![]() |
编者按:汪以真,男,安徽安庆人,著名动物营养学家,主要从事分子营养学研究,在生猪养殖“无抗”和“肠道微生态”的研究以及地方品种猪的肉质性状调控分子机制的研究上具有精深的造诣。本刊特邀汪以真教授就有关mRNA N6-甲基腺嘌呤修饰调控与动物脂肪沉积的研究进展撰写一篇综述。汪以真教授是浙江大学教授、动物科技学院院长、博士生导师,国家杰出青年基金获得者、国家“万人计划”科技创新领军人才,国务院畜牧学科评议组成员、教育部动物生产类教指委副主任、中国畜牧兽医学会动物营养学分会副理事长、绿色饲料与健康养殖国家工程研究中心主任、浙江省畜牧兽医学会理事长;主要从事营养与动物免疫、营养与肉品质以及生物饲料等研究;先后承担国家级项目课题20余项,获国家科技进步二等奖2项;在国内外期刊发表SCI论文160余篇,授权国际、国家发明专利40余项。 |
脂肪组织是动物体内最主要的储能器官,也是重要的代谢和分泌器官,可以通过内分泌、旁分泌和自分泌信号调节机体糖、脂代谢。脂肪组织发育和沉积影响动物的生长、生产、繁殖和健康,其过度沉积直接影响畜禽生产效率和产品品质。同时,脂肪的过度沉积也与人类肥胖、糖尿病等代谢性疾病的发生发展密切相关。因此,如何调控动物脂肪沉积与脂质代谢对畜禽健康高效养殖和优质畜禽产品生产以及人类健康都具有重要的意义。
脂肪组织的发育和沉积主要包括脂肪细胞数目增加和体积增大。成熟脂肪细胞是由间充质干细胞(mesenchymal stem cells,MSCs)分化而来,MSCs经过定向分化成脂肪祖细胞,脂肪祖细胞增殖后形成前体脂肪细胞,前体脂肪细胞经过增殖、分化聚酯形成成熟脂肪细胞。脂肪组织发育和脂肪沉积过程是一个复杂的过程,受到遗传、营养、环境和饲养方式等多种因素影响,近期许多研究表明,表观遗传学修饰在调控动物脂肪组织发育和脂肪沉积过程中发挥了重要的作用,其中,N6-甲基腺嘌呤(N6-methyladenosine,m6A)修饰是表观遗传学修饰领域中的研究热点之一。本实验室以及国内外学者研究表明,mRNA m6A修饰直接参与调控脂肪前体细胞分化聚酯和动物糖、脂代谢。因此,本文主要从脂肪组织种类、mRNA m6A修饰生物学功能、mRNA m6A修饰对脂肪沉积的影响及作用机制与营养调控等方面综述了mRNA m6A修饰调控脂肪沉积的相关研究进展。
1 动物脂肪组织组成及其功能脂肪组织由成熟脂肪细胞、前体脂肪细胞、成纤维细胞、血管内皮细胞、巨噬细胞以及微血管等组成,其中成熟脂肪细胞是脂肪组织中的主要细胞类型[1]。根据成熟脂肪细胞颜色、形态、结构和功能差异,动物脂肪可分为白色脂肪(white adipose tissue,WAT)、棕色脂肪(brown adipose tissue,BAT)、米色脂肪(beige/brite fat)等[2]。WAT主要位于腹腔器官周围和皮下等,如猪的背膘、肠系膜脂肪和肾周脂等脂肪组织都属于WAT,具有保持体温、机械保护、储能与代谢等功能[2]。WAT主要由成熟的WAT细胞构成,细胞内含有大量的脂质三酰基甘油(triacylglycerols,TAGs)和少量的线粒体。WAT是重要的储能器官,过度沉积影响饲料转化效率和动物生产性能等[2]。BAT主要分布在肩胛部、腋窝部、颈后部、锁骨上部等[3]。啮齿动物及小型哺乳动物体内含有更丰富的BAT,猪的BAT在进化过程中消失,人类BAT在婴幼儿期较为发达,但随着年龄的增长逐渐减少。BAT中主要细胞类型是成熟的BAT细胞,BAT细胞中含有多个小脂滴、较多的线粒体,在产热、调节体温及机体糖、脂代谢等方面发挥重要作用。beige细胞是一种特殊类型,存在于WAT中却类似于BAT的一类脂肪细胞,含有多个小的脂滴,在体温稳态、能量稳态和体重控制中起关键作用[2-4]。研究发现,中国地方猪如藏猪、闽猪具有良好的抗寒特性,可通过beige细胞中的解偶联蛋白(uncoupling protein,UCP)3表达来产热,进行体温调节;急性冷刺激可诱导仔猪WAT棕色化,也可通过beige细胞激活剂激活WAT棕色化来维持仔猪体温,降低生猪养殖过程中仔猪因冷应激导致的死亡[5-6]。
根据脂肪沉积部位的不同,脂肪组织主要分为皮下脂肪组织(subcutaneous fatty tissue,SAT)、内脏脂肪组织(visceral adipose tissue,VAT)和肌肉脂肪等[7-8]。SAT主要分布在股臀部、背部及前腹部,具有保持体温和参与脂质代谢等功能。VAT主要分布在腹腔内,沉积在脏器周围,具有稳定、缓冲和保护内脏器官的功能。SAT和VAT的过度沉积,影响胴体瘦肉率,降低了饲料利用效率及生产效益。肌肉内的脂肪沉积分布在骨骼肌中,包括肌内脂肪(intramuscular fat,IMF)和肌间脂肪,与肉品质密切相关。其中IMF含量直接影响肉的脂肪酸组成和风味、多汁性、嫩度、色泽等,影响肉的营养品质和感官品质,是提高肉品质的生物学基础之一[9-10]。因此,如何精准调控不同部分脂肪沉积,对改善畜禽肉品质和保障畜禽健康养殖具有重要意义。
2 mRNA m6A修饰及其生物学功能早在20世纪70年代,科研人员发现高等真核生物mRNA和lncRNA中存在m6A表观修饰[11]。随后研究表明,m6A修饰与mRNA稳定性密切相关[12]。1997年,Bokar等[13]首次发现了m6A修饰甲基转移酶样蛋白3(methyltransferase-like protein 3,METTL3),2011年,又发现了m6A修饰去甲基化酶-脂肪含量和肥胖相关蛋白(fat mass and obesity-associated protein,FTO),表明m6A是一种动态可逆的RNA修饰[14]。2012年,Dominissini等[15]利用甲基化RNA免疫共沉淀高通量测序(methylated RNA immunoprecipitation sequencing,MeRIP-Seq)等技术首次绘制了人类和小鼠的m6A修饰图谱。目前发现的RNA修饰一共有100多种,其中,m6A修饰是哺乳动物中分布最广泛、含量最丰富的RNA修饰[16]。mRNA m6A修饰发挥作用与甲基转移酶、去甲基化酶和结合蛋白密切相关。mRNA m6A甲基转移酶是一个多蛋白组成的复合物,主要参与催化m6A修饰。METTL3是m6A甲基转移酶复合物的核心组分,定位于细胞核内[17],具有甲基转移酶活性[18],可对特定的转录本进行m6A修饰。m6A修饰甲基转移酶样蛋白14(methyltransferase-like protein 14,METTL14)是另一个关键m6A甲基转移酶复合物,可与METTL3形成稳定的异二聚体,提高METTL3催化m6A修饰效率[19]。WT1相关蛋白(WT1 associated protein,WTAP)参与m6A修饰反应底物募集和METTL3/14定位,进而与METTL3/14结合[20]。病毒样m6A甲基转化酶(Vir like m6A methyltransferase associated,VIRMA)偏好介导mRNA 3’-UTR和近终止子区域的修饰[21],CCCH型锌指蛋白13(CCCH-type zinc finger protein 13,ZC3H13)有助于甲基转移酶复合物的核定位[22],RNA结合基序蛋白15/15B(RNA binding motif protein 15/15B,RBM15/15B)可结合U富集区域,并促进mRNA和X失活特异转录物(X-inactive specific transcript,XIST)m6A修饰[23]。mRNA m6A去甲基化酶主要参与催化m6A修饰去甲基化,在目前已知的2个m6A去甲基化酶中,FTO和ALKB H5同系物(ALKB homolog H5,ALKBH5)均属于ALKB蛋白家族的一员,具有典型的依赖Fe2+和α-酮戊二酸的双加氧酶特性。FTO基因敲除可导致小鼠出生后致死率增加及生长迟缓[24]。而ALKBH5定位于组织的细胞核内核小斑,参与mRNA出核等功能,在睾丸中表达较高,参与调控小鼠的精子发生过程[25]。mRNA m6A结合蛋白参与mRNA稳定性、可变剪接、出核以及翻译等过程[26-27]。目前已知的m6A结合蛋白主要是YTH结构域蛋白家族(YTH domain protein family,YTHDC)、胰岛素样生长因子2 mRNA结合蛋白(insulin like growth factor 2 mRNA binding protein,IGF2BP)和异质性胞核核糖核蛋白蛋白(heterogeneous nuclear ribonucleoprotein,HNRNP)。YTHDC1和HNRNP蛋白定位于细胞核,YTHDC1通过与核转运受体相互作用,促进m6A修饰mRNA出核[28],而HNRNP蛋白可以调控mRNA的选择性剪切和结构改变[29]。YTHDF1/2/3、YTHDC2和IGF2BP家族蛋白定位于细胞质。其中,YTHDF1通过与翻译起始因子和核糖体相互作用来促进m6A修饰mRNA的翻译[26],YTHDF2通过招募RNA降解因子促进m6A修饰mRNA的降解[30],YTHDF3能够分别协助YTHDF1/2调控m6A修饰mRNA的翻译和降解[31]。YTHDC2参与m6A修饰mRNA的降解、翻译和可变剪接[32],而IGF2BP可以增强m6A修饰mRNA的稳定性[33]。
mRNA m6A修饰生物学功能。近期研究表明,mRNA m6A修饰对于基因表达调控和细胞命运决定具有重要功能,并在多种生物学过程中发挥重要作用。在哺乳动物胚胎发育过程中,mRNA m6A修饰参与调控胚胎干细胞的自我更新及分化能力[34-36]。METTL3通过促进多种癌基因的翻译诱导癌症发生[37-39],ALKBH5能促进乳腺癌、神经胶质瘤干细胞的增殖和分化[40],FTO在急性白血病中的致癌功能也被证实[41],mRNA m6A修饰可通过控制癌症相关基因的表达调节癌症发生。mRNA m6A在中枢神经系统中的含量比其他部位更高[42],FTO在成体神经干细胞(neural stem cells,NSC)和神经元中高度表达,FTO缺失不仅会降低NSC的增殖和神经元分化,还会导致大脑体积和体重下降,进而引发学习和记忆受损[43]。mRNA m6A修饰参与卵母细胞成熟和精子发生[44],阅读器蛋白YTHDC2缺乏会导致小鼠睾丸和卵巢变小[32]。
mRNA m6A修饰与脂肪沉积调控密切相关。FTO作为影响肥胖的候选基因,过表达FTO可以显著促进脂肪沉积[45]。为了进一步揭示FTO与脂肪沉积的关系,2014年,Zhao等[46]利用小鼠3T3-L1脂肪细胞细胞系,首次揭示了m6A与脂肪细胞分化的关系,结果提示mRNA m6A修饰与成脂分化呈负相关。2015年,本实验室在猪前体脂肪细胞中研究发现,敲低FTO显著升高mRNA m6A水平、降低前体脂肪细胞分化聚酯;过表达FTO显著降低mRNA m6A水平、促进细胞脂肪沉积;利用甲基化抑制剂环亮氨酸和甲基供体甜菜碱分别处理猪前体脂肪细胞,发现提高m6A水平可降低脂肪沉积,而降低m6A水平可促进脂肪沉积,证实了m6A在猪脂肪细胞分化聚酯的负调控作用[47]。为了进一步探究mRNA m6A修饰与猪脂肪沉积的作用,本实验室以肉脂型金华猪和瘦肉型长白猪为研究模型,发现金华猪脂肪组织和肌肉组织中的mRNA m6A水平均显著低于长白猪,进一步通过MeRIP-Seq技术对猪脂肪组织和肌肉组织进行了全转录组水平的mRNA m6A分析,鉴定到了一批与猪皮下脂肪沉积密切相关的m6A修饰基因,如含patatin样磷脂酶域蛋白2(patatin like phospholipase domain protein 2,PNPLA2)和UCP2等[48],以及与猪肌内脂肪沉积密切相关的m6A修饰基因,如线粒体载体2(mitochondrial carrier 2,MTCH2)等[49]。随后,本实验室开展了一系列研究,进一步证实了m6A对动物脂肪沉积的调控作用。Yao等[50]研究发现,在猪间充质干细胞(pig mesenchymal stem cell,pBMSC)中,干扰METTL3可显著降低m6A水平,促进pBMSC向脂肪细胞分化,而过表达METTL3可升高m6A修饰水平进而抑制pBMSC成脂分化。Wu等[51]研究发现,FTO以m6A依赖的方式可促进猪前体脂肪细胞成脂分化早期克隆增殖,而且可以促进小鼠3T3-L1和猪前体脂肪细胞的自噬从而促进脂肪生成[52]。Liu等[53]研究发现,转录因子锌指蛋白217(zinc finger protein 217,ZFP217)可通过抑制METTL3表达以降低m6A水平进而促进前体脂肪细胞成脂分化。同时,mRNA m6A与能量代谢及肥胖相关疾病发生也密切相关。BAT组织特异性敲除METTL3通过减少乙酰化PR结构域蛋白16(PR domain-containing protein 16,PRDM16)、过氧化物酶体增殖物激活受体γ(peroxisome proliferator-activated receptor gamma,PPARγ)以及UCP1转录上的m6A修饰水平,减少BAT产热,促进高脂诱导的肥胖发生[54]。脂肪组织特异性敲除FTO可升高m6A水平,促进WAT组织棕色化,增加能量消耗以抵抗高脂饮食诱导的肥胖发生[55]。巨噬细胞中特异性敲除METTL3可以改善炎症和代谢稳态,以防止饮食诱导的非酒精性脂肪肝和肥胖症的发展[56]。与正常人相比,Ⅱ型糖尿病(type 2 diabetes,T2D)患者血液中的m6A水平较低,而FTO、METTL3、METTL14、WTAP mRNA表达水平较高[57]。De Jesus等[58]通过MeRIP-Seq比较糖尿病患者和健康人群胰岛样品中的m6A甲基化图谱、利用体外EndoC-βH1 β细胞模型以及小鼠β细胞METTL14敲除动物模型进行验证,揭示了m6A在胰岛中β细胞的细胞周期、胰岛素分泌等生物学功能中的调控作用。
3 mRNA m6A修饰调控多能干细胞命运决定及其机制多能干细胞(pluripotent stem cells,PSC)是一类具有自我更新、自我复制能力的多潜能分化干细胞,在一定条件下,PSC具有分化出多种细胞组织的潜能,也具有分化成脂肪细胞的能力。Takahashi等[59]于2006年研究发现,成熟体细胞可通过外源导入4个关键转录因子将其重编程为类似胚胎干细胞的一种细胞类型,被称为诱导性多功能干细胞(induced pluripotent stem cells,iPSC)。iPSC具有胚胎干细胞的再生特性,已成为了人类医学研究的宝贵资源。m6A作为一种广泛存在RNA甲基化修饰,在调节iPSC的发育和细胞命运转变方面起重要作用[60]。m6A通过microRNA的调节进而促进小鼠胚胎成纤维细胞的自我更新[61]。Wen等[22]研究发现,ZC3H13能将m6A调节复合物锚定在细胞核中,通过促进m6A甲基化来提高胚胎干细胞的多能性。Wu等[62]近期也报道了m6A通过靶向细胞因子信号转导抑制因子3(SOCS3)/Janus激酶2(JAK2)信号转导子和转录激活因子3(STAT3)途径增加猪iPSC的多能性;进一步通过机制解析表明,METTL3的缺失了JAK2和SOCS3 mRNA的m6A水平,从而导致YTHDF1介导的JAK2翻译减弱,最后抑制YTHDF2依赖的SOCS3 mRNA降解;此外,JAK2和SOCS3蛋白水平的变化共同抑制JAK2/STAT3信号传导和下游靶点克鲁珀尔样因子4(Kruppel like factor 4,KLF4)和SRY-box转录因子2(SRY-box transcription factor 2,SOX2)的表达(iPSC多能性关键基因),进而阻碍猪iPSC的自我更新和分化。综上所述,mRNA m6A修饰是维持iPSC多能性所必需因素之一。然而,也有研究表明,m6A修饰不是维持多能性所必需的,而是胚胎干细胞向分化谱系的细胞命运转变所必需的[36]。METTL3敲除导致的m6A缺失通过维持多能性因子SOX2等的表达,增强了细胞的自我更新并阻碍其分化。ZFP217是一种保守的转录因子,通过将METTL3隔离并抑制m6A甲基化来维持胚胎干细胞的自我更新,而ZFP217的缺失能增加多能调节因子中的m6A水平,并促进了它们的降解[63]。产生这些矛盾的原因可能是,m6A调节iPSC多能性与其细胞状态有关[64]。具体而言,胚胎干细胞处于“幼稚”状态,而小鼠外胚层干细胞来自植入后外胚层,其体内分化能力有限,并为分化做好准备[65]。在初始状态胚胎干细胞中METTL3的缺失导致多能性增强,而在启动状态的胚胎干细胞中METTL3的敲除会导致分化的加速。以上研究表明,m6A修饰参与iPSC的多能性和分化命运调控,其生物学功能依赖于iPSC的细胞类型及其细胞状态。
在常规脂肪细胞分化培养基中,大多数iPSC均能正常表达脂肪细胞标志基因脂肪酸结合蛋白4(fatty acid-binding protein 4,FABP4),但其成脂分化能力较弱;当添加维甲酸能激活脂肪生成关键基因如PPARγ、PPARδ以及CCAAT增强子结合蛋白β(CCAAT/enhancer-binding protein beta,C/EBPβ)等,诱导iPSC向脂肪祖细胞的分化[66]。在向脂肪细胞诱导分化过程中,iPSC同样具有较弱的自发产生BAT/beige细胞能力,如何特异性分化成产热脂肪细胞成为了一个新的亟待解决的科学问题。Wang等[67]首次报道了METTL3和METTL14的缺失降低m6A水平进而促进了小鼠胚胎干细胞的分化。发育相关基因的m6A修饰阻断RNA稳定蛋白Hu抗原R(HuR)与其的结合,从而维持多能性;而HuR作为RNA代谢的重要转录后调节因子,具有负调控脂肪沉积的功能,表明了m6A修饰可能具有调控PSC向脂肪细胞分化的能力[68]。
4 mRNA m6A修饰调控骨髓间充质干细胞成脂分化的影响及机制骨髓间充质干细胞(bone mesenchymal stem cells,BMSCs)是一类广泛参与组织损伤修复、免疫重塑等生物学功能的基质细胞,具有多向分化潜能,可以分化为其他中胚层组织,如骨骼肌[69]、肌腱[70]、平滑肌[69]和内皮[71]。研究结果表明,表观遗传修饰对于BMSCs细胞命运决定和维持平衡至关重要[72]。mRNA m6A修饰作为mRNA的转录后修饰,已被证实广泛参与BMSCs的成脂分化[73]。研究发现,BMSCs中METTL3的缺失通过破坏甲状旁腺激素(PTH)/甲状旁腺激素受体1(PTH1R)信号轴,促进成脂分化,抑制成骨分化潜能[35]。进一步研究发现,METTL3介导的m6A甲基化修饰作用于PTH1R,促进其翻译和蛋白质合成;BMSCs中条件敲除METTL3会增加骨髓脂肪。本实验室近期研究发现,METTL3介导的m6A甲基化抑制了猪BMSCs向前体脂肪细胞分化[50]。具体机制是,敲除METTL3会降低JAK1 mRNA的m6A水平,缓解YTHDF2依赖的JAK1 mRNA降解;JAK1蛋白丰度的增加激活了脂肪细胞信号转导因子和转录激活因子5(signal transducer and activator of transcription 5,STAT5)磷酸化,促进了C/EBPβ的转录和表达,最终导致成脂因子表达上调和脂肪形成促进BMSCs分化为脂肪细胞[50]。相反,生长分化因子11(GDF11)-FTO-PPARγ轴促使小鼠MBSCs的命运向脂肪细胞转移,并缓解骨质疏松症期间的骨形成[74]。FTO抑制PPARγ基因mRNA m6A修饰,上调PPARγ基因的表达,促进成脂分化。在BMSCs成脂分化过程中,ALKBH5逐渐降低[75],ALKBH5可以介导的TRAF4 mRNA去甲基化,进而增加TRAF4 mRNA的表达;TRAF4又与丙酮酸激酶M2(pyruvate kinase M2,PKM2)结合以激活PKM2的激酶活性,激活β-连环蛋白信号,抑制BMSCs分化聚酯和脂肪沉积。此外,microRNA-149-3p通过靶向FTO直接调节BMSCs的分化聚酯和脂肪沉积[76]。综上所述,mRNA m6A修饰在BMSCs定向分化为脂肪细胞过程中发挥重要的调控作用。
5 mRNA m6A修饰对前体脂肪细胞分化聚酯的影响及其机制前体脂肪细胞分化主要经历3个阶段,分别是早期阶段、有丝分裂后中间阶段和终末阶段。前体脂肪细胞分化的实质是一系列标志基因时序表达及其网络调控的结果,每条网络都包含多种转录因子,其中关键转录调控因子主要包括C/EBPα、C/EBPβ和PPARγ等。当小鼠缺失C/EBPα,脂肪细胞没有脂质沉积,小鼠出生后不久因低血糖而死亡[77]。PPARγ激活会促进脂质的储存、分配以及代谢等一系列作用提高啮齿类动物和人类的胰岛素敏感性[78]。
5.1 mRNA m6A修饰通过调控细胞周期影响前体脂肪细胞分化聚酯有丝分裂克隆扩增(mitotic clonal expansion,MCE)发生在脂肪形成的早期,是脂肪细胞分化的前提条件[79]。在MCE过程中,生长受阻的前体脂肪细胞和小鼠胚胎成纤维细胞(mouse embryonic fibroblasts,MEFs)同步重新进入细胞周期,进行两轮增殖。Merkestein等[80]报道,FTO通过调节MCE促进脂肪形成。本实验室研究发现,FTO通过m6A-YTHDF2依赖机制调控3T3-L1细胞的MCE。FTO的下调提高了细胞周期的2个关键调控因子——细胞周期蛋白A2(cyclin A2,CCNA2)和细胞周期蛋白依赖性激酶2(cyclin dependent kinase 2,CDK2)的mRNA m6A修饰水平;随后,YTHDF2介导m6A修饰的CCNA2和CDK2 mRNA的降解,导致异丁基甲基黄嘌呤、地塞米松和胰岛素(isobutyl methyl xanthine, dexamethasone and insulin,MDI)诱导的3T3L1细胞进入G2期的延迟,阻断细胞周期进程,从而抑制脂肪形成;该结果表明,FTO介导的m6A在脂肪形成的早期阶段起着关键的调控作用[81]。此外,其他研究也表明,METTL3、METTL14和WTAP通过促进3T-L1细胞的MCE中的细胞周期转变来正向控制脂肪生成[82]。敲除WTAP会抑制CCNA2表达上调,并在脂肪细胞分化的MCE期间阻止细胞周期转换。本实验室研究也显示,ZFP217耗竭促进了METTL3的表达,上调细胞周期蛋白1(cyclin D1,CCND1) mRNA m6A的修饰水平,YTHDF2识别并降解甲基化的CCND1 mRNA,下调CCND1并抑制MCE,从而降低脂肪生成[53]。
5.2 mRNA m6A修饰通过调控成脂信号通路影响前体脂肪细胞聚酯m6A及其修饰蛋白在前体脂肪细胞分化中的关键作用。Zhao等[46]研究发现,mRNA m6A修饰通过介导mRNA选择性剪接来调节3T3-L1细胞的脂肪形成。在3T3-L1细胞前体脂肪细胞中,FTO位于细胞核和细胞质中,脂肪细胞分化抑制了FTO的表达,而脂肪细胞分化过程中m6A修饰水平增加[83]。在脂肪细胞分化过程中,FTO通过抑制剪接位点附近的m6A水平,促进脂肪分化基因Runt相关转录因子-1(Runt-related transcription factor 1,RUNX1T1)的外显子跳跃性剪切并最终影响脂肪分化。本实验室研究发现,在猪原代前体脂肪细胞中FTO和METTL3介导的m6A甲基化可以抑制脂肪生成[47]。同样,另一项研究证明,FTO的m6A去甲基化酶活性是3T3-L1细胞成脂所必需的[84]。本实验室也发现,FTO介导的m6A去甲基化通过JAK2-STAT3-C/EBPβ促进了猪前体脂肪细胞在早期成脂进程中的分化[51]。综上所述,这些研究表明,mRNA m6A修饰与脂肪细胞分化聚酯呈负相关。
此外,本实验室近期研究发现,m6A还可通过调控自噬通路调控3T3-L1细胞和猪原代前体脂肪细胞的分化,敲除FTO会增加了自噬的两大调控因子自噬相关5(autophagy related 5,ATG5)和自噬相关7(autophagy related 7,ATG7)mRNA的m6A修饰水平;YTHDF2特异性靶向m6A修饰的ATG5和ATG7 mRNA,促进其mRNA降解,导致ATG5和ATG7蛋白表达降低,自噬小体形成减弱,从而抑制自噬和脂肪形成[52]。序列相似性家族134B(family with sequence similarity 134 member B,FAM134B)基因mRNA m6A修饰通过YTHDF2依赖的方式促进其蛋白丰度,促进猪前体脂肪细胞的分化[85]。除了m6A修饰相关的调控因子外,其他蛋白也参与了m6A介导的脂肪形成。例如,ZFP217以m6A依赖的方式促进成脂分化,ZFP217转录激活FTO基因表达并以m6A-YTHDF2依赖的方式来协调mRNA m6A修饰[86]。本实验室研究发现,磷酸腺苷酸活化蛋白激酶(adenosine monophosphate activated protein kinase,AMPK)通过抑制FTO介导的m6A去甲基化负向调控小鼠成肌细胞成脂分化[87]。
6 mRNA m6A修饰与脂肪沉积的营养调控 6.1 甲基供体影响mRNA m6A修饰调控动物脂肪沉积甜菜碱(betaine),又名三甲基甘氨酸,是一种广泛存在于动物、植物和微生物体内的天然化合物。Scheibler在1869年首次从甜菜中分离出甜菜碱,它由甘氨酸和3个甲基组成,是一种广泛存在于动物、植物和微生物体内的天然化合物[88-89]。除了可以从食物中获取补充外,动物机体本身也可以通过氧化胆碱分解代谢产生甜菜碱[90]。甜菜碱作为机体内一种重要的代谢产物,具有促进畜禽生长性能、促进蛋白质沉积、降低机体脂肪含量等多种功能,可有效减少机体脂肪积累和改善胰岛素抵抗、葡萄糖稳态和肝脂肪变性等[91-94]。
研究发现,猪饲粮中添加0.125%甜菜碱,能显著降低育肥猪的平均背膘厚度和血清甘油三酯含量[95],可以促进脂肪酸的β氧化,加速脂肪分解,降低动物体脂含量及体脂重分配[95]。本实验室早期研究发现,在饲粮中添加不同浓度的甜菜碱,可以有效降低猪体脂率,改善机体脂质代谢,同时提高眼肌面积与日增重[96-97]。饲粮中添加甜菜碱还能显著降低育肥猪血清中胆固醇和高密度脂蛋白胆固醇含量,从而调节育肥猪脂肪酸代谢[98]。上述研究说明,饲粮添加甜菜碱可以有效提高猪的机体能量代谢,减少脂肪沉积。
近年来,不同实验室针对甜菜碱调控动物脂肪沉积与脂质代谢的机制开展了大量的研究。研究发现,甜菜碱可以通过上调成纤维细胞生长因21(fibroblast growth factor 21,FGF21)来改善小鼠脂肪酸氧化并减少肝脏脂肪沉积[94]。甜菜碱作为蛋氨酸同型半胱氨酸循环的有效甲基供体,可以提高甜菜碱高半胱氨酸甲基转移酶(betaine-homocysteine methyltransferase,BHMT)的表达和S-腺苷甲硫氨酸(S-adenosylmethionine,SAM)合成,激活AMPK信号通路,进而抑制脂肪沉积[98],同时提高的SAM含量可以促进肉碱的合成[99-101],提高肉碱棕榈酰转移酶1(carnitine palmitoyltransferase 1,CPT1)表达,增加了脂肪酸转运,从而调控肌内脂肪含量,改善肉品质[102]。本实验室研究发现,AMPK α1敲除小鼠饲粮添加甜菜碱可以有效激活动物脂肪组织中AMPK相关信号通路,提高线粒体生成基因和脂肪β-氧化相关基因表达,同时甜菜碱还降低了FTO表达并提高脂肪组织中的mRNA m6A修饰水平,从而抑制脂肪沉积[103]。甜菜碱可以通过细胞外信号调节蛋白激酶1/2(extracellular signal-regulated protein kinase 1/2,ERK1/2)-PPARγ信号通路调节骨骼肌细胞的脂质代谢,促进骨骼肌细胞的脂质积累[104]。此外,甜菜碱还可以通过下调小鼠肝脏中FTO的表达,增强高脂饮食动物肝脏脂质输出和脂肪酸氧化,从而抑制肝脏脂肪沉积,改善机体胰岛素抵抗[93, 105]。以上研究表明,甜菜碱可以通过影响动物表观遗传修饰及能量代谢途径,从而有效减少动物脂肪沉积,改善脂质代谢。甜菜碱通过RNA甲基化表观遗传调控动物脂肪沉积与能量代谢的作用已得到证实,这对甜菜碱在畜禽生产中的应用具有重要意义。
此外,甲基供体还包括胆碱、蛋氨酸和叶酸等,作为DNA、相关蛋白和RNA甲基化的主要底物,这些甲基供体通过表观遗传修饰在宿主脂肪沉积和基因表达方面发挥着重要调控作用[106]。补充或限制甲基供体是一种有效的营养干预措施,如补充胆碱可以减少啮齿动物[107]和鸡[108]等的体脂沉积,在人类的临床数据中也发现高血清胆碱含量与低体脂呈正相关性[109],研究表明,胆碱对脂代谢的作用部分依赖其对机体甲基化的调控[91]。限制蛋氨酸摄入量具有改善胰岛素敏感性、恢复机体节律基因,从而减少脂肪沉积的功能[110]。研究显示,蛋氨酸可以通过增加SAM甲基转移途径或上调METTL3蛋白表达来增加m6A修饰,进而调控T细胞功能等免疫进程,补充蛋氨酸能增加机体m6A修饰,这可能影响肝脏、肌肉和乳腺中的脂质合成过程[111-112]。但是,关于蛋氨酸等其他甲基供体能否直接通过m6A修饰来调控机体脂肪沉积有待进一步深入研究。
6.2 植物提取物影响mRNA m6A修饰调控动物脂肪沉积姜黄素(curcumin)是一种黄色多酚类物质,具有广泛的生物学功能,如抗菌、消炎、抗氧化、抗肿瘤等[113-114]。然而,姜黄素作为饲料添加剂在畜禽生产中的应用还处于起步阶段,且在仔猪上的研究相对较少。Lu等[115]研究发现,断奶仔猪饲粮中添加200 mg/kg的姜黄素可以提高仔猪的生长性能和饲料利用率,缓解仔猪因断奶造成的肝脏氧化应激,并改善血脂代谢。同时,Lu等[115]进一步通过向断奶仔猪腹腔注射脂多糖(LPS)建立免疫应激模型后发现,向免疫应激仔猪饲粮中添加200 mg/kg的姜黄素可以改善仔猪的生长性能,降低固醇调节元件结合转录因子、硬脂酰辅酶A去饱和酶的基因表达,从而降低仔猪血清胆固醇和肝脏甘油三酯含量。值得关注的是,饲粮中添加姜黄素后还显著提高了免疫应激仔猪肝脏的整体m6A水平。由于肝脏是仔猪生长发育过程中营养物质代谢和合成的重要器官,m6A修饰又与猪肝脏的分化和发育紧密联系,因此姜黄素是否以及如何通过mRNA m6A修饰调控仔猪生长发育过程中肝脏的脂质代谢进而调控整体的生产性能有待研究[116]。而在脂肪组织中,姜黄素则被发现可以通过抑制去甲基化酶ALKBH5的表达,提高脂肪组织整体m6A水平来抑制高脂饲粮饲喂小鼠的脂肪沉积,这一作用是通过提高肿瘤坏死因子受体相关因子4(TNF receptor-associated factor 4,TRAF4)mRNA m6A修饰水平,促进TRAF4的表达,TRAF4进一步通过泛素化修饰降低脂肪组织中PPARγ表达,从而抑制脂肪生成[117]。值得注意的是,由于姜黄素可影响哺乳动物多种组织mRNA中的m6A修饰水平[115, 118],而饲粮中添加200 mg/kg的姜黄素又可以抑制宫内生长迟缓仔猪背最长肌中IMF的异位沉积,并通过缓解氧化应激改善宫内生长迟缓仔猪的肉质[119]。因此,姜黄素是否可以通过影响背最长肌中的m6A修饰水平进而影响IMF沉积值得进一步研究。
6.3 功能性氨基酸影响mRNA m6A修饰调控动物脂肪沉积构成蛋白质的20种氨基酸中亮氨酸(Leu)、异亮氨酸(Ile)和缬氨酸(Val)因其功能基团均为支链而被合称为支链氨基酸(branched-chain amino acid,BCAAs)[120]。BCAAs均无法由动物机体自身合成,必需从外界摄取,因此是维持动物机体正常生命活动所必需的氨基酸[120]。BCAAs在肠道中被吸收进入血液循环后,与大部分氨基酸在肝脏中代谢不同,BCAAs的代谢主要在骨骼肌进行[121],并广泛发生在脂肪、肝脏、肾脏、心肌等多种组织[122]。
近年来,人们越发关注BCAAs代谢在脂肪组织中扮演的角色。研究表明,除参与蛋白质合成外,BCAAs还能作为信号和代谢分子调控脂肪组织中的糖脂代谢和能量平衡,BCAA分解代谢是由支链氨基酸转氨酶(branched-chain aminotransferase,BCAT)起始的,它由2种异构体BCAT1(存在细胞质中)和BCAT2(存在于线粒体中)组成。Ma等[123]研究发现,脂肪组织敲除BCAT2促使小鼠的WAT棕色化和产热增加,进而缓解高脂饲粮诱导的肥胖;进一步机制研究显示,BCAT2可以将支链氨基酸转化为支链酮酸,而支链酮酸代谢产生的乙酰辅酶A能够乙酰化PRDM16 K915位点,进而破坏了PRDM16与PPARγ之间的相互作用,从而抑制WAT棕色化;而敲除BCAT2则会导致脂肪组织棕色化增强并抑制肥胖。在家畜生产中发现,饲粮中添加BCAAs能调控猪、牛、羊等的糖、脂代谢,从而影响动物的生产性能[124-126]。在生长肥育猪的低蛋白质饲粮中添加BCAAs能显著增加猪的股二头肌(biceps femoris,BF)中的IMF含量[127],而在断奶仔猪饲喂低蛋白质饲粮的同时添加BCAAs可以提高仔猪的采食量和生长性能,并提高仔猪的肌肉含量[128],但其内在机制尚不明确。Heng等[124]研究发现,饲粮中过量添加BCAAs抑制断奶仔猪脂肪酸合成的效果,与其能影响脂肪组织中的m6A修饰有关;与对照组相比,过量添加BCAAs显著抑制了仔猪背膘脂肪组织中METTL3和METTL14的表达,导致背膘脂肪组织中乙酰辅酶A羧化酶(acetyl CoA aarboxylase,ACACA)、脂肪酸合成酶(fatty acid synthase,FASN)和二酰基甘油酰基转移酶1(diacylglycerol acyltransferase 1,DGAT1)mRNA上的甲基化水平均显著降低。本实验室近期研究发现,饲粮添加BCAAs,通过抑制小鼠WAT组织和3T3-L1细胞中去甲基化酶FTO的表达,使得CCNA2和CDK2 mRNA的m6A水平显著上升,从而在YTHDF2的介导下抑制CCNA2和CDK2的蛋白表达并阻滞克隆增殖阶段细胞周期进程,最终抑制脂肪沉积[129]。进一步研究发现,BCAAs是通过抑制脂肪细胞中葡萄糖-6-磷酸脱氢酶(glucose-6-phosphate dehydrogenase,G6PD)的表达,降低血清和脂肪细胞中还原型辅酶Ⅱ的水平,进而抑制FTO的表达。由于mRNA m6A修饰在猪的脂肪沉积中具有重要作用[49],BCAAs如何通过mRNA m6A修饰影响猪的脂肪沉积需要进一步深入研究,以便于在猪生产养殖的不同时期,通过控制外源供给BCAAs来促进猪健康生产。
6.4 不饱和脂肪酸调控mRNA m6A修饰影响动物脂肪沉积脂肪酸是重要的营养物质,参与细胞内各种膜结构、转运体、离子通道、酶或者激素的受体相互作用,调控多种关键蛋白的表达,进而调节细胞的各项功能,在细胞生长和发育过程中扮演了重要的角色[130],其中最受关注的是不饱和脂肪酸,尤其是长链多不饱和脂肪酸(polyunsaturated fatty acids,PUFAs),能显著增加IMF含量,对猪肉的风味和品质有着显著的影响[131]。在各种PUFAs中,亚油酸(linoleic acid,LA)和α-亚麻酸(α-linolenic acid,ALA)被认为是脊椎动物的必需脂肪酸,因为体内不能合成,必需从饲粮中获得。研究发现,猪皮下前体脂肪细胞在亚油酸和α-亚麻酸诱导分化后,细胞增殖数量、脂质含量、油红O染色程度和成脂相关标志基因表达量总体上均低于对照组,表明亚油酸和α-亚麻酸通过影响猪皮下前体脂肪细胞增殖、分化和诱导凋亡从而减弱猪脂肪形成[132]。同时,Ostrowska等[133]研究表明,饲粮中添加共轭亚油酸(conjugated linoleic acids,CLA)会显著提高育肥猪料重比和瘦肉沉积,减少脂肪沉积。李权[134]在研究鱼油对LPS刺激仔猪下丘脑-垂体-肾上腺-免疫轴的影响时发现,鱼油缓解了LPS刺激2 h后引起的肿瘤坏死因子-α(TNF-α)和皮质醇含量的提高,同时显著降低了血浆促肾上腺皮质激素含量,探究机制发现,鱼油是通过抑制Toll样受体4(Toll like receptor 4,TLR4)、髓样分化因子88(myeloid differentiation primary response 88,MyD88)、肿瘤坏死因子受体相关因子6(TNF receptor associated factor 6,TRAF6)等炎症信号通路关键蛋白的表达缓解炎症因子的分泌的。本实验室研究发现,TRAF6的mRNA上存在多个m6A的甲基化修饰,且这些修饰在炎症反应过程中对TRAF6的蛋白质翻译有着关键的作用,这提示不饱和脂肪酸很有可能通过调控mRNA m6A修饰影响动物脂肪沉积[135]。本实验室通过构建m6A修饰关键蛋白缺失的猪肠道上皮细胞系,发现降低mRNA m6A修饰能够显著提高肠道炎症反应过程中长链脂肪酸的吸收摄取和甘油三酯的水平[136],进一步提示脂肪酸、mRNA m6A修饰和脂质沉积之间有着密切的关系。但是,饲粮添加不同类型的不饱和脂肪酸,通过m6A修饰影响脂肪沉积的内在分子机制还需要深入探究。
7 小结综上所述,国内外关于mRNA m6A修饰与动物脂肪沉积调控等方面的研究已取得了较大的进展。但由于动物脂肪组织发育与沉积是一个复杂的生理生化过程,仍存在一些关键问题和可能突破点需要进一步探究,如mRNA m6A甲基化修饰在脂肪干细胞定向成脂分化的机制还有待于进一步探究;mRNA m6A甲基化修饰是否可以差异调控猪肌内脂肪和皮下脂肪沉积?其差异调控机制如何仍需要深入研究;mRNA m6A甲基化修饰及其他表观遗传修饰对畜禽脂质沉积与代谢的影响有待深入探究;靶向调控mRNA m6A甲基化修饰的营养素及其在动物生产上的应用技术体系需研究建立等等。随着科学技术的进步和研究的深入开展,mRNA m6A修饰等表观遗传修饰对动物脂肪沉积调控作用及机制将会更加清晰,相关营养调控技术也将创建,这将为精准靶向调控动物脂肪沉积进而调控动物生产性能和产品品质奠定基础,对未来绿色高效健康养殖和畜牧业高质量发展具有重要意义。
编者按
汪以真,男,安徽安庆人,著名动物营养学家,主要从事分子营养学研究,在生猪养殖“无抗”和“肠道微生态”的研究以及地方品种猪的肉质性状调控分子机制的研究上具有精深的造诣。本刊特邀汪以真教授就有关mRNA N6-甲基腺嘌呤修饰调控与动物脂肪沉积的研究进展撰写一篇综述。汪以真教授是浙江大学教授、动物科技学院院长、博士生导师,国家杰出青年基金获得者、国家“万人计划”科技创新领军人才,国务院畜牧学科评议组成员、教育部动物生产类教指委副主任、中国畜牧兽医学会动物营养学分会副理事长、绿色饲料与健康养殖国家工程研究中心主任、浙江省畜牧兽医学会理事长;主要从事营养与动物免疫、营养与肉品质以及生物饲料等研究;先后承担国家级项目课题20余项,获国家科技进步二等奖2项;在国内外期刊发表SCI论文160余篇,授权国际、国家发明专利40余项。
[1] |
ALI A T, HOCHFELD W E, MYBURGH R, et al. Adipocyte and adipogenesis[J]. European Journal of Cell Biology, 2013, 92(6/7): 229-236. |
[2] |
XU Z Y, YOU W J, LIU J Q, et al. Elucidating the regulatory role of melatonin in brown, white, and beige adipocytes[J]. Advances in Nutrition, 2020, 11(2): 447-460. |
[3] |
ZHANG F, HAO G Y, SHAO M L, et al. An adipose tissue atlas: an image-guided identification of human-like BAT and beige depots in rodents[J]. Cell Metabolism, 2018, 27(1): 252-262. DOI:10.1016/j.cmet.2017.12.004 |
[4] |
RUI L Y. Brown and beige adipose tissues in health and disease[J]. Comprehensive Physiology, 2017, 7(4): 1281-1306. |
[5] |
GAO Y, QIMUGE N R, QIN J, et al. Acute and chronic cold exposure differentially affects the browning of porcine white adipose tissue[J]. Animal, 2018, 12(7): 1435-1441. DOI:10.1017/S1751731117002981 |
[6] |
LIN J, CAO C W, TAO C, et al. Cold adaptation in pigs depends on UCP3 in beige adipocytes[J]. Journal of Molecular Cell Biology, 2017, 9(5): 364-375. DOI:10.1093/jmcb/mjx018 |
[7] |
ANTONOPOULOS A S, ANTONIADES C. The role of epicardial adipose tissue in cardiac biology: classic concepts and emerging roles[J]. The Journal of Physiology, 2017, 595(12): 3907-3917. DOI:10.1113/JP273049 |
[8] |
LI M Z, WU H L, LUO Z G, et al. An atlas of DNA methylomes in porcine adipose and muscle tissues[J]. Nature Communications, 2012, 3: 850. DOI:10.1038/ncomms1854 |
[9] |
LIU Y, LONG H, FENG S M, et al. Trait correlated expression combined with eQTL and ASE analyses identified novel candidate genes affecting intramuscular fat[J]. BMC Genomics, 2021, 22(1): 805. DOI:10.1186/s12864-021-08141-9 |
[10] |
徐子叶, 吴纬澈, 汪以真, 等. 调控肌内脂肪沉积的分子机制研究进展[J]. 中国畜牧杂志, 2018, 54(5): 1-5. XU Z Y, WU W C, WANG Y Z, et al. Advances in molecular mechanisms regulating intramuscular fat deposition[J]. Chinese Journal of Animal Science, 2018, 54(5): 1-5 (in Chinese). DOI:10.19556/j.0258-7033.2018-05-001 |
[11] |
WEI C M, GERSHOWITZ A, MOSS B. Methylated nucleotides block 5' terminus of HeLa cell messenger RNA[J]. Cell, 1975, 4(4): 379-386. DOI:10.1016/0092-8674(75)90158-0 |
[12] |
SOMMER S, LAVI U, DARNELL J E, J r. The absolute frequency of labeled N6-methyladenosine in HeLa cell messenger RNA decreases with label time[J]. Journal of Molecular Biology, 1978, 124(3): 487-499. DOI:10.1016/0022-2836(78)90183-3 |
[13] |
BOKAR J A, SHAMBAUGH M E, POLAYES D, et al. Purification and cDNA cloning of the AdoMet-binding subunit of the human mRNA (N6-adenosine)-methyltransferase[J]. RNA, 1997, 3(11): 1233-1247. |
[14] |
JIA G F, FU Y, ZHAO X, et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO[J]. Nature Chemical Biology, 2011, 7(12): 885-887. DOI:10.1038/nchembio.687 |
[15] |
DOMINISSINI D, MOSHITCH-MOSHKOVITZ S, SCHWARTZ S, et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq[J]. Nature, 2012, 485(7397): 201-206. DOI:10.1038/nature11112 |
[16] |
LI X Y, XIONG X S, YI C Q. Epitranscriptome sequencing technologies: decoding RNA modifications[J]. Nature Methods, 2017, 14(1): 23-31. DOI:10.1038/nmeth.4110 |
[17] |
SCHAPIRA M. Structural chemistry of human RNA methyltransferases[J]. ACS Chemical Biology, 2016, 11(3): 575-582. DOI:10.1021/acschembio.5b00781 |
[18] |
LIU J Z, YUE Y N, HAN D L, et al. A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation[J]. Nature Chemical Biology, 2014, 10(2): 93-95. DOI:10.1038/nchembio.1432 |
[19] |
WANG P, DOXTADER K A, NAM Y. Structural basis for cooperative function of Mettl3 and Mettl14 methyltransferases[J]. Molecular Cell, 2016, 63(2): 306-317. DOI:10.1016/j.molcel.2016.05.041 |
[20] |
PING X L, SUN B F, WANG L, et al. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase[J]. Cell Research, 2014, 24(2): 177-189. DOI:10.1038/cr.2014.3 |
[21] |
YUE Y N, LIU J, CUI X L, et al. VIRMA mediates preferential m6A mRNA methylation in 3'UTR and near stop codon and associates with alternative polyadenylation[J]. Cell Discovery, 2018, 4(1): 10. DOI:10.1038/s41421-018-0019-0 |
[22] |
WEN J, LV R T, MA H H, et al. Zc3h13 regulates nuclear RNA m6A methylation and mouse embryonic stem cell self-renewal[J]. Molecular Cell, 2018, 69(6): 1028-1038. DOI:10.1016/j.molcel.2018.02.015 |
[23] |
PATIL D P, CHEN C K, PICKERING B F, et al. m6A RNA methylation promotes XIST-mediated transcriptional repression[J]. Nature, 2016, 537(7620): 369-373. DOI:10.1038/nature19342 |
[24] |
CHURCH C, MOIR L, MCMURRAY F, et al. Overexpression of Fto leads to increased food intake and results in obesity[J]. Nature Genetics, 2010, 42(12): 1086-1092. DOI:10.1038/ng.713 |
[25] |
TANG C, KLUKOVICH R, PENG H Y, et al. ALKBH5-dependent m6A demethylation controls splicing and stability of long 3'-UTR mRNAs in male germ cells[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(2): E325-E333. DOI:10.1073/pnas.1710828115 |
[26] |
WANG X, ZHAO B S, ROUNDTREE I A, et al. N6-methyladenosine modulates messenger RNA translation efficiency[J]. Cell, 2015, 161(6): 1388-1399. DOI:10.1016/j.cell.2015.05.014 |
[27] |
ALARCÓN C R, LEE H, GOODARZI H, et al. N6-methyladenosine marks primary microRNAs for processing[J]. Nature, 2015, 519(7544): 482-485. DOI:10.1038/nature14281 |
[28] |
ROUNDTREE I A, LUO G Z, ZHANG Z J, et al. YTHDC1 mediates nuclear export of N6-methyladenosine methylated mRNAs[J]. eLife, 2017, 6: e31311. DOI:10.7554/eLife.31311 |
[29] |
ALARCÓN C R, GOODARZI H, LEE H, et al. HNRNPA2B1 is a mediator of m6A-dependent nuclear RNA processing events[J]. Cell, 2015, 162(6): 1299-1308. DOI:10.1016/j.cell.2015.08.011 |
[30] |
WANG X, LU Z K, GOMEZ A, et al. N6-methyladenosine-dependent regulation of messenger RNA stability[J]. Nature, 2014, 505(7481): 117-120. DOI:10.1038/nature12730 |
[31] |
SHI H L, WANG X, LU Z K, et al. YTHDF3 facilitates translation and decay of N6-methyladenosine-modified RNA[J]. Cell Research, 2017, 27(3): 315-328. DOI:10.1038/cr.2017.15 |
[32] |
HSU P J, ZHU Y F, MA H H, et al. Ythdc2 is an N6-methyladenosine binding protein that regulates mammalian spermatogenesis[J]. Cell Research, 2017, 27(9): 1115-1127. DOI:10.1038/cr.2017.99 |
[33] |
HUANG H L, WENG H Y, SUN W J, et al. Recognition of RNA N6-methyladenosine by IGF2BP proteins enhances mRNA stability and translation[J]. Nature Cell Biology, 2018, 20(3): 285-295. DOI:10.1038/s41556-018-0045-z |
[34] |
BAI Y, YANG C X, WU R L, et al. YTHDF1 regulates tumorigenicity and cancer stem cell-like activity in human colorectal carcinoma[J]. Frontiers in Oncology, 2019, 9: 332. DOI:10.3389/fonc.2019.00332 |
[35] |
WU Y S, XIE L, WANG M Y, et al. Mettl3-mediated m6A RNA methylation regulates the fate of bone marrow mesenchymal stem cells and osteoporosis[J]. Nature Communications, 2018, 9(1): 4772. DOI:10.1038/s41467-018-06898-4 |
[36] |
BATISTA P J, MOLINIE B, WANG J K, et al. m6A RNA modification controls cell fate transition in mammalian embryonic stem cells[J]. Cell Stem Cell, 2014, 15(6): 707-719. DOI:10.1016/j.stem.2014.09.019 |
[37] |
CHOE J, LIN S B, ZHANG W C, et al. mRNA circularization by METTL3-eIF3h enhances translation and promotes oncogenesis[J]. Nature, 2018, 561(7724): 556-560. DOI:10.1038/s41586-018-0538-8 |
[38] |
LIN S B, CHOE J, DU P, et al. The m6A methyltransferase METTL3 promotes translation in human cancer cells[J]. Molecular Cell, 2016, 62(3): 335-345. DOI:10.1016/j.molcel.2016.03.021 |
[39] |
YANG F, JIN H, QUE B, et al. Dynamic m6A mRNA methylation reveals the role of METTL3-m6A-CDCP1 signaling axis in chemical carcinogenesis[J]. Oncogene, 2019, 38(24): 4755-4772. DOI:10.1038/s41388-019-0755-0 |
[40] |
ZHANG C Z, SAMANTA D, LU H Q, et al. Hypoxia induces the breast cancer stem cell phenotype by HIF-dependent and ALKBH5-mediated m6A-demethylation of NANOG mRNA[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(14): E2047-E2056. |
[41] |
LI Z J, WENG H Y, SU R, et al. FTO plays an oncogenic role in acute myeloid leukemia as a N6-methyladenosine RNA demethylase[J]. Cancer Cell, 2017, 31(1): 127-141. DOI:10.1016/j.ccell.2016.11.017 |
[42] |
HESS M E, HESS S, MEYER K D, et al. The fat mass and obesity associated gene (Fto) regulates activity of the dopaminergic midbrain circuitry[J]. Nature Neuroscience, 2013, 16(8): 1042-1048. DOI:10.1038/nn.3449 |
[43] |
LI L P, ZANG L Q, ZHANG F R, et al. Fat mass and obesity-associated (FTO) protein regulates adult neurogenesis[J]. Human Molecular Genetics, 2017, 26(13): 2398-2411. DOI:10.1093/hmg/ddx128 |
[44] |
QI S T, MA J Y, WANG Z B, et al. N6-methyladenosine sequencing highlights the involvement of mRNA methylation in oocyte meiotic maturation and embryo development by regulating translation in Xenopus laevis[J]. Journal of Biological Chemistry, 2016, 291(44): 23020-23026. DOI:10.1074/jbc.M116.748889 |
[45] |
FRAYLING T M, TIMPSON N J, WEEDON M N, et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity[J]. Science, 2007, 316(5826): 889-894. DOI:10.1126/science.1141634 |
[46] |
ZHAO X, YANG Y, SUN B F, et al. FTO-dependent demethylation of N6-methyladenosine regulates mRNA splicing and is required for adipogenesis[J]. Cell Research, 2014, 24(12): 1403-1419. DOI:10.1038/cr.2014.151 |
[47] |
WANG X X, ZHU L N, CHEN J Q, et al. mRNA m6A methylation downregulates adipogenesis in porcine adipocytes[J]. Biochemical and Biophysical Research Communications, 2015, 459(2): 201-207. DOI:10.1016/j.bbrc.2015.02.048 |
[48] |
WANG X X, SUN B F, JIANG Q, et al. mRNA m6A plays opposite role in regulating UCP2 and PNPLA2 protein expression in adipocytes[J]. International Journal of Obesity, 2018, 42(11): 1912-1924. DOI:10.1038/s41366-018-0027-z |
[49] |
JIANG Q, SUN B F, LIU Q, et al. MTCH2 promotes adipogenesis in intramuscular preadipocytes via an m6A-YTHDF1-dependent mechanism[J]. FASEB Journal, 2019, 33(2): 2971-2981. DOI:10.1096/fj.201801393RRR |
[50] |
YAO Y X, BI Z, WU R F, et al. METTL3 inhibits BMSC adipogenic differentiation by targeting the JAK1/STAT5/C/EBPβ pathway via an m6A-YTHDF2-dependent manner[J]. FASEB Journal, 2019, 33(6): 7529-7544. DOI:10.1096/fj.201802644R |
[51] |
WU R F, GUO G Q, BI Z, et al. m6A methylation modulates adipogenesis through JAK2-STAT3-C/EBPβ signaling[J]. Biochimica et Biophysica Acta (BBA): Gene Regulatory Mechanisms, 2019, 1862(8): 796-806. DOI:10.1016/j.bbagrm.2019.06.008 |
[52] |
WANG X X, WU R F, LIU Y H, et al. m6A mRNA methylation controls autophagy and adipogenesis by targeting Atg5 and Atg7[J]. Autophagy, 2020, 16(7): 1221-1235. DOI:10.1080/15548627.2019.1659617 |
[53] |
LIU Q, ZHAO Y L, WU R F, et al. ZFP217 regulates adipogenesis by controlling mitotic clonal expansion in a METTL3-m6A dependent manner[J]. RNA Biology, 2019, 16(12): 1785-1793. DOI:10.1080/15476286.2019.1658508 |
[54] |
WANG Y Q, GAO M, ZHU F X, et al. METTL3 is essential for postnatal development of brown adipose tissue and energy expenditure in mice[J]. Nature Communications, 2020, 11(1): 1648. DOI:10.1038/s41467-020-15488-2 |
[55] |
WU R F, CHEN Y S, LIU Y H, et al. m6A methylation promotes white-to-beige fat transition by facilitating Hif1a translation[J]. EMBO Reports, 2021, 22(11): e52348. |
[56] |
QIN Y Q, LI B H, ARUMUGAM S, et al. m6A mRNA methylation-directed myeloid cell activation controls progression of NAFLD and obesity[J]. Cell Reports, 2021, 37(6): 109968. DOI:10.1016/j.celrep.2021.109968 |
[57] |
YANG Y, SHEN F, HUANG W, et al. Glucose is involved in the dynamic regulation of m6A in patients with type 2 diabetes[J]. The Journal of Clinical Endocrinology and Metabolism, 2019, 104(3): 665-673. DOI:10.1210/jc.2018-00619 |
[58] |
DE JESUS D F, ZHANG Z J, KAHRAMAN S, et al. m6A mRNA methylation regulates human β-cell biology in physiological states and in type 2 diabetes[J]. Nature Metabolism, 2019, 1(8): 765-774. DOI:10.1038/s42255-019-0089-9 |
[59] |
TAKAHASHI K, YAMANAKA S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors[J]. Cell, 2006, 126(4): 663-676. DOI:10.1016/j.cell.2006.07.024 |
[60] |
FRYE M, HARADA B T, BEHM M, et al. RNA modifications modulate gene expression during development[J]. Science, 2018, 361(6409): 1346-1349. DOI:10.1126/science.aau1646 |
[61] |
CHEN T, HAO Y J, ZHANG Y, et al. m6A RNA methylation is regulated by microRNAs and promotes reprogramming to pluripotency[J]. Cell Stem Cell, 2015, 16(3): 289-301. DOI:10.1016/j.stem.2015.01.016 |
[62] |
WU R F, LIU Y H, ZHAO Y L, et al. m6A methylation controls pluripotency of porcine induced pluripotent stem cells by targeting SOCS3/JAK2/STAT3 pathway in a YTHDF1/YTHDF2-orchestrated manner[J]. Cell Death & Disease, 2019, 10(3): 171. |
[63] |
AGUILO F, ZHANG F, SANCHO A, et al. Coordination of m6A mRNA methylation and gene transcription by ZFP217 regulates pluripotency and reprogramming[J]. Cell Stem Cell, 2015, 17(6): 689-704. DOI:10.1016/j.stem.2015.09.005 |
[64] |
GEULA S, MOSHITCH-MOSHKOVITZ S, DOMINISSINI D, et al. Stem cells.m6A mRNA methylation facilitates resolution of naïve pluripotency toward differentiation[J]. Science, 2015, 347(6225): 1002-1006. DOI:10.1126/science.1261417 |
[65] |
BRONS I G M, SMITHERS L E, TROTTER M W B, et al. Derivation of pluripotent epiblast stem cells from mammalian embryos[J]. Nature, 2007, 448(7150): 191-195. DOI:10.1038/nature05950 |
[66] |
DANI C, SMITH A G, DESSOLIN S, et al. Differentiation of embryonic stem cells into adipocytes in vitro[J]. Journal of Cell Science, 1997, 110(11): 1279-1285. DOI:10.1242/jcs.110.11.1279 |
[67] |
WANG Y, LI Y, TOTH J I, et al. N6-methyladenosine modification destabilizes developmental regulators in embryonic stem cells[J]. Nature Cell Biology, 2014, 16(2): 191-198. DOI:10.1038/ncb2902 |
[68] |
SIANG D T C, LIM Y C, KYAW A M M, et al. The RNA-binding protein HuR is a negative regulator in adipogenesis[J]. Nature Communications, 2020, 11(1): 213. DOI:10.1038/s41467-019-14001-8 |
[69] |
DEZAWA M, ISHIKAWA H, ITOKAZU Y, et al. Bone marrow stromal cells generate muscle cells and repair muscle degeneration[J]. Science, 2005, 309(5732): 314-317. DOI:10.1126/science.1110364 |
[70] |
MECHANOACTIVE T. Differentiation of human mesenchymal stem cells[J]. Tissue Engineering Part A, 2008, 14(10): 1615-1627. DOI:10.1089/ten.tea.2006.0415 |
[71] |
OSWALD J, BOXBERGER S, JØRGENSEN B, et al. Mesenchymal stem cells can be differentiated into endothelial cells in vitro[J]. Stem Cells, 2004, 22(3): 377-384. DOI:10.1634/stemcells.22-3-377 |
[72] |
SUI B D, ZHENG C X, LI M, et al. Epigenetic regulation of mesenchymal stem cell homeostasis[J]. Trends in Cell Biology, 2020, 30(2): 97-116. DOI:10.1016/j.tcb.2019.11.006 |
[73] |
WU R F, WANG X X. Epigenetic regulation of adipose tissue expansion and adipogenesis by N6-methyladenosine[J]. Obesity Reviews, 2021, 22(2): e13124. |
[74] |
SHEN G S, ZHOU H B, ZHANG H, et al. The GDF11-FTO-PPARγ axis controls the shift of osteoporotic MSC fate to adipocyte and inhibits bone formation during osteoporosis[J]. Biochimica et Biophysica Acta-Molecular Basis of Disease, 2018, 1864(12): 3644-3654. DOI:10.1016/j.bbadis.2018.09.015 |
[75] |
CEN S Z, LI J T, CAI Z P, et al. TRAF4 acts as a fate checkpoint to regulate the adipogenic differentiation of MSCs by activating PKM2[J]. EBioMedicine, 2020, 54: 102722. DOI:10.1016/j.ebiom.2020.102722 |
[76] |
LI Y, YANG F, GAO M Q, et al. MiR-149-3p regulates the switch between adipogenic and osteogenic differentiation of BMSCs by targeting FTO[J]. Molecular Therapy Nucleic Acids, 2019, 17: 590-600. DOI:10.1016/j.omtn.2019.06.023 |
[77] |
WANG N D, FINEGOLD M J, BRADLEY A, et al. Impaired energy homeostasis in C/EBP alpha knockout mice[J]. Science, 1995, 269(5227): 1108-1112. DOI:10.1126/science.7652557 |
[78] |
TONTONOZ P, SPIEGELMAN B M. Fat and beyond: the diverse biology of PPARγ[J]. Annual Review of Biochemistry, 2008, 77: 289-312. DOI:10.1146/annurev.biochem.77.061307.091829 |
[79] |
TANG Q Q, OTTO T C, LANE M D. Mitotic clonal expansion: a synchronous process required for adipogenesis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(1): 44-49. DOI:10.1073/pnas.0137044100 |
[80] |
MERKESTEIN M, LABER S, MCMURRAY F, et al. FTO influences adipogenesis by regulating mitotic clonal expansion[J]. Nature Communications, 2015, 6: 6792. DOI:10.1038/ncomms7792 |
[81] |
WU R F, LIU Y H, YAO Y X, et al. FTO regulates adipogenesis by controlling cell cycle progression via m6A-YTHDF2 dependent mechanism[J]. Biochimica et Biophysica Acta: Molecular and Cell Biology of Lipids, 2018, 1863(10): 1323-1330. DOI:10.1016/j.bbalip.2018.08.008 |
[82] |
KOBAYASHI M, OHSUGI M, SASAKO T, et al. The RNA methyltransferase complex of WTAP, METTL3, and METTL14 regulates mitotic clonal expansion in adipogenesis[J]. Molecular and Cellular Biology, 2018, 38(16): e00116-e00118. |
[83] |
WEI J B, LIU F G, LU Z K, et al. Differential m6A, m6Am, and m1A demethylation mediated by FTO in the cell nucleus and cytoplasm[J]. Molecular Cell, 2018, 71(6): 973-985. DOI:10.1016/j.molcel.2018.08.011 |
[84] |
ZHANG M Z, ZHANG Y, MA J, et al. The demethylase activity of FTO (fat mass and obesity associated protein) is required for preadipocyte differentiation[J]. PLoS One, 2015, 10(7): e0133788. DOI:10.1371/journal.pone.0133788 |
[85] |
CAI M, LIU Q, JIANG Q, et al. Loss of m6A on FAM134B promotes adipogenesis in porcine adipocytes through m6A-YTHDF2-dependent way[J]. IUBMB Life, 2019, 71(5): 580-586. DOI:10.1002/iub.1974 |
[86] |
SONG T X, YANG Y, WEI H K, et al. Zfp217 mediates m6A mRNA methylation to orchestrate transcriptional and post-transcriptional regulation to promote adipogenic differentiation[J]. Nucleic Acids Research, 2019, 47(12): 6130-6144. DOI:10.1093/nar/gkz312 |
[87] |
WU W C, FENG J, JIANG D H, et al. AMPK regulates lipid accumulation in skeletal muscle cells through FTO-dependent demethylation of N6-methyladenosine[J]. Scientific Reports, 2017, 7: 41606. DOI:10.1038/srep41606 |
[88] |
DU J J, SHEN L Y, TAN Z D, et al. Betaine supplementation enhances lipid metabolism and improves insulin resistance in mice fed a high-fat diet[J]. Nutrients, 2018, 10(2): 131. DOI:10.3390/nu10020131 |
[89] |
CHEN W Q, XU M J, XU M W, et al. Effects of betaine on non-alcoholic liver disease[J]. Nutrition Research Reviews, 2022, 35(1): 28-38. DOI:10.1017/S0954422421000056 |
[90] |
FIGUEROA-SOTO C G, VALENZUELA-SOTO E M. Glycine betaine rather than acting only as an osmolyte also plays a role as regulator in cellular metabolism[J]. Biochimie, 2018, 147: 89-97. DOI:10.1016/j.biochi.2018.01.002 |
[91] |
SIVANESAN S, TAYLOR A, ZHANG J Z, et al. Betaine and choline improve lipid homeostasis in obesity by participation in mitochondrial oxidative demethylation[J]. Frontiers in Nutrition, 2018, 5: 61. DOI:10.3389/fnut.2018.00061 |
[92] |
SONG Z Y, DEACIUC I, ZHOU Z X, et al. Involvement of AMP-activated protein kinase in beneficial effects of betaine on high-sucrose diet-induced hepatic steatosis[J]. American Journal of Physiology Gastrointestinal and Liver Physiology, 2007, 293(4): G894-G902. DOI:10.1152/ajpgi.00133.2007 |
[93] |
XU L, HUANG D P, HU Q L, et al. Betaine alleviates hepatic lipid accumulation via enhancing hepatic lipid export and fatty acid oxidation in rats fed with a high-fat diet[J]. British Journal of Nutrition, 2015, 113(12): 1835-1843. DOI:10.1017/S0007114515001130 |
[94] |
EJAZ A, MARTINEZ-GUINO L, GOLDFINE A B, et al. Dietary betaine supplementation increases Fgf21 levels to improve glucose homeostasis and reduce hepatic lipid accumulation in mice[J]. Diabetes, 2016, 65(4): 902-912. DOI:10.2337/db15-1094 |
[95] |
FU R, WANG Q, KONG C H, et al. Mechanism of action and the uses betaine in pig production[J]. Journal of Animal Physiology and Animal Nutrition, 2022, 106(3): 528-536. DOI:10.1111/jpn.13633 |
[96] |
汪以真, 许梓荣. 甜菜碱对生长肥育猪体脂重分配的作用及机理研究[J]. 畜牧兽医学报, 2001, 32(2): 122-128. WANG Y Z, XU Z R. Effect of betaine on repartition of carcass fat in growing and finishing pigs and approach to it's mechanism[J]. Acta Veterinaria et Zootechnica Sinica, 2001, 32(2): 122-128 (in Chinese). DOI:10.3321/j.issn:0366-6964.2001.02.005 |
[97] |
汪以真, 冯杰, 许梓荣. 甜菜碱对杜长大肥育猪生长性能、胴体组成和肉质的影响[J]. 动物营养学报, 1998(3): 21-28. WANG Y Z, FENG J, XU Z R. Study on the effects of betaine on performance and carcass characteristics in finishing swine[J]. Chinese Journal of Animal Nutrition, 1998(3): 21-28 (in Chinese). |
[98] |
LI S S, WANG H C, WANG X X, et al. Betaine affects muscle lipid metabolism via regulating the fatty acid uptake and oxidation in finishing pig[J]. Journal of Animal Science and Biotechnology, 2017, 8: 72. DOI:10.1186/s40104-017-0200-6 |
[99] |
JEWELL D E, JACKSON M I. Dietary betaine and fatty acids change circulating single-carbon metabolites and fatty acids in the dog[J]. Animals: an Open Access Journal From MDPI, 2022, 12(6): 768. |
[100] |
AIRAKSINEN K, JOKKALA J, AHONEN I, et al. High-fat diet, betaine, and polydextrose induce changes in adipose tissue inflammation and metabolism in C57BL/6J mice[J]. Molecular Nutrition & Food Research, 2018, 62(23): e1800455. |
[101] |
PEKKINEN J, OLLI K, HUOTARI A, et al. Betaine supplementation causes increase in carnitine metabolites in the muscle and liver of mice fed a high-fat diet as studied by nontargeted LC-MS metabolomics approach[J]. Molecular Nutrition & Food Research, 2013, 57(11): 1959-1968. |
[102] |
ALBUQUERQUE A, NEVES J A, REDONDEIRO M, et al. Long term betaine supplementation regulates genes involved in lipid and cholesterol metabolism of two muscles from an obese pig breed[J]. Meat Science, 2017, 124: 25-33. DOI:10.1016/j.meatsci.2016.10.012 |
[103] |
ZHOU X H, CHEN J Q, CHEN J, et al. The beneficial effects of betaine on dysfunctional adipose tissue and N6-methyladenosine mRNA methylation requires the AMP-activated protein kinase α1 subunit[J]. The Journal of Nutritional Biochemistry, 2015, 26(12): 1678-1684. DOI:10.1016/j.jnutbio.2015.08.014 |
[104] |
WU W C, WANG S S, XU Z Y, et al. Betaine promotes lipid accumulation in adipogenic-differentiated skeletal muscle cells through ERK/PPARγ signalling pathway[J]. Molecular and Cellular Biochemistry, 2018, 447(1/2): 137-149. |
[105] |
CHEN J Q, ZHOU X H, WU W C, et al. FTO-dependent function of N6-methyladenosine is involved in the hepatoprotective effects of betaine on adolescent mice[J]. Journal of Physiology and Biochemistry, 2015, 71(3): 405-413. DOI:10.1007/s13105-015-0420-1 |
[106] |
CLARE C E, BRASSINGTON A H, KWONG W Y, et al. One-carbon metabolism: linking nutritional biochemistry to epigenetic programming of long-term development[J]. Annual Review of Animal Biosciences, 2019, 7: 263-287. DOI:10.1146/annurev-animal-020518-115206 |
[107] |
DAILY J W, HONGU N, MYNATT R L, et al. Choline supplementation increases tissue concentrations of carnitine and lowers body fat in guinea pigs[J]. The Journal of Nutritional Biochemistry, 1998, 9(8): 464-470. DOI:10.1016/S0955-2863(98)00044-8 |
[108] |
SAUNDERSON C L, MACKINLAY J. Changes in body-weight, composition and hepatic enzyme activities in response to dietary methionine, betaine and choline levels in growing chicks[J]. British Journal of Nutrition, 1990, 63(2): 339-349. DOI:10.1079/BJN19900120 |
[109] |
GAO X, RANDELL E, ZHOU H C, et al. Higher serum choline and betaine levels are associated with better body composition in male but not female population[J]. PLoS One, 2018, 13(2): e0193114. DOI:10.1371/journal.pone.0193114 |
[110] |
WANG L F, REN B, ZHANG Q, et al. Methionine restriction alleviates high-fat diet-induced obesity: involvement of diurnal metabolism of lipids and bile acids[J]. Biochimica et Biophysica Acta: Molecular Basis of Disease, 2020, 1866(11): 165908. DOI:10.1016/j.bbadis.2020.165908 |
[111] |
GEBEYEW K, YANG C, MI H, et al. Lipid metabolism and m6A RNA methylation are altered in lambs supplemented rumen-protected methionine and lysine in a low-protein diet[J]. Journal of Animal Science and Biotechnology, 2022, 13(1): 85. DOI:10.1186/s40104-022-00733-z |
[112] |
WANG L L, QI H, LI D, et al. METTL3 is a key regulator of milk synthesis in mammary epithelial cells[J]. Cell Biology International, 2022, 46(3): 359-369. DOI:10.1002/cbin.11733 |
[113] |
TODEN S, THEISS A L, WANG X, et al. Essential turmeric oils enhance anti-inflammatory efficacy of curcumin in dextran sulfate sodium-induced colitis[J]. Scientific Reports, 2017, 7(1): 814. DOI:10.1038/s41598-017-00812-6 |
[114] |
SHLAR I, DROBY S, RODOV V. Modes of antibacterial action of curcumin under dark and light conditions: a toxicoproteomics approach[J]. Journal of Proteomics, 2017, 160: 8-20. DOI:10.1016/j.jprot.2017.03.008 |
[115] |
LU N, LI X M, YU J Y, et al. Curcumin attenuates lipopolysaccharide-induced hepatic lipid metabolism disorder by modification of m6A RNA methylation in piglets[J]. Lipids, 2018, 53(1): 53-63. DOI:10.1002/lipd.12023 |
[116] |
HE S, WANG H, LIU R, et al. mRNA N6-methyladenosine methylation of postnatal liver development in pig[J]. PLoS One, 2017, 12(3): e0173421. DOI:10.1371/journal.pone.0173421 |
[117] |
CHEN Y S, WU R F, CHEN W, et al. Curcumin prevents obesity by targeting TRAF4-induced ubiquitylation in m6A-dependent manner[J]. EMBO Reports, 2021, 22(5): e52146. |
[118] |
GAN Z D, WEI W Y, WU J M, et al. Resveratrol and curcumin improve intestinal mucosal integrity and decrease m6A RNA methylation in the intestine of weaning piglets[J]. ACS Omega, 2019, 4(17): 17438-17446. DOI:10.1021/acsomega.9b02236 |
[119] |
ZHANG J Q, YAN E F, ZHANG L L, et al. Curcumin reduces oxidative stress and fat deposition in longissimus dorsi muscle of intrauterine growth-retarded finishing pigs[J]. Animal Science Journal, 2022, 93(1): e13741. |
[120] |
NEINAST M, MURASHIGE D, ARANY Z. Branched chain amino acids[J]. Annual Review of Physiology, 2019, 81: 139-164. DOI:10.1146/annurev-physiol-020518-114455 |
[121] |
HOLEČEK M. Branched-chain amino acids in health and disease: metabolism, alterations in blood plasma, and as supplements[J]. Nutrition & Metabolism, 2018, 15(1): 33. |
[122] |
NEINAST M D, JANG C, HUI S, et al. Quantitative analysis of the whole-body metabolic fate of branched-chain amino acids[J]. Cell Metabolism, 2019, 29(2): 417-429. DOI:10.1016/j.cmet.2018.10.013 |
[123] |
MA Q X, ZHU W Y, LU X C, et al. BCAA-BCKA axis regulates WAT browning through acetylation of PRDM16[J]. Nature Metabolism, 2022, 4(1): 106-122. DOI:10.1038/s42255-021-00520-6 |
[124] |
HENG J H, WU Z H, TIAN M, et al. Excessive BCAA regulates fat metabolism partially through the modification of m6A RNA methylation in weanling piglets[J]. Nutrition & Metabolism, 2020, 17(1): 10. |
[125] |
BAI J, GREENE E, LI W F, et al. Branched-chain amino acids modulate the expression of hepatic fatty acid metabolism-related genes in female broiler chickens[J]. Molecular Nutrition & Food Research, 2015, 59(6): 1171-1181. |
[126] |
ZHANG L Y, LI F N, GUO Q P, et al. Different proportions of branched-chain amino acids modulate lipid metabolism in a finishing pig model[J]. Journal of Agricultural and Food Chemistry, 2021, 69(25): 7037-7048. DOI:10.1021/acs.jafc.1c02001 |
[127] |
DUAN Y H, DUAN Y M, LI F N, et al. Effects of supplementation with branched-chain amino acids to low-protein diets on expression of genes related to lipid metabolism in skeletal muscle of growing pigs[J]. Amino Acids, 2016, 48(9): 2131-2144. DOI:10.1007/s00726-016-2223-2 |
[128] |
ZHENG L F, WEI H K, CHENG C S, et al. Supplementation of branched-chain amino acids to a reduced-protein diet improves growth performance in piglets: involvement of increased feed intake and direct muscle growth-promoting effect[J]. British Journal of Nutrition, 2016, 115(12): 2236-2245. DOI:10.1017/S0007114516000842 |
[129] |
曾波涛. 支链氨基酸(BCAA)对脂肪沉积的影响及机制研究[D]. 硕士学位论文. 杭州: 浙江大学, 2022. ZENG B. The effect and mechanism of branched amino acids on fat deposition[D]. Master's Thesis. Hangzhou: Zhejiang University, 2022. (in Chinese) |
[130] |
SELLMAYER A, DANESCH U, WEBER P C. Effects of different polunsaturated fatty acids on growth-related early gene expression and cell growth[J]. Lipids, 1996, 31(1): S37-S40. DOI:10.1007/BF02637048 |
[131] |
WANG L Y, HUANG Y Q, WANG Y Z, et al. Effects of polyunsaturated fatty acids supplementation on the meat quality of pigs: a Meta-analysis[J]. Frontiers in Nutrition, 2021, 8: 746765. DOI:10.3389/fnut.2021.746765 |
[132] |
窦晓宁, 蒋苏苏, 魏芳, 等. α-亚麻酸和亚油酸通过抑制脂肪细胞分化和诱导凋亡减弱猪脂肪形成[J]. 基因组学与应用生物学, 2021, 40(9): 2995-3005. DOU X N, JIANG S S, WEI F, et al. α-linolenic acid and linoleic acid attenuated the adipogenesis by inhibi-ting differentiation and inducing apoptosis in porcine adipocytes[J]. Genomics and Applied Biology, 2021, 40(9): 2995-3005 (in Chinese). DOI:10.13417/j.gab.040.002995 |
[133] |
OSTROWSKA E, MURALITHARAN M, CROSS R F, et al. Dietary conjugated linoleic acids increase lean tissue and decrease fat deposition in growing pigs[J]. The Journal of Nutrition, 1999, 129(11): 2037-2042. DOI:10.1093/jn/129.11.2037 |
[134] |
李权. 鱼油对脂多糖刺激仔猪下丘脑-垂体-肾上腺-免疫轴TLR4和NOD信号通路的调控作用[D]. 硕士学位论文. 武汉: 武汉工业学院, 2012. LI Q. Regulative role of fish oil on TLR4 and NOD signaling pathways in hypothanlamus-pituitary-adrenal-immune axis in piglets after lipopolysaccharide challenge[D]. Master's Thesis. Wuhan: Wuhan Polytechnic University, 2012. (in Chinese) |
[135] |
ZONG X, XIAO X, SHEN B, et al. The N6-methyladenosine RNA-binding protein YTHDF1 modulates the translation of TRAF6 to mediate the intestinal immune response[J]. Nucleic Acids Research, 2021, 49(10): 5537-5552. DOI:10.1093/nar/gkab343 |
[136] |
ZONG X, ZHAO J, WANG H, et al. Mettl3 deficiency sustains long-chain fatty acid absorption through suppressing Traf6-dependent inflammation response[J]. The Journal of Immunology, 2019, 202(2): 567-578. DOI:10.4049/jimmunol.1801151 |