致病菌细胞膜,起到抑菌作用,而抑菌活性肽还能够加速受损肠道黏膜修复,使得肠道致病菌减少,腹泻频率降低[29];另一方面,酵母细胞壁成分甘露寡糖可以结合革兰氏阴性致病菌,减少致病菌在肠壁上的黏附和繁殖[30]。
3.2 酵母菌-凝结芽孢杆菌联合发酵培养物对獭兔养分表观消化率及肠道消化酶活性的影响饲粮中的营养物质在动物小肠内的消化方式为机械性消化(如肠道蠕动)和化学性消化(如消化酶),2种方式共同作用于营养物质的消化。Zhang等[31]研究发现,在蛋鸡饲粮中添加0.3%的酵母培养物可提高十二指肠胰凝乳蛋白酶和ɑ-淀粉酶活性。贾晓满等[32]研究表明,饲粮中添加0.4%~0.8%的酵母培养物可提高梅花鹿对CP、EE、NDF和ADF的表观消化率。Zhen等[3]的研究表明,饲粮中添加0.8%的酵母培养物改善了肉鸡对EE、Ca和P的消化率,且饲料转化率也有所提高。Kim等[33]研究发现,凝结芽孢杆菌可产生蛋白酶和脂肪酶,且芽孢体状态具有耐胃酸和胆盐的特性,在胃肠道环境中易生存。陈德林[34]研究报道,饲粮中添加凝结芽孢杆菌可提高肉兔CP和EE的消化率。本试验中,0.01%和0.02%添加组Ca的表观消化率较对照组显著提高,0.04%添加组DM、GE、CP和Ca的表观消化率显著高于对照组,与以上研究结果类似。分析以上结果原因,我们认为可能是酵母培养物所包含的氨基酸、有机酸、聚糖、寡糖和B族维生素等物质改善了肠道微生态环境[26],而凝结芽孢杆菌又可以促进肠道蠕动,加快饲料在肠道中消化[35],酵母菌-凝结芽孢杆菌联合发酵培养物集两者的共同功能,促进了獭兔对饲料的消化吸收。与对照组相比,各添加组空肠、回肠和盲肠中消化酶活性无显著提高,与石琳等[36]和付天玺等[37]的研究结果类似。这可能是因为菌种和培养物的某些活性在实验室内给予合适条件才得以体现,而实际动物试验中各种不利条件及胃肠道的复杂环境在一定程度上会抑制菌种和培养物理化特性的有效发挥。
3.3 酵母菌-凝结芽孢杆菌联合发酵培养物对獭兔免疫力的影响免疫系统由免疫器官、免疫细胞和免疫活性物质组成,是机体免疫机能的保障。酵母培养物不仅可以增强机体合成蛋白质,还可以提高血清免疫球蛋白含量[38]。唐小懿[39]研究发现,蒙脱石-酵母培养复合物(钙质蒙脱石70%,酵母细胞培养物30%)能够促进T淋巴细胞和单核-巨噬细胞增殖,提高血清IgA、IgG和IgM含量,增强仔猪机体免疫功能。邢冠润等[40]研究发现,饲粮中添加不同浓度凝结芽孢杆菌可显著提高产蛋后期蛋鸡血清中IgA、IgG和IL-4的含量,但对血清IgM含量无显著影响;同时其表明,凝结芽孢杆菌的发酵上清液及细胞壁成分可调节细胞因子和增强细胞吞噬作用。Fu等[9]在断奶仔猪饲粮中添加400 mg/kg凝结芽孢杆菌后增加了血清中补体3(C3)、溶菌酶(LZM)和肿瘤坏死因子-α(TNF-α)的含量,使仔猪机体免疫应答能力增强。本试验中,各组间免疫器官指数均无显著差异,表明酵母菌-凝结芽孢杆菌联合发酵培养物未对獭兔免疫器官发育造成不良影响;添加酵母菌-凝结芽孢杆菌联合发酵培养物显著提高了獭兔血清中IgA和IL-4含量,0.04%添加组血清IgG含量较对照组呈提高趋势,与以上研究结果相一致。分析认为,可能是酵母菌-凝结芽孢杆菌联合发酵培养物中的酵母多糖及凝结芽孢杆菌代谢产物促进了T淋巴细胞增殖,进而使IL-4产量增加,IL-4又进一步地促进B淋巴细胞增殖和分化,刺激B淋巴细胞合成和分泌抗体。
3.4 酵母菌-凝结芽孢杆菌联合发酵培养物对獭兔抗氧化能力的影响GSH-Px、SOD活性和T-AOC高低是衡量机体抗氧化能力的重要指标,MDA是脂质氧化终产物,对细胞形态、细胞膜及细胞内部结构有损伤作用,因而测定MDA含量可反映机体脂质过氧化程度,间接反映细胞损伤程度[41]。有研究发现,酵母培养物和蒙脱石-酵母培养复合物可以提高仔猪血清T-AOC、SOD和GSH-Px活性,降低血清MDA含量,增强机体抗氧化能力[24, 39]。Cheng等[42]通过给热应激肉鸡饲喂250 mg/kg的甘露寡糖(源自酵母细胞壁),显著降低了空肠MDA含量。张彩凤[43]研究表明,饲粮中添加0.1%的乳酸菌和酵母菌复合制剂可显著提高肉仔鸡的血清T-AOC和GSH-Px活性,显著降低血清MDA含量,增强机体抗氧化能力,降低机体内脂质过氧化程度。凝结芽孢杆菌能够通过提高回肠黏膜GSH-Px活性和降低脂质氧化产物MDA含量,来减轻断奶仔猪氧化应激[44]。余魁等[10]研究表明,添加2.0×106 CFU/g凝结芽孢杆菌可以显著提高仔猪血浆SOD活性,且使MDA含量显著降低。酵母菌-凝结芽孢杆菌联合发酵培养物是由酵母菌和凝结芽孢杆菌联合发酵而成,在抗氧化作用上具有协同作用。本次试验结果表明,饲粮中添加酵母菌-凝结芽孢杆菌联合发酵培养物,血清、肝脏和空肠的GSH-Px和SOD活性及T-AOC均无显著变化,与上述研究结果不同,这可能与物种、养殖环境和管理差异等有关,有待进一步研究。本试验中,各添加组血清和肝脏MDA含量均较对照组有所降低,0.02%和0.04%添加组空肠MDA含量较对照组呈降低趋势,表明动物机体内膜脂质过氧化程度减轻。其原因可能是:一方面,酵母培养物中的酵母多糖及核酸物质是一种高效的内源性自由基清除剂和抗氧化剂,因此獭兔机体脂质过氧化程度减轻;另一方面,凝结芽孢杆菌在肠道内定植后,产生了能够清除体内羟自由基和超氧阴离子自由基的胞外多糖[45]。
4 结论① 饲粮中添加酵母菌-凝结芽孢杆菌联合发酵培养物可以显著提高獭兔的ADG,改善獭兔生长性能,降低腹泻频率,提高养分表观消化率。
② 饲粮中添加酵母菌-凝结芽孢杆菌联合发酵培养物可显著提高獭兔血清中IgA和IL-4含量。
③ 综合分析,獭兔饲粮中酵母菌-凝结芽孢杆菌联合发酵培养物适宜添加水平为0.02%~0.04%。
[1] |
RAI A K, PANDEY A, SAHOO D. Biotechnological potential of yeasts in functional food industry[J]. Trends in Food Science & Technology, 2019, 83: 129-137. |
[2] |
王卫正, 郅永伟, 贾海军, 等. 酵母培养物对断奶獭兔生长性能、营养物质表观消化率及免疫机能的影响[J]. 饲料工业, 2018, 39(13): 60-64. WANG W Z, ZHI Y W, JIA H J, et al. Effects of yeast culture on growth performance, nutrient apparent digestibility and immune function of weaned Rex rabbit[J]. Feed Industry, 2018, 39(13): 60-64 (in Chinese). DOI:10.13302/j.cnki.fi.2018.13.013 |
[3] |
ZHEN Y G, ZHAO W, CHEN X, et al. Effects of yeast culture on broiler growth performance, nutrient digestibility and caecal microbiota[J]. South African Journal of Animal Science, 2019, 49(1): 99-108. DOI:10.4314/sajas.v49i1.12 |
[4] |
DÁVILA-RAMÍREZ J L, CARVAJAL-NOLAZCO M R, LÓPEZ-MILLANES M J, et al. Effect of yeast culture (Saccharomyces cerevisiae) supplementation on growth performance, blood metabolites, carcass traits, quality, and sensorial traits of meat from pigs under heat stress[J]. Animal Feed Science and Technology, 2020, 267: 114573. DOI:10.1016/j.anifeedsci.2020.114573 |
[5] |
MAAMOURI O, BEN SALEM M. Effect of yeast culture feed supply on growth, ruminal pH, and digestibility of fattening calves[J]. Food Science & Nutrition, 2021, 9(5): 2762-2767. |
[6] |
仝亚广, 许颖珏, 鲍慧玲, 等. 酵母培养物对蛋鸡生产性能及免疫性能的影响[J]. 中国饲料, 2019(13): 31-33. TONG Y G, XU Y J, BAO H L, et al. Effect of yeast culture on production performance and immune performance of laying hens[J]. China Feed, 2019(13): 31-33 (in Chinese). DOI:10.15906/j.cnki.cn11-2975/s.20191307 |
[7] |
ZHANG J, WAN K, XIONG Z B, et al. Effects of dietary yeast culture supplementation on the meat quality and antioxidant capacity of geese[J]. Journal of Applied Poultry Research, 2021, 30(1): 100116. DOI:10.1016/j.japr.2020.100116 |
[8] |
RIAZI S, WIRAWAN R E, BADMAEV V, et al. Characterization of lactosporin, a novel antimicrobial protein produced by Bacillus coagulans ATCC 7050[J]. Journal of Applied Microbiology, 2009, 106(4): 1370-1377. DOI:10.1111/j.1365-2672.2008.04105.x |
[9] |
FU R Q, LIANG C, CHEN D W, et al. Effects of dietary Bacillus coagulans and yeast hydrolysate supplementation on growth performance, immune response and intestinal barrier function in weaned piglets[J]. Journal of Animal Physiology and Animal Nutrition, 2021, 105(5): 898-907. DOI:10.1111/jpn.13529 |
[10] |
余魁, 张越, 李思源, 等. 日粮中添加凝结芽孢杆菌对仔猪血浆抗氧化指标和肠黏膜生长的影响[J]. 中国畜牧兽医, 2019, 46(5): 1362-1369. YU K, ZHANG Y, LI S Y, et al. Effects of Bacillus coagulans on plasma antioxidant indexes and intestinal mucosal growth of piglets[J]. China Animal Husbandry & Veterinary Medicine, 2019, 46(5): 1362-1369 (in Chinese). DOI:10.16431/j.cnki.1671-7236.2019.05.013 |
[11] |
赵娜, 申杰, 魏金涛, 等. 凝结芽孢杆菌对肉鸡生长性能、免疫器官指数、血清生化指标及肠道菌群的影响[J]. 动物营养学报, 2017, 29(1): 249-256. ZHAO N, SHEN J, WEI J T, et al. Effects of Bacillus coagulans on growth performance, immune organ indexes, serum biochemical indexes and intestinal flora of broilers[J]. Chinese Journal of Animal Nutrition, 2017, 29(1): 249-256 (in Chinese). DOI:10.3969/j.issn.1006-267x.2017.01.028 |
[12] |
NRC. Nutrient requirements of rabbits[S]. 2nd ed. Washington, D.C. : The National Academies Press, 2012.
|
[13] |
谷子林, 秦应和, 任克良. 中国养兔学[M]. 北京: 中国农业出版社, 2013: 435. GU Z L, QIN Y H, REN K L. China rabbit science[M]. Beijing: China Agriculture Press, 2013: 435 (in Chinese). |
[14] |
任克良. 兔病诊断与防治原色图谱[M]. 2版. 北京: 金盾出版社, 2012: 197-198. REN K L. Primary color atlas of diagnosis and prevention of rabbit disease[M]. 2nd ed. Beijing: Jindun Publishing House, 2012: 197-198 (in Chinese). |
[15] |
谷子林. 断乳仔兔腹泻发生机制及生物活性物质的调控研究[D]. 博士学位论文. 哈尔滨: 东北农业大学, 2004. GU Z L. The nosogensis of diarrhea and regulation by bio-active substances on weanling rabbits[D]. Ph. D. Thesis. Harbin: Northeast Agricultural University, 2004. (in Chinese) |
[16] |
张丽英. 饲料分析及饲料质量检测技术[M]. 4版. 北京: 中国农业大学出版社, 2016: 48-105. ZHANG L Y. Feed analysis and quality test technology[M]. 4th ed. Beijing: China Agricultural University Press, 2016: 48-105 (in Chinese). |
[17] |
明道绪. 生物统计附试验设计[M]. 3版. 北京: 中国农业出版社, 2002: 71-72. MING D X. Biometry and experimental design[M]. 3rd ed. Beijing: China Agriculture Press, 2002: 71-72 (in Chinese). |
[18] |
王国胜. 农业科研中显著性检验与显著性水平的讨论[J]. 安徽农业科学, 2007, 35(19): 5676-5677. WANG G S. Notable test and significant level discussion of agricultural research[J]. Journal of Anhui Agricultural Sciences, 2007, 35(19): 5676-5677 (in Chinese). DOI:10.3969/j.issn.0517-6611.2007.19.013 |
[19] |
SUN Z, WANG T, DEMELASH N, et al. Effect of yeast culture (Saccharomyces cerevisiae) on broilers: a preliminary study on the effective components of yeast culture[J]. Animals, 2019, 10(1): 68. DOI:10.3390/ani10010068 |
[20] |
ZHANG P Y, CAO S P, ZOU T, et al. Effects of dietary yeast culture on growth performance, immune response and disease resistance of gibel carp (Carassius auratus gibelio CAS Ⅲ)[J]. Fish & Shellfish Immunology, 2018, 82: 400-407. |
[21] |
WU T, ZHANG Y, LV Y, et al. Beneficial impact and molecular mechanism of Bacillus coagulans on piglets' intestine[J]. International Journal of Molecular Sciences, 2018, 19(7): 2084. DOI:10.3390/ijms19072084 |
[22] |
唐丽, 郭志强, 雷岷, 等. 酵母培养物对肉兔生产性能、脏器指数和血液生化指标的影响[J]. 中国饲料, 2019(13): 38-41. TANG L, GUO Z Q, LEI M, et al. Effects of yeast culture on productive performance, slaughter performance, viscera indices and blood biochemistry of meat rabbit[J]. China Feed, 2019(13): 38-41 (in Chinese). |
[23] |
SHANMUGANATHAN T, SAMARASINGHE K, WENK C. Supplemental enzymes, yeast culture and effective micro-organism culture to enhance the performance of rabbits fed diets containing high levels of rice bran[J]. Asian-Australasian Journal of Animal Sciences, 2004, 17(5): 678-683. DOI:10.5713/ajas.2004.678 |
[24] |
孙强东, 朱爱民. 酵母培养物对断奶仔猪生长性能、机体抗氧化能力和免疫功能的影响[J]. 中国饲料, 2021(2): 62-65. SUN Q D, ZHU A M. Effects of yeast culture on growth performance, antioxidant capacity and immune function of weaned piglets[J]. China Feed, 2021(2): 62-65 (in Chinese). |
[25] |
ZHANG B, ZHANG H R, YU Y, et al. Effects of Bacillus coagulans on growth performance, antioxidant capacity, immunity function, and gut health in broilers[J]. Poultry Science, 2021, 100(6): 101168. DOI:10.1016/j.psj.2021.101168 |
[26] |
孙喆. 酵母培养物有效物组的研究[D]. 博士学位论文. 长春: 吉林农业大学, 2018. SUN Z. Study on the effective compounds group of yeast culture[D]. Ph. D. Thesis. Changchun: Jilin Agricultural University, 2018. (in Chinese) |
[27] |
安济山, 胡睿智, 杨玲, 等. 凝结芽孢杆菌的生物学功能及其在畜禽生产中的应用[J]. 动物营养学报, 2020, 32(3): 1076-1083. AN J S, HU R Z, YANG L, et al. Biological function of Bacillus coagulans and its application in livestock and poultry production[J]. Chinese Journal of Animal Nutrition, 2020, 32(3): 1076-1083 (in Chinese). DOI:10.3969/j.issn.1006-267x.2020.03.013 |
[28] |
AMOAH K, HUANG Q C, TAN B P, et al. Dietary supplementation of probiotic Bacillus coagulans ATCC 7050, improves the growth performance, intestinal morphology, microflora, immune response, and disease confrontation of Pacific white shrimp, Litopenaeus vannamei[J]. Fish & Shellfish Immunology, 2019, 87: 796-808. |
[29] |
ZHOU Y H, ZENG Z H, XU Y B, et al. Application of Bacillus coagulans in animal husbandry and its underlying mechanisms[J]. Animals, 2020, 10(3): 454. DOI:10.3390/ani10030454 |
[30] |
BONATO M, BORGES L L, INGBERMAN M, et al. Effects of yeast cell wall on immunity, microbiota, and intestinal integrity of Salmonella-infected broilers[J]. Journal of Applied Poultry Research, 2020, 29(3): 545-558. DOI:10.1016/j.japr.2020.03.002 |
[31] |
ZHANG J C, CHEN P, ZHANG C, et al. Yeast culture promotes the production of aged laying hens by improving intestinal digestive enzyme activities and the intestinal health status[J]. Poultry Science, 2020, 99(4): 2026-2032. DOI:10.1016/j.psj.2019.11.017 |
[32] |
贾晓满, 冯贺, 柴爽, 等. 酵母培养物对梅花鹿生长性能、养分消化率及血液生化指标的影响[J]. 黑龙江畜牧兽医, 2020(5): 133-136. JIA X M, FENG H, CHAI S, et al. Effects of yeast cultures on growth performance, nutrient digestibility and blood biochemical indexes of sika deer[J]. Heilongjiang Animal Science and Veterinary Medicine, 2020(5): 133-136 (in Chinese). |
[33] |
KIM Y S, LEE J, HEO S, et al. Technology and safety evaluation of Bacillus coagulans exhibiting antimicrobial activity for starter development[J]. LWT, 2021, 137: 110464. |
[34] |
陈德林. 日粮中添加凝结芽孢杆菌对肉兔生长性能、消化生理及免疫的影响[D]. 硕士学位论文. 雅安: 四川农业大学, 2018. CHEN D L. Effects of dietary Bacillus coagulans on growth performance, gastrointestinal physiology and immunity in meat rabbits[D]. Master's Thesis. Ya'an: Sichuan Agricultural University, 2018. (in Chinese) |
[35] |
刘文英, 翟齐啸, 田丰伟, 等. 凝结芽孢杆菌B.C-39复合微生态制剂对小鼠便秘的缓解作用[J]. 食品与发酵工业, 2019, 45(13): 85-91. LIU W Y, ZHAI Q X, TIAN F W, et al. The effects of Bacillus coagulans B.C-39 compound microecological preparation against constipation in mice[J]. Food and Fermentation Industries, 2019, 45(13): 85-91 (in Chinese). |
[36] |
石琳, 张少成, 陈广信, 等. 不同营养水平饲粮添加酵母浓缩物对罗斯肉鸡生长性能、肠道消化酶活性及肠黏膜组织结构的影响[J]. 中国兽医学报, 2018, 38(1): 201-205. SHI L, ZHANG S C, CHEN G X, et al. Effects of yeast concentrate supplement in difference nutrition level dietary on growth performance, digestive enzyme activity and intestinal mucosal structure of ross broilers[J]. Chinese Journal of Veterinary Science, 2018, 38(1): 201-205 (in Chinese). |
[37] |
付天玺, 许国焕, 吴月嫦, 等. 凝结芽孢杆菌对奥尼罗非鱼消化酶活性、消化率及生长性能的影响[J]. 淡水渔业, 2008, 38(4): 30-35. FU T X, XU G H, WU Y C, et al. Effects of Bacillus coagulans on digestive enzyme activities, digestibility and growth performance of hybrid tilapia(Oreochromis niloticus×O. aureus)[J]. Freshwater Fisheries, 2008, 38(4): 30-35 (in Chinese). |
[38] |
MAHMOUD M M, YOUSSEF I M I, ABD EL-TAWAB M M, et al. Influence of probiotic and yeast culture supplementation on selected biochemical and immunological parameters of growing lambs[J]. Polish Journal of Veterinary Sciences, 2020, 23(1): 5-12. |
[39] |
唐小懿. 蒙脱石和酵母培养物组合对断奶仔猪生产性能、血液生化指标及粪便微生物区系的影响[D]. 硕士学位论文. 长沙: 湖南农业大学, 2019. TANG X Y. Effects of montmorillonite and yeast culture combinations on performance, blood biochemical parameters and fecal microflora diversity of weaned piglets[D]Master's Thesis. Changsha: Hunan Agriculture University, 2019. (in Chinese) |
[40] |
邢冠润, 吴吉安, 楼洪兴, 等. 凝结芽孢杆菌对产蛋鸡后期生产性能、蛋品质及免疫的影响[J]. 饲料研究, 2019, 42(3): 28-32. XING G R, WU J A, LOU H X, et al. Effects of Bacillus coagulans on late production performance, egg quality and immunity of laying hens[J]. Feed Research, 2019, 42(3): 28-32 (in Chinese). |
[41] |
姚仕彬, 叶元土, 蔡春芳, 等. 丙二醛对离体草鱼肠道黏膜细胞的损伤作用[J]. 水生生物学报, 2015, 39(1): 133-141. YAO S B, YE Y T, CAI C F, et al. Damage of MDA on intestinal epithelial cells in vitro of grass carp (Ctenopharyngodon idella)[J]. Acta Hydrobiologica Sinica, 2015, 39(1): 133-141 (in Chinese). |
[42] |
CHENG Y F, CHEN Y P, CHEN R, et al. Dietary mannan oligosaccharide ameliorates cyclic heat stress-induced damages on intestinal oxidative status and barrier integrity of broilers[J]. Poultry Science, 2019, 98(10): 4767-4776. |
[43] |
张彩凤. 乳酸菌和酵母菌复合菌剂对肉仔鸡生长性能、肠道健康和免疫性能的影响[D]. 甘肃农业大学, 2017. ZHANG C F. Effects of Lactobacillus and Saccharomycetes compound preparation on growth performance,, intestinal health and immunity in broilers[D]. Master's Thesis. Lanzhou: Gansu Agriculture University, 2017. (in Chinese) |
[44] |
吴梦郡, 纪昌正, 李思源, 等. 日粮中添加凝结芽孢杆菌对断奶仔猪小肠功能的影响[J]. 中国畜牧兽医, 2019, 46(3): 669-676. WU M J, JI C Z, LI S Y, et al. Effects of Bacillus coagulans on intestinal function in weaned piglets[J]. China Animal Husbandry & Veterinary Medicine, 2019, 46(3): 669-676 (in Chinese). |
[45] |
李嘉懿, 郭茜, 张红星, 等. 凝结芽孢杆菌微生态制剂对北京油鸡产蛋鸡抗脂质过氧化能力的影响[J]. 动物营养学报, 2018, 30(2): 782-789. LI J Y, GUO Q, ZHANG H X, et al. Effects on microecological preparation of Bacillus coagulans on anti-lipid peroxidation capability of Beijing-you laying hens[J]. Chinese Journal of Animal Nutrition, 2018, 30(2): 782-789 (in Chinese). |